Navigating the crossroads: Insights into cardiology’s influence on neurointerventional procedures

Mohammed A. Azab, Kevin Pierre, Brandon Lucke-Wold

Article ID: 2243
Vol 4, Issue 1, 2023
DOI: https://doi.org/10.54517/ccr.v4i1.2243
VIEWS - 82 (Abstract)

Abstract

Since Egaz Moniz introduced angiography, neurovascular interventions have undergone significant advancements. The integration of advanced biomaterials has refined endovascular devices and techniques for complex vascular lesions. The domain of neurointerventions includes neuroendovascular surgery, endovascular neurosurgery, and interventional neurology. Notably, in regions with limited neurointerventional specialists, interventional cardiologists are increasingly treating cerebrovascular strokes. The congruence between coronary and carotid interventions has facilitated the development of adaptable cerebrovascular tools, many inspired by those in cardiac catheter labs. This article provides an overview of key developments in neurointerventions, with a focus on the adaptation of tools between coronary and cerebrovascular procedures.


Keywords

interventional neuroradiology; endovascular neurosurgery; angiography; emerging innovation

Full Text:

PDF



References

1. Artico M, Spoletini M, Fumagalli L, et al. Egas Moniz: 90 years (1927–2017) from Cerebral Angiography. Frontiers in Neuroanatomy 2017; 11: 81. doi: 10.3389/fnana.2017.00081

2. Luessenhop AJ. Artificial embolization of cerebral arteries. Journal of the American Medical Association 1960; 172(11): 1153–1155. doi: 10.1001/jama.1960.63020110001009

3. Serbinenko FA. Balloon catheterization and occlusion of major cerebral vessels. Journal of Neurosurgery 1974; 41(2): 125–145. doi: 10.3171/jns.1974.41.2.0125

4. Guglielmi G, Viñuela F, Sepetka I, Macellari V. Electrothrombosis of saccular aneurysms via endovascular approach. Journal of Neurosurgery 1991; 75(1): 1–7. doi: 10.3171/jns.1991.75.1.0001

5. Molyneux AJ, Kerr RS, Yu LM, et al. International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: A randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet 2005; 366(9488): 809–817. doi: 10.1016/S0140-6736(05)67214-5

6. Andre C, Schan L, Scott M, et al. Neurointerventional radiology: History, present and future. Journal of Radiology and Oncology 2023; 7(2): 26–32. doi: 10.29328/journal.jro.1001049

7. Fiorella D, Woo HH, Albuquerque FC, Nelson PK. Definitive reconstruction of circumferential, fusiform intracranial aneurysms with the pipeline embolization device. Neurosurgery 2008; 62(5): 1115–1121. doi: 10.1227/01.neu.0000325873.44881.6e

8. Jahan R, Murayama Y, Pierre Gobin Y, et al. Embolization of arteriovenous malformations with onyx: Clinicopathological experience in 23 patients. Neurosurgery 2001; 48(5): 984–997. doi: 10.1227/00006123-200105000-00003

9. Nogueira RG, Jadhav AP, Haussen DC, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. The New England Journal of Medicine 2018; 378(1): 11–21. doi: 10.1056/nejmoa1706442

10. Albers GW, Marks MP, Kemp S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. The New England Journal of Medicine 2018; 378(8): 708–718. doi: 10.1056/nejmoa1713973

11. Jia ZY, Lee SH, Kim YE, et al. Optimal guiding catheter length for endovascular coiling of intracranial aneurysms in anterior circulation in era of flourishing distal access system. Neurointervention 2017; 12(2): 91–99. doi: 10.5469/neuroint.2017.12.2.91

12. Campbell BCV, Mitchell PJ, Kleinig TJ, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. The New England Journal of Medicine 2015; 372(11): 1009–1018. doi: 10.1056/nejmoa1414792

13. Li J, Castaño O, Tomasello A, et al. EP50* Catheter tip distensibility substantially influences the aspiration force of thrombectomy devices. ESMINT 2021—Abstract book. Journal of NeuroInterventional Surgery 2021; 13(Suppl 2). doi: 10.1136/neurintsurg-2021-esmint.49

14. Goyal M, Menon BK, van Zwam WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 2016; 387(10029): 1723–1731. doi: 10.1016/S0140-6736(16)00163-X

15. Berkhemer OA, Fransen PSS, Beumer D, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. The New England Journal of Medicine 2015; 372(1): 11–20. doi: 10.1056/nejmoa1411587

16. Madigan J. Vascular access: Guide catheter selection, usage, and compatibility. In: Murphy K, Robertson F (editors). Interventional Neuroradiology. Springer London; 2014.

17. Inaba Y, Arai Y, Sone M, et al. Clinical trial for development of a steerable microcatheter. Minimally Invasive Therapy & Allied Technologies 2018; 28(1): 1–5. doi: 10.1080/13645706.2018.1467458

18. Berenstein A, Cabiri O, Broussalis E, et al. New concept in neurovascular navigation: Technical description and preclinical experience with the Bendit 17 and Bendit 21 microcatheters in a rabbit aneurysm model. Journal of Neurointerventional Surgery 2022; 15(2): 172–175. doi: 10.1136/neurintsurg-2022-018644

19. Oh JS, Yoon SM, Shim JJ, et al. Efficacy of balloon-guiding catheter for mechanical thrombectomy in patients with anterior circulation ischemic stroke. Journal of Korean Neurosurgical Society 2017; 60(2): 155–164. doi: 10.3340/jkns.2016.0809.003

20. Hoffmann JC, Minkin J, Primiano N, et al. Use of a steerable microcatheter during superselective angiography: Impact on radiation exposure and procedural efficiency. CVIR Endovascular 2019; 2(1): 35. doi: 10.1186/s42155-019-0078-9

21. MeritMedical. SwiftNINJA steerable microcatheter MeritMedical 2023. Available online: https://www.merit.com/peripheral-intervention/delivery-systems/microcatheters/swiftninja-steerable-microcatheter (accessed on 16 November 2023).

22. Chewning R, Wyse G, Murphy K. Neurointervention for the peripheral radiologist: Tips and tricks. Seminars in Interventional Radiology 2008; 25(1): 42–47. doi: 10.1055/s-2008-1052305

23. Kammerer S, du Mesnil de Rochemont R, Wagner M, et al. Efficacy of mechanical thrombectomy using stent retriever and balloon-guiding catheter. Cardiovascular and Interventional Radiology 2018; 41(5): 699–705. doi: 10.1007/s00270-018-1901-8

24. Nguyen TN, Malisch T, Castonguay AC, et al. Balloon guide catheter improves revascularization and clinical outcomes with the solitaire device. Stroke 2014; 45(1): 141–145. doi: 10.1161/strokeaha.113.002407

25. Zaidat OO, Castonguay AC, Nogueira RG, et al. TREVO stent-retriever mechanical thrombectomy for acute ischemic stroke secondary to large vessel occlusion registry. Journal of Neurointerventional Surgery 2017; 10(6): 516–524. doi: 10.1136/neurintsurg-2017-013328

26. Leary MC, Saver JL, Gobin YP, et al. Beyond tissue plasminogen activator: Mechanical intervention in acute stroke. Annals of Emergency Medicine 2003; 41(6): 838–846. doi: 10.1067/mem.2003.194

27. Hameed A, Zafar H, Mylotte D, Sharif F. Recent trends in clot retrieval devices: A review. Cardiology and Therapy 2017; 6(2): 193–202. doi: 10.1007/s40119-017-0098-2

28. Smith WS, Sung G, Starkman S, et al. Safety and efficacy of mechanical embolectomy in acute ischemic stroke. Stroke 2005; 36(7): 1432–1438. doi: 10.1161/01.str.0000171066.25248.1d

29. Smith WS, Sung G, Saver J, et al. Mechanical thrombectomy for acute ischemic stroke. Stroke 2008; 39(4): 1205–1212. doi: 10.1161/strokeaha.107.497115

30. Bose A, Henkes H, Alfke K, et al. The penumbra system: A mechanical device for the treatment of acute stroke due to thromboembolism. AJNR. American Journal of Neuroradiology 2008; 29(7): 1409–1413. doi: 10.3174/ajnr.a1110

31. The Penumbra Pivotal Stroke Trial. Safety and effectiveness of a new generation of mechanical devices for clot removal in intracranial large vessel occlusive disease. Stroke 2009; 40(8): 2761–2768. doi: 10.1161/strokeaha.108.544957

32. Levy EI, Siddiqui AH, Crumlish A, et al. First food and drug administration-approved prospective trial of primary intracranial stenting for acute stroke. Stroke 2009; 40(11): 3552–3556. doi: 10.1161/strokeaha.109.561274

33. Castaño C, Dorado L, Guerrero C, et al. Mechanical thrombectomy with the solitaire AB device in large artery occlusions of the anterior circulation. Stroke 2010; 41(8): 1836–1840. doi: 10.1161/strokeaha.110.584904

34. San Román L, Obach V, Blasco J, et al. Single-center experience of cerebral artery thrombectomy using the TREVO device in 60 patients with acute ischemic stroke. Stroke 2012; 43(6): 1657–1659. doi: 10.1161/strokeaha.111.640011

35. Saver JL, Jahan R, Levy EI, et al. Solitaire flow restoration device versus the Merci Retriever in patients with acute ischaemic stroke (SWIFT): A randomised, parallel-group, non-inferiority trial. Lancet 2012; 380(9849): 1241–1249. doi: 10.1016/S0140-6736(12)61384-1

36. Nogueira RG, Lutsep HL, Gupta R, et al. Trevo versus Merci retrievers for thrombectomy revascularisation of large vessel occlusions in acute ischaemic stroke (TREVO 2): A randomised trial. Lancet 2012; 380(9849): 1231–1240. doi: 10.1016/S0140-6736(12)61299-9

37. Dawbarn RHM. The starvation operation for malignancy in the external carotid AREA: Its failures and successes. JAMA 1904; XLIII(12): 792–795. doi: 10.1001/jama.1904.92500120002g

38. Dotter CT, Judkins MP. Transluminal treatment of arteriosclerotic obstruction. Circulation 1964; 30(5): 654–670. doi: 10.1161/01.cir.30.5.654

39. Vaidya S, Tozer K, Chen J. An overview of embolic agents. Seminars in Interventional Radiology 2008; 25(3): 204–215. doi: 10.1055/s-0028-1085930

40. Brassel F, Meila D. Evolution of embolic agents in interventional neuroradiology. Clinical Neuroradiology 2015; 25(S2): 333–339. doi: 10.1007/s00062-015-0419-6

41. Pierot L, Gubucz I, Buhk JH, et al. Safety and efficacy of aneurysm treatment with the WEB: Results of the WEBCAST 2 study. AJNR. American Journal of Neuroradiology 2017; 38(6): 1151–1155. doi: 10.3174/ajnr.a5178

42. Spiotta AM, Turner RD, Chaudry MI, et al. Carotid sacrifice with a single Penumbra occlusion device: A feasibility study in a swine model. Journal of Neurointerventional Surgery 2014; 8(1): 99–102. doi: 10.1136/neurintsurg-2014-011461

43. Roubin GS, New G, Iyer SS, et al. Immediate and late clinical outcomes of carotid artery stenting in patients with symptomatic and asymptomatic carotid artery stenosis. Circulation 2001; 103(4): 532–537. doi: 10.1161/01.cir.103.4.532

44. Cremonesi A, Manetti R, Setacci F, et al. Protected carotid stenting. Stroke 2003; 34(8): 1936–1941. doi: 10.1161/01.str.0000081000.23561.61

45. Bosiers M, Deloose K, Verbist J, Peeters P. Carotid artery stenting: Which stent for which lesion? Vascular 2005; 13(4): 205–210. doi: 10.1258/rsmvasc.13.4.205

46. Mathias K. A new catheter system for percutaneous transluminal angioplasty (PTA) of carotid artery stenoses. Fortschritte der Medizin 1977; 95(15): 1007–1011.

47. Mathias K, Mittermayer C, Ensinger H, Neff W. Percutaneous catheter dilatation of carotid stenoses—Animal experiments (Cerman). RöFo: Fortschritte auf dem Gebiete der Röntgenstrahlen und der Nuklearmedizin 1980; 133(3): 258–261. doi: 10.1055/s-2008-1056722

48. Bergeron P, Becquemin JP, Jausseran JM, et al. Percutaneous stenting of the internal carotid artery: The European CAST I study. Carotid Artery Stent Trial. Journal of Endovascular Surgery 1999; 6(2): 155–159. doi: 10.1583/1074-6218(1999)006<0155:PSOTIC>2.0.CO;2

49. Wholey MH, Wholey MH, Jarmolowski CR, et al. Endovascular stents for carotid artery occlusive disease. Journal of Endovascular Surgery 1997; 4(4): 326–338. doi: 10.1177/152660289700400402

50. Raymond J, Guilbert F, Weill A, et al. Long-term angiographic recurrences after selective endovascular treatment of aneurysms with detachable coils. Stroke 2003; 34(6): 1398–1403. doi: 10.1161/01.str.0000073841.88563.e9

51. Ferns SP, Sprengers MES, van Rooij WJ, et al. Late reopening of adequately coiled intracranial aneurysms. Stroke 2011; 42(5): 1331–1337. doi: 10.1161/strokeaha.110.605790

52. Geremia G, Haklin M, Brennecke L. Embolization of experimentally created aneurysms with intravascular stent devices. AJNR. American Journal of Neuroradiology 1994; 15(7): 1223–1231.

53. Turjman F, Acevedo G, Moll T, et al. Treatment of experimental carotid aneurysms by endoprosthesis implantation: Preliminary report. Neurological Research 1993; 15(3): 181–184. doi: 10.1080/01616412.1993.11740132

54. Wakhloo AK, Schellhammer F, de Vries J, et al. Self-expanding and balloon-expandable stents in the treatment of carotid aneurysms: An experimental study in a canine model. AJNR. American Journal of Neuroradiology 1994; 15(3): 493–502.

55. Nelson PK, Lylyk P, Szikora I, et al. The pipeline embolization device for the intracranial treatment of aneurysms trial. AJNR. American Journal of Neuroradiology 2010; 32(1): 34–40. doi: 10.3174/ajnr.a2421

56. Berge J, Biondi A, Machi P, et al. Flow-diverter silk stent for the treatment of intracranial aneurysms: 1-year follow-up in a multicenter study. AJNR. American Journal of Neuroradiology 2012; 33(6): 1150–1155. doi: 10.3174/ajnr.a2907

57. Chong W, Zhang Y, Qian Y, et al. Computational hemodynamics analysis of intracranial aneurysms treated with flow diverters: Correlation with clinical outcomes. AJNR. American Journal of Neuroradiology 2013; 35(1): 136–142. doi: 10.3174/ajnr.a3790

58. Becske T, Brinjikji W, Potts MB, et al. Long-term clinical and angiographic outcomes following pipeline embolization device treatment of complex internal carotid artery aneurysms: Five-year results of the pipeline for uncoilable or failed aneurysms trial. Neurosurgery 2016; 80(1): 40–48. doi: 10.1093/neuros/nyw014

59. Becske T, Potts MB, Shapiro M, et al. Pipeline for uncoilable or failed aneurysms: 3-year follow-up results. Journal of Neurosurgery 2017; 127(1): 81–88. doi: 10.3171/2015.6.jns15311

60. Szikora I, Berentei Z, Kulcsar Z, et al. Treatment of intracranial aneurysms by functional reconstruction of the parent artery: The budapest experience with the pipeline embolization device. AJNR. American Journal of Neuroradiology 2010; 31(6): 1139–1147. doi: 10.3174/ajnr.a2023

61. Fischer S, Vajda Z, Aguilar Perez M, et al. Pipeline embolization device (PED) for neurovascular reconstruction: Initial experience in the treatment of 101 intracranial aneurysms and dissections. Neuroradiology 2011; 54(4): 369–382. doi: 10.1007/s00234-011-0948-x

62. Shankar JJS, Tampieri D, Iancu D, et al. SILK flow diverter for complex intracranial aneurysms: A Canadian registry. Journal of Neurointerventional Surgery 2015; 8(3): 273–278. doi: 10.1136/neurintsurg-2015-011708

63. Murthy SB, Shah S, Shastri A, et al. The SILK flow diverter in the treatment of intracranial aneurysms. Journal of Clinical Neuroscience 2014; 21(2): 203–206. doi: 10.1016/j.jocn.2013.07.006

64. De Vries J, Boogaarts J, Van Norden A, Wakhloo AK. New generation of flow diverter (surpass) for unruptured intracranial aneurysms. Stroke 2013; 44(6): 1567–1577. doi: 10.1161/strokeaha.111.000434

65. Hornung M, Bertog SC, Grunwald I, et al. Acute stroke interventions performed by cardiologists. JACC: Cardiovascular Interventions 2019; 12(17): 1703–1710. doi: 10.1016/j.jcin.2019.05.052

66. Hopkins LN, Holmes DR Jr. Public health urgency created by the success of mechanical thrombectomy studies in stroke. Circulation 2017; 135(13): 1188–1190. doi: 10.1161/circulationaha.116.025652

67. Putman CM, Chaloupka JC. Use of large-caliber coronary guiding catheters for neurointerventional applications. AJNR. American Journal of Neuroradiology 1996; 17(4): 697–704.

68. Bunt TJ. Complete cerebral angiography in the evaluation of patients with cerebrovascular insufficiency. The American Surgeon 1988; 54(10): 617–620.

69. Nardai S, Kis B, Gubucz I, et al. Coronary stent implantation for acute basilar artery occlusion with underlying stenosis. EuroIntervention 2020; 16(12): e1021–e1028. doi: 10.4244/eij-d-19-00519

70. Sulženko J, Kožnar B, Peisker T, et al. Stable clinical outcomes when a stroke thrombectomy program is started in an experienced cardiology cath lab. JACC: Cardiovascular Interventions 2021; 14(7): 785–792. doi: 10.1016/j.jcin.2021.01.025

71. Campeau L. Percutaneous radial artery approach for coronary angiography. Catheterization and Cardiovascular Diagnosis 1989; 16(1): 3–7. doi: 10.1002/ccd.1810160103

72. Park JH, Kim DY, Kim JW, et al. Efficacy of transradial cerebral angiography in the elderly. Journal of Korean Neurosurgical Society 2013; 53(4): 213–217. doi: 10.3340/jkns.2013.53.4.213

73. Matsumoto Y, Hokama M, Nagashima H, et al. Transradial approach for selective cerebral angiography: Technical note. Neurological Research 2000; 22(6): 605–608. doi: 10.1080/01616412.2000.11740727

74. Han H, Jun I, Seok H, et al. Biodegradable magnesium alloys promote angio-osteogenesis to enhance bone repair. Advanced Science 2020; 7(15): 2000800. doi: 10.1002/advs.202000800

75. Zhou C, Li HF, Yin YX, et al. Long-term in vivo study of biodegradable Zn-Cu stent: A 2-year implantation evaluation in porcine coronary artery. Acta Biomaterialia 2019; 97: 657–670. doi: 10.1016/j.actbio.2019.08.012

76. Kabir H, Munir K, Wen C, Li Y. Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives. Bioactive Materials 2021; 6(3): 836–879. doi: 10.1016/j.bioactmat.2020.09.013

77. Wei S, Ma JX, Xu L, et al. Biodegradable materials for bone defect repair. Military Medical Research 2020; 7(1): 54. doi: 10.1186/s40779-020-00280-6

78. Xu K, Li S, Dong S, et al. Bioresorbable electrode array for electrophysiological and pressure signal recording in the brain. Advanced Healthcare Materials 2019; 8(15): e1801649. doi: 10.1002/adhm.201801649

79. Shin J, Liu Z, Bai W, et al. Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Science Advances 2019; 5(7): eaaw1899. doi: 10.1126/sciadv.aaw1899

80. Riaz U, Shabib I, Haider W. The current trends of Mg alloys in biomedical applications—A review. Journal of Biomedical Materials Research 2018; 107(6): 1970–1996. doi: 10.1002/jbm.b.34290

81. Cassese S, Byrne RA, Ndrepepa G, et al. Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: A meta-analysis of randomised controlled trials. Lancet 2016; 387(10018): 537–544. doi: 10.1016/S0140-6736(15)00979-4

82. Byrne RA, Kastrati A. Bioresorbable drug-eluting stents. JACC: Cardiovascular Interventions 2015; 8(1): 198–200. doi: 10.1016/j.jcin.2014.11.010

83. Nevzati E, Rey J, Coluccia D, et al. Biodegradable magnesium stent treatment of saccular aneurysms in a rat model-introduction of the surgical technique. Journal of Visualized Experiments: JoVE 2017; 128: 56359. doi: 10.3791/56359

84. Grüter BE, Täschler D, Strange F, et al. Testing bioresorbable stent feasibility in a rat aneurysm model. Journal of Neurointerventional Surgery 2019; 11(10): 1050–1054. doi: 10.1136/neurintsurg-2018-014697

85. Zamiri P, Kuang Y, Sharma U, et al. The biocompatibility of rapidly degrading polymeric stents in porcine carotid arteries. Biomaterials 2010; 31(31): 7847–7855. doi: 10.1016/j.biomaterials.2010.06.057

86. Wang W, Wang YL, Chen M, et al. Magnesium alloy covered stent for treatment of a lateral aneurysm model in rabbit common carotid artery: An in vivo study. Scientific Reports 2016; 6(1): 37401. doi: 10.1038/srep37401

87. Zhang J, Li H, Wang W, et al. The degradation and transport mechanism of a Mg-Nd-Zn-Zr stent in rabbit common carotid artery: A 20-month study. Acta Biomaterialia 2018; 69: 372–384. doi: 10.1016/j.actbio.2018.01.018

88. Goyal M, van Zwam W, Moret J, Ospel JM. Neurointervention in the 2020s: Where are we going? Clinical Neuroradiology 2020; 31(1): 1–5. doi: 10.1007/s00062-020-00953-8

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Mohammed A. Azab, Kevin Pierre, Brandon Lucke-Wold

License URL: https://creativecommons.org/licenses/by/4.0/


This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).