Research Progress on the relationship between long chain noncoding RNA and cardiovascular disease

Li Yan, Zhiru Ge

Article ID: 1921
Vol 4, Issue 2, 2023
DOI: https://doi.org/10.54517/ccr.v4i2.1921
Received: 2 August 2023; Accepted: 14 September 2023; Available online: 28 October 2023;
Issue release: 31 December 2023

VIEWS - 2461 (Abstract)

Download PDF

Abstract

Long non coding RNA (lncrna) is a highly conserved non coding RNA (ncRNA) with a length of more than 200 nucleotides. Studies have found that lncrna is closely related to transcriptional regulation, post transcriptional regulation and apparent regulation, and thus participates in the regulation of cardiovascular physiology and pathophysiology. This article summarizes the current biological characteristics of circulating lncrna, the value of lncrna as a potential biomarker of cardiovascular diseases and the future prospects of therapeutic methods.


Keywords

long chain noncoding RNA; cardiovascular disease; research progress


References

1. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489(7414): 57–74.

2. Gutschner T, diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 2012; 9(6): 703–719.

3. Anderson DM, anderson KM, chang CL, et al. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 2015; 160(4): 595–606.

4. Wang K, Chang H. Molecular mechanisms of long noncoding RNAs. Mol Cell 2011; 43(6): 904–914.

5. Batista PJ, chang HY. Long noncoding RNAs: cellular address codes in development and disease. Cell 2013; 152(6):1298–1307.

6. Wahlestedt C. Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat RevDrug Discov 2013; 12(6): 433–446.

7. Lozano-Velasco E, hernández-Torres F, daimi H, et al. Pitx2 impairs calcium handling in a dose-dependent manner by modulating Wnt signalling. Cardiovasc Res 2016; 109(1):55–66.

8. García-Padilla C, aránega A, franco D. The role of long non -coding RNAs in cardiac development and disease. AIMS Genet 2018; 5(2):124–140.

9. Huang Y. The novel regulatory role of lncRNAmiRNA-mRNA axis in cardiovascular diseases. J CellMol Med 2018; 22(12): 5768–5775.

10. Tsai MC, manor O, wan Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science, 2010, 329(5992):689–693.

11. Grote P, wittler L, hendrix D, et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell; 2013, 24(2):206–214.

12. Klattenhoff CA, scheuermann JC, surface LE, et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitmen. Cell 2013; 152(3):570–583.

13. Lin N, Chang K, Li Z, et al. An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitmen Cell 2014; 53(6):10.05–1019.

14. Engreitz JM, pandya-Jones A, mcDonel P, et al. TheXist lncRNA exploits three -dimensional genome architecture to spread across the X chromosome. Science 2013; 341(6147):1237973.

15. Gonzalez I, munita R, agirre E, et al. A lncRNA regulates alternative splicing via establishment of a splicing-specific chromatin signature. Nat Struct Mol Biol 2015; 22(5):370–376.

16. Kretz M, siprashvili Z, chu C, et al. Control of so matic tissue differentiation by the long non -coding RNA TINCR. Nature 2013; 493(7431):231–235.

17. Carrieri C, cimatti L, biagioli M, et al. Long non coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repea. Nature 2012; 491

18. Li C, Lei B, Huang S, et al. H19 derived microRNA675 regulates cell proliferation and migration through CDK6 in glioma. Am J Transl Res 2015; 7(10):1747– 1764.

19. Zhu N, Zhang D, Chen S, et al. Endothelial en riched microRNAs regulate angiotensin II -induced endothelial inflammation and migration. Atherosclerosis 2011; 215(2): 286–293.

20. Pauli A, norris ML, valen E, et al. Toddler: an embryonic signal that promotes cell movement via Apelin receptors. Science 2014; 343(6172):1248636.

21. Scheuermann JC, boyer LA. Getting to the heart of the matter: long non-coding RNAs in cardiac development and disease. EMBO J 2013; 32(13): 1805–1816.

22. Korostowski L, sedlak N, engel N. The Kcnq1ot1 long non -coding RNA affects chromatin conformation and expression of Kcnq1, but does not regulate its imprinting in the developing hear. PLoS Genet 2012, 8(9): e1002956.

23. Grote P, wittler L, hendrix D, et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 2013; 24(2):206–214.

24. Moore KJ, sheedy FJ, sheedy FJ, et al. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 2013; 13(10):709–721.

25. Leung A, trac C, jin W, et al. Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circ Res 2013; 113(3):266–278.

26. Congrains A, kamide K, oguro R, et al. Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B. Atherosclerosis 2012; 220(2):449–455.

27. Holdt LM, hoffmann S, sass K, et al. Alu elements in ANRIL non coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans regulation of gene networks. PLoS Genet 2013; 9(7):e1003588.

28. Hu Y, Zhao J, Li S, et al. RP5-833A20.1/miR382 5p/NFIA -dependent signal transduction path way contributes to the regulation of cholesterol homeostasis and inflammatory reaction. Arterioscler Thromb Vasc Biol 2015; 35(1):87–101.

29. Fiedler J, thum T. MicroRNAs in myocardial infarction. Arterioscler Thromb Vasc Biol 2013; 33(2): 201–205.

30. Ishii N, ozaki K, sato H, et al. Identification of a novel noncoding RNA, mIAT, that confers risk of myocardial infarction. J Hum Genet 2006; 51(12): 1087–1099.

31. Vausort M, wagner DR, devaux Y. Long noncoding RNAs in patients with acute myocardial infarction. Circ Res 2014; 115(7):668–677.

32. Papait R, kunderfranco P, stirparo GG, et al. Long noncoding RNA: a new player of heart failure? J Cardiovasc Transl Res 2013; 6(6):876–883.

33. Wang K, Liu F, Liu C, et al. The long noncoding RNA NRF regulates programmed necrosis and myocardial injury during ischemia and reperfusion by targeting miR-873. Cell Death Differ 2016; 23(8): 1394–1405.

34. Kumarswamy R, bauters C, volkmann I, et al. Circulating long noncoding RNA, lIPCAR, predicts sur vival in patients with heart failure. Circ Res 2014; 114(10):1569–1575.

35. Kotecha D, piccini JP. Atrial fibrillation in heartfailure: what should we do? Eur Heart J; 2015, 36(46): 3250–3257.

36. Li Z, Wang X, Wang W, et al. Altered long noncoding RNA expression profile in rabbit Atria with atrial fibrillation: TCONS00075467 modulates atrial electrical remodeling by sponging miR-328 to regulate CACNA1C. J Mol Cell Cardiol 2017; 108: 73–85.

37. Wang K, liu F, zhou LY, et al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res 2014; 114(9):1377–1388.

38. Friedrichs F, zugck C, rauch GJ, et al. HBEGF, sRA1, and IK: three cosegregating genes as deter minants of cardiomyopathy. Genome Res 2009; 19(3): 395–403.

39. Watanabe K, mori T, iwasaki A, et al. Increased oxygen free radical production during pregnancy may impair vascular reactivity in preeclamptic women. Hypertens Res 2013; 36(4):356–360.

40. Michalik KM, you XT, manavski Y, et al. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res 2014; 114(9):1389–1397.

41. Bell RD, long X, lin M, et al. Identification and initial functional characterization of a human vascular cellenriched long noncoding RNA. Arterioscler Thromb Vasc Biol 2014; 34(6):1249–1259.

42. Gopalakrishnan K, kumarasamy S, mell B, et al. Genome-wide identification of long noncoding RNAs in rat models of cardiovascular and renal disease. Hypertension 2015; 65(1):200–210.

43. Maegdefessel L, azuma J, tsao PS. MicroRNA -29b regulation of abdominal aortic aneurysm development. Trends Cardiovasc Med 2014; 24(1):1–6.

44. Pasmant E, sabbagh A, vidaud M, et al. ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J 2011, 25(2):444–448.

45. Helgadottir A, thorleifsson G, magnusson KP, et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet 2008; 40(2): 217–224.

46. Foroud T, koller DL, lai DB, et al. Genome -wide association study of intracranial aneurysms confirms role of anril and SOX17 in disease risk. Stroke 2012; 43(11): 2846–2852.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Li Yan, Zhiru Ge

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).