Diabetes and cardiovascular disease

Carlos Guamán, William Acosta, Carla Alvarez4, Benhard Hasbum

Article ID: 1918
Vol 4, Issue 2, 2023
DOI: https://doi.org/10.54517/ccr.v4i2.1918
Received: 28 October 2023; Accepted: 20 November 2023; Available online: 14 December 2023;
Issue release: 31 December 2023

VIEWS - 9594 (Abstract)

Download PDF

Abstract

Diabetes mellitus is one of the main causes of morbidity and mortality worldwide. This group of patients generally represents a population at high or very high cardiovascular risk, which is why early risk stratification is performed, seeking to focus objectively on the pharmacological and nonpharmacological approach with an intensive strategy. Cardiovascular disease represents the main cause of mortality, but in recent years there have been advances in therapeutics that have been shown to reduce major cardiovascular events. This article reviews the interaction between diabetes, cardiovascular disease and its treatment.


Keywords

diabetes mellitus; cardiovascular diseases; hypertension; myocardial ischemia; heart failure; cardiac arrhythmias


References

1. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010; 87(1): 4-14. doi: 10. 1016/j.diabres.2009.10.007

2. Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020; 41(2): 255-323. doi: 10.1093/eurheartj/ehz486

3. International Diabetes Federation. IDF Diabetes Atlas, 9th ed. International Diabetes Federation; 2019.

4. Norhammar A, Tenerz A, Nilsson G, et al. Glucose metabolism in patients with acute myocardial infarction and no previous diagnosis of diabetes mellitus: a prospective study. Lancet. 2002; 359(9324): 2140-2144. doi: 10.1016/S0140-6736[02]09089-X

5. Preis SR, Hwang SJ, Coady S, et al. Trends in all-cause and cardiovascular disease mortality among women and men with and without diabetes mellitus in the Framingham Heart Study, 1950 to 2005. Circulation. 2009; 119(13): 1728-1735. doi: 10.1161/CIRCULATIONAHA.108.829176

6. Sarwar N, Gao P, Seshasai SRK, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010; 375(9733): 2215-2222. doi: 10.1016/S0140- 6736[10]60484-9

7. Tancredi M, Rosengren A, Svensson AM, et al. Excess mortality among persons with Type 2 Diabetes. N Engl J Med. 2015; 373(18): 1720-1732. doi: 10.1056/ NEJMoa1504347

8. Di Angelantonio E, Kaptoge S, Wormser D, et al. Association of Cardiometabolic Multimor-bidity With Mortality. JAMA. 2015; 314(1): 52-60. doi: 10.1001/jama.2015.7008

9. Rawshani A, Sattar N, Franzén S, et al. Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study. Lancet. 2018; 392(10146): 477-486. doi: 10.1016/S0140-6736[18]31506-X

10. Gnatiuc L, Herrington WG, Halsey J, et al. Sex-specific relevance of diabetes to occlusive vascular and other mortality: a collaborative meta-analysis of individual data from 980,793 adults from 68 prospective studies. Lancet Diabetes Endocrinol. 2018; 6(7): 538-546. doi: 10.1016/S2213-8587[18]30079-2

11. Price AH, Weir CJ, Welsh P, et al. Comparison of non-traditional biomarkers, and combinations of biomarkers, for vascular risk prediction in people with type 2 diabetes: The Edinburgh Type 2 Diabetes Study. Atherosclerosis. 2017; 264: 67-73. doi: 10.1016/j.atherosclerosis.2017.07.009

12. de Boer IH, Gao X, Cleary PA, et al. Albuminuria Changes and Cardiovascular and Renal Outcomes in Type 1 Diabetes: The DCCT/EDIC Study. Clin J Am Soc Nephrol. 2016; 11(11): 1969-1977. doi: 10.2215/CJN.0287-0316

13. Gæde P, Oellgaard J, Carstensen B, et al. Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminu-ria: 21 years follow-up on the Steno-2 randomised trial. Diabetologia. 2016; 59(11): 2298-2307. doi: 10.1007/s00125-016-4065-6

14. Savarese G, Dei Cas A, Rosano G, et al. Reduction of albumin urinary excretion is associated with reduced cardiovascular events in hypertensive and/or diabetic patients. A meta-regression analysis of 32 randomized trials. Int J Cardiol. 2014; 172(2): 403-410. doi: 10.101-6/j.ijcard.2014.01.065

15. Piepoli MF, Hoes AW, Agewall S, et al. 2016 European guidelines on cardiovascular disease prevention in clinical practice: the sixth joint task force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice [constituted by representatives of 10 societies and by invited experts] developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation [EACPR]. Atherosclerosis. 2016; 252: 207-274. doi: 10.1016/j.atherosclerosis.2016.05.037

16. Hadaegh F, Ehteshami-Afshar S, Hajebrahimi MA, et al. Silent coronary artery disease and incidence of cardiovascular and mortality events at different levels of glucose regulation; results of greater than a decade follow-up. Int J Cardiol. 2015; 182: 334-339. doi: 10.1016/j.ijcard.2015.01.017

17. Stettler C, Bearth A, Allemann S, et al. QTc interval and resting heart rate as long-term predictors of mortality in type 1 and type 2 diabetes mellitus: a 23-year follow-up. Diabetologia. 2007; 50(1): 186-194. doi: 10.1007/s00125-006-0483-1

18. Pop-Busui R, Evans GW, Gerstein HC, et al. Effects of cardiac autonomic dysfunction on mortality risk in the Action to Control Cardiovascular Risk in Diabetes [ACCORD] trial. Diabetes Care. 2010; 33(7): 1578-1584. doi: 10.2337/dc10-0125

19. Ernande L, Audureau E, Jellis CL, et al. Clinical implications of echocardiographic phenotypes of patients with diabetes mellitus. J Am Coll Cardiol. 2017; 70(14): 1704-1716. doi: 10.1016/j.jacc.2017.07.792

20. Ng AC, Auger D, Delgado V, et al. Association between diffuse myocardial fibrosis by cardiac magnetic resonance contrast-enhanced T1 mapping and sub-clinical myocardial dysfunction in diabetic patients: a pilot study. Circ Cardiovasc Imaging. 2012; 5(1): 51-59. doi: 10.1161/CIRCIMAGING.111.965608

21. Valenti V, Hartaigh BÓ, Cho I, et al. Absence of coronary artery calcium identifies asymptomatic diabetic individuals at low near-term but not long-term risk of mortality: a 15-year Follow-Up Study of 9715 patients. Circ Cardiovasc Imaging. 2016; 9(2): e003528. doi: 10.1161/CIRCIMAGING.115.003528

22. Clerc OF, Fuchs TA, Stehli J, et al. Non-invasive screening for coronary artery disease in asymptomatic diabetic patients: a systematic review and meta-analysis of randomised controlled trials. Eur Heart J Cardiovasc Imaging. 2018; 19(8): 838-846. doi: 10.1093/ehjci/jey014

23. Malik S, Budoff MJ, Katz R, et al. Impact of subclinical atherosclerosis on cardiovascular disease events in individuals with metabolic syndrome and diabetes: the multi-ethnic study of atherosclerosis. Diabetes Care. 2011; 34(10): 2285-2290. doi: 10.2337/dc11-0816

24. Emdin CA, Rahimi K, Neal B, et al. Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis. JAMA. 2015; 313(6): 603-615. doi: 10.1001/jama.2014.18574

25. Petrie JR, Guzik TJ, Touyz RM. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can J Cardiol. 2018; 34(5): 575-584. doi: 10.1016/j.cjca.2017.12.005

26. Bangalore S, Kumar S, Lobach I, Messerli FH. Blood pressure targets in subjects with type 2 diabetes mellitus/impaired fasting glucose: observations from traditional and bayesian random-effects meta-analyses of randomized trials. Circulation. 2011; 123(24): 2799-2810. doi: 10.1161/CIRCULA-TIONAHA.110.016337

27. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. EurHeartJ. 2018; 39(33): 3021-3104. doi: 10.1093/eurheartj/ehy339

28. Hansen D, Niebauer J, Cornelissen V, et al. Exercise prescription in patients with different combinations of cardiovascular disease risk factors: a consensus statement from the EXPERT Working Group. Sports Med. 2018; 48(8): 1781-1797. doi: 10.1007/s40279-0180930-4

29. Wing RR, Lang W, Wadden TA, et al. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care. 2011; 34(7): 1481-1486. doi: 10.2337/dc10-2415

30. Weber MA, Bakris GL, Jamerson K, et al. Cardiovascular events during differing hypertension therapies in patients with diabetes. J Am Coll Cardiol. 2010; 56(1): 77-85. doi: 10.1016/j.jacc.2010.02.046

31. Wald DS, Law M, Morris JK, et al. Combination therapy versus monotherapy in reducing blood pressure: meta-analysis on 11,000 participants from 42 trials. Am J Med. 2009; 122(3): 290-300. doi: 10.1016/j.amjmed.2008.09.038

32. Marso SP, Daniels GH, Brown-Frandsen K, et al. Lira-glutide and cardiovascular outcomes in type 2 diabetes. N EnglJMed. 2016; 375(4): 311-322. doi: 10.1056/NEJMoa1603827

33. Mazidi M, Rezaie P, Gao HK, Kengne AP. Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta-analysis of 43 randomized control trials with 22,528 patients. J Am Heart Assoc. 2017; 6(6): e004007. doi: 10.1161/JAHA.116.004007

34. Baigent C, Blackwell L, Collins R, et al. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet. 2009; 373(9678): 1849-1860. doi: 10.1016/S0140-6736[09]60503-1

35. Bowman L, Mafham M, Wallendszus K, et al. Effects of Aspirin for primary prevention in persons with diabetes me- llitus. N Engl J Med. 2018; 379(16): 1529-1539. doi: 10.1056∕NEJMoa1804988

36. Ryden L, Grant PJ, Anker SD, et al. ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the task force on diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology [ESC] and developed in collaboration with the European Association for the Study of Diabetes [EASD]. Eur Heart J. 2013; 34(39): 3035-3087. doi: 10.1093/eurheartj/eht108

37. Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020; 41(3): 407-477. doi: 10.1093/eurheartj/ehz425

38. UK Prospective Diabetes Study [UKPDS] Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes [UKPDS 34]. Lancet. 1998; 352(9131): 854-865.

39. Holman RR, Paul SK, Bethel MA, et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008; 359(15): 1577-1589. doi: 10.1056/NEJMoa0806470

40. Maruthur NM, Tseng E, Hutfless S, et al. Diabetes medications as monotherapy or Metformin-Based combination therapy for type 2 Diabetes: a systematic review and meta-analysis. Ann Intern Med. 2016; 164(11): 740-751. doi: 10.7326/M15-2650

41. Rosenstock J, Kahn SE, Johansen OE, et al. Effect of Lina-gliptin vs Glimepiride on major adverse cardiovascular outcomes in patients with type 2 Diabetes: The CAROLINA randomized clinical trial. JAMA. 2019; 322(12): 1155-66. doi: 10.1001/jama.2019.13772

42. Bain S, Druyts E, Balijepalli C, et al. Cardiovascular events and all-cause mortality associated with sulphonylureas compared with other antihyperglycaemic drugs: a Bayesian meta-analysis of survival data. Diabetes Obes Metab. 2017; 19(3): 329-335. doi: 10.1111/dom.12821

43. Simpson SH, Lee J, Choi S, et al. Mortality risk among sulfonylureas: a systematic review and network meta-analysis. Lancet Diabetes Endocrinol. 2015; 3(1): 43-51. doi: 10.1016/S2213-8587[14]70213-X

44. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study [PROspective pioglitAzone Clinical Trial In macroVas- cular Events]: a randomised controlled trial. Lancet. 2005; 366(9493): 1279-1289. doi: 10.1016/S0140-6736 [05]67528-9

45. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007; 356(24): 2457-2471. doi: 10.1056/NEJMoa072761

46. Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013; 369(14): 1317-1326. doi: 10.1056/NEJMoa1307684

47. Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016; 375(19): 1834-1844. doi: 10.1056/NEJMoa1607141

48. Husain M, Birkenfeld AL, Donsmark M, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2019; 381(9): 841-851. doi: 10.1056/NEJMoa1901118

49. Nauck MA, Meier JJ, Cavender MA, et al. Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Circulation. 2017; 136(9): 849-870. doi: 10.1161/CIRCULATIONAHA.117.028136

50. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015; 373(22): 2117-2128. doi: 10.1056/NEJMoa1504720

51. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017; 377(7): 644-657. doi: 10.1056/NEJMoa-1611925

52. Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019; 380(4): 347-357. doi: 10.1056/NEJMoa1812389

53. Perkovic V, Jardine MJ, Neal B, et al. Canagliflo- zin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019; 380(24): 2295-2306. doi: 10.1056/NEJMoa1811744

54. Zelniker TA, Braunwald E. Mechanisms of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020; 75(4): 422-434. doi: 10.1016/j.jacc.2019.11.031

55. Gerstein HC, Bosch J, Dagenais GR, et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med. 2012; 367(4): 319-328. doi: 10.1056/NEJMoa1203858

56. Pratley RE, Emerson SS, Franek E, et al. Cardiovascular safety and lower severe hypoglycaemia of insulin degludec versus insulin glargine U100 in patients with type 2 diabetes aged 65 years or older: Results from DEVOTE [DEVOTE 7]. Diabetes Obes Metab. 2019; 21(7): 1625-1633. doi: 10.1111/dom.13699

57. Arnold SV, Lipska KJ, Inzucchi SE, et al. The reliability of in-hospital diagnoses of diabetes mellitus in the setting of an acute myocardial infarction. BMJ Open Diabetes Res Care. 2014; 2(1): e000046. doi: 10.1136/bmjdrc-2014-000046

58. Stolker JM, Sun D, Conaway DG, et al. Importance of measuring glycosylated hemoglobin in patients with myocardial infarction and known diabetes mellitus. Am J Cardiol. 2010; 105(8): 1090-1094. doi: 10.1016/j.amjcard.2009.12.010

59. Mehta SR, Yusuf S, Diaz R, et al. Effect of glucose-insulin-potassium infusion on mortality in patients with acute ST-segment elevation myocardial infarction: the CREATE- ECLA randomized controlled trial. JAMA. 2005; 293(4): 437-446. doi: 10.1001/jama.293.4.437

60. Malmberg K, Ryden L, Efendic S, et al. Randomized trial of insu- lin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction [DIGAMI study]: effects on mortality at 1 year. J Am Coll Cardiol. 1995; 26(1): 57-65. doi: 10.1016/0735-1097[95]00126-k

61. Zhao YT, Weng CL, Chen ML, et al. Comparison of glucose-insulin-potassium and insulin-glucose as adjunctive therapy in acute myocardial infarction: a contemporary meta-analysis of randomised controlled trials. Heart. 2010; 96(20): 1622-1626. doi: 10.1136/hrt.2010.194563

62. Malmberg K, Rydén L, Wedel H, et al. Intense metabolic control by means of insulin in patients with diabetes mellitus and acute myocardial infarction [DIGAMI 2]: effects on mortality and morbidity. Eur Heart J. 2005; 26(7): 650-661. doi: 10.1093/eurheartj/ehi199

63. Finfer S, Chittock DR, Su SY, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009; 360(13): 1283-1297. doi: 10.1056/NEJMoa0810625

64. Nichols GA, Gullion CM, Koro CE, et al. The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care. 2004; 27(8): 1879-1884. doi: 10.2337/diacare.27.8.1879

65. Chen YT, Vaccarino V, Williams CS, et al. Risk factors for heart failure in the elderly: a prospective community-based study. AmJMed. 1999; 106(6): 605-612. doi: 10.1016/s0002-9343[99]00126-6

66. Boonman-de Winter LJ, Rutten FH, Cramer MJM, et al. High prevalence of previously unknown heart failure and left ventricular dysfunction in patients with type 2 diabetes. Diabetologia. 2012; 55(8): 2154-2162. doi: 10.1007/s00125-012-2579-0

67. Matsushita K, Blecker S, Pazin-Filho A, et al. The association of hemoglobin a1c with incident heart failure among people without diabetes: the atherosclerosis risk in communities study. Diabetes. 2010; 59(8): 2020-2026. doi: 10.2337/db10-0165

68. Johansson I, Dahlstrom U, Edner M, et al. Type 2 diabetes and heart failure: Characteristics and prognosis in preserved, mid-range and reduced ventricular function. Diab Vasc Dis Res. 2018; 15(6): 494-503. doi: 10.1177/1479164118794619

69. Demant MN, Gislason GH, K0ber L, et al. Association of heart failure severity with risk of diabetes: a Danish nationwide cohort study. Diabetologia. 2014; 57(8): 1595-1600. doi: 10.1007/s00125-014-3259-z

70. Seferovic PM, Paulus WJ. Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes. Eur Heart J. 2015; 36(27): 171827,1727a-1727c. doi: 10.1093/eurheartj/ehv134

71. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology [ESC]. Developed with the special contribution of the Heart Failure Association [HFA] of the ESC. Eur J Heart Fail. 2016; 18(8): 891-975. doi: 10.1002/ejhf.592

72. Arnold SV, Spertus JA, Lipska KJ, et al. Type of beta-blocker use among patients with versus without diabetes after myocardial infarction. Am Heart J. 2014; 168(3): 273-9.e1. doi: 10.1016/j.ahj.2014.04.018

73. Seferovic JP, Claggett B, Seidelmann SB, et al. Effect of sacubitril/valsartan versus enalapril on glycaemic control in patients with heart failure and diabetes: a post-hoc analysis from the PARADIGM-HF trial. Lancet Diabetes Endocrinol. 2017; 5(5): 333-340. doi: 10.1016/S2213-8587[17]30087-6

74. McMurray JJV, Packer M, Desai AS, et al. PARADIGM-HF Investigators and Committees. Angioten- sin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014; 371(11): 993-1004. doi: 10.1056/NEJMoa1409077

75. Eurich DT, Weir DL, Majumdar SR, et al. Comparative safety and effectiveness of metformin in patients with diabetes mellitus and heart failure: systematic review of observational studies involving 34,000 patients. Circ Heart Fail. 2013; 6(3): 395-402. doi: 10.1161/CIRCHEARTFAILURE.112.000162

76. Pantalone KM, Kattan MW, Yu C, et al. The risk of developing coronary artery disease or congestive heart failure, and overall mortality, in type 2 diabetic patients receiving rosiglitazone, pioglitazone, metformin, or sulfonylureas: a retrospective analysis. Acta Diabetol. 2009; 46(2): 145-154. doi: 10.1007/s00592-008-0090-3

77. McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019; 381(21): 1995-2008. doi: 10.1056/NEJMoa1911303

78. Pallisgaard JL, Schjerning AM, Lindhardt TB, et al. Risk of atrial fibrillation in diabetes mellitus: a nationwide cohort study. Eur J Prev Cardiol. 2016; 23(6): 621-627. doi: 10.1177/2047487315599892

79. Du X, Ninomiya T, de Galan B, et al. Risks of cardiovascular events and effects of routine blood pressure lowering among patients with type 2 diabetes and atrial fibrillation: results of the ADVANCE study. Eur Heart J. 2009; 30(9): 1128-1135. doi: 10.1093/eurheartj/ehp055

80. Huxley RR, Filion KB, Konety S, Alonso A. Meta-analysis of cohort and case-control studies of type 2 diabetes mellitus and risk of atrial fibrillation. Am J Cardiol. 2011; 108(1): 56-62. doi: 10.1016/j.amj-card.2011.03.004

81. Hindricks G, Potpara T, Dagres N, et al. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery [EACTS]. Eur Heart J. 2020; ehaa612. doi: 10.1093/eurheartj/ehaa612

82. Pedersen CT, Kay GN, Kalman J, et al. EHRA/HRS/APHRS expert consensus on ventricular arrhythmias. Europace. 2014; 16(9): 1257-1283. doi: 10.1093/europace/euu194

83. Brignole M, Auricchio A, Baron-Esquivias G, et al. 2013 ESC guidelines on cardiac pacing and cardiac resynchronization therapy: the Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology [ESC]. Developed in collaboration with the European Heart Rhythm Association [EHRA]. Eur Heart J. 2013; 34(29): 2281-2329. doi: 10.1093/eurheartj/eht150

84. Priori SG, Blomstrom-Lundqvist C, Mazzanti A, et al. 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology [ESC]. Endorsed by: Association for European Paediatric and Congenital Cardiology [AEPC]. Eur Heart J. 2015; 36(41): 2793-2867. doi: 10.1093/eurheartj/ehv316

85. Jouven X, Lemaιtre RN, Rea TD, et al. Diabetes, glucose level, and risk of sudden cardiac death. Eur Heart J. 2005; 26(20): 2142-2147. doi: 10.1093/eurheartj/ehi376

86. Chow E, Bernjak A, Williams S, et al. Risk of cardiac arrhythmias during hypoglycemia in patients with type 2 diabetes and cardiovascular risk. Diabetes. 2014; 63(5): 1738-1747. doi: 10.2337/db13-0468

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Carlos Guamán, William Acosta, Carla Alvarez4, Benhard Hasbum

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).