Research progress and controversy on T wave formation mechanism

Cheng Chen, Yunlong Xia

Article ID: 1904
Vol 2, Issue 2, 2021
DOI: https://doi.org/10.54517/ccr.v2i2.1904
Received: 12 June 2021; Accepted: 28 July 2021; Available online: 13 August 2021;
Issue release: 31 December 2021

VIEWS - 4611 (Abstract)

Download PDF

Abstract

Although ECG has been developed for a hundred years, the mechanism of T wave formation is unknown. The proposal of in vitro wedge-shaped model has greatly promoted the understanding of T-wave formation mechanism. By comparing the action potentials of epicardial cells, medial cells and endocardial cells in wedge-shaped ventricular mass with the T wave of body surface ECG, it was found that the T wave was mainly formed by the dispersion of transmural repolarization of ventricular muscle. However, in the subsequent in vivo experiments, electrophysiologists found that the formation of T wave was related to the dispersion of ventricular global repolarization, and the repolarization order of different parts of the three-dimensional global heart determined the polarity of T wave. In the real heart, the mechanism of T wave formation may be more complex, its repolarization gradient may include repolarization in each axis of the heart, and the polarity of T wave may also be the result of multiple factors.


Keywords

cardiology; T wave formation; overview; electrophysiology; mechanism


References

1. Noble D, Cohen I. The interpretation of the T wave of the electrocardiogram. Cardiovascular Research. 1978; 12(1): 13-27. doi: 10.1093/cvr/12.1.13

2. Burdon-Sanderson J. On the electrical phenomena of the excitatory process in the heart of the frog and of the tortoise, as investigated photographically. The Journal of Physiology. 1884; 4(6): 327-386. doi: 10.1113/jphysiol.1884.sp000134

3. Cohen I, Giles W, Noble D. Cellular basis for the T wave of the electrocardiogram. Nature. 1976; 262(5570): 657-661. doi: 10.1038/262657a0

4. Sicouri S, Antzelevitch C. A subpopulation of cells with unique electrophysiological properties in the deep subepi-cardium of the canine ventricle. The M cell. Circulation Research. 1991; 68(6): 1729-1741. doi: 10.1161/01.res.68.6.1729

5. Sicouri S, Fish J, Antzelevitch C. Distribution of M cells in the canine ventricle. Journal of Cardiovascular Electro-physiology. 1994; 5(10): 824-837. doi: 10.1111/j.1540-8167.1994.tb01121.x

6. Antzelevitch C, Fish J. Electrical heterogeneity within the ventricular wall. Basic Research in Cardiology. 2001; 96(6): 517-527. doi: 10.1007/s003950170002

7. Yan GX, Antzelevitch C. Cellular basis for the normal T wave and the electrocardiographic manifestations of the long-QT syndrome. Circulation. 1998; 98(18): 1928-1936. doi: 10.1161/01.cir.98.18.1928

8. Emori T, Antzelevitch C. Cellular basis for complex T waves and arrhythmic activity following combined I(Kr)and I(Ks) block. Journal of Cardiovascular Electrophysiology. 2001; 12(12): 1369-1378. doi: 10.1046/j.1540-8167.2001.01369.x

9. Xia Y, Liang Y, Kongstad O, et al. Tpeak-Tend interval as an index of global dispersion of ventricular repolarization: evaluations using monophasic action potential mapping of the epi-and endocardium in swine. Journal of Inter-ventional Cardiac Electrophysiology. 2005; 14(2): 79-87. doi: 10.1007/s10840-005-4592-4

10. Xia Y, Liang Y, Kongstad O, et al. In vivo validation of the coincidence of the peak and end of the T wave with full repolarization of the epicardium and endocardium in swine. Heart Rhythm. 2005; 2(2): 162-169. doi: 10.1016/j.hrthm.2004.11.011

11. Janse MJ, Sosunov EA, Coronel R, et al. Repolarization gradients in the canine left ventricle before and after in-duction of short-term cardiac memory. Circulation. 2005; 112(12): 1711-1718. doi: 10.1161/circulationaha.104.516583

12. Opthof T, Coronel R, Wilms-Schopman FJ, et al. Dispersion of repolarization in canine ventricle and the electro-cardiographic T wave: Tp-e interval does not reflect transmural dispersion. Heart Rhythm. 2007; 4(3): 341-348. doi: 10.1016/j.hrthm.2006.11.022

13. Janse MJ, Coronel R, Opthof T, et al. Repolarization gradients in the intact heart: transmural or apico-basal? Progress in Biophysics and Molecular Biology. 2012; 109(1-2): 6-15. doi: 10.1016/j.pbiomolbio.2012.03.001

14. Coronel R, de Bakker JM, Wilms-Schopman FJ, et al. Monophasic action potentials and activation recovery in-tervals as measures of ventricular action potential duration: experimental evidence to resolve some controversies. Heart Rhythm. 2006; 3(9): 1043-1050. doi: 10.1016/j.hrthm.2006.05.027

15. Taccardi B, Punske BB, Sachse F, et al. Intramural activation and repolarization sequences in canine ventricles. Experimental and simulation studies. Journal of Electrocardiology. 2005; 38(4): 131-137. doi: 10.1016/j.jelectrocard.2005.06.099

16. Meijborg VM, Conrath CE, Opthof T, et al. Electrocardiographic T wave and its relation with ventricular repolari-zation along major anatomical axes. Circulation: Arrhythmia and Electrophysiology. 2014; 7(3): 524-531. doi: 10.1161/circep.113.001622

17. Opthof T, Remme CA, Jorge E, et al. Cardiac activation-repolarization patterns and ion channel expression mapping in intact isolated normal human hearts. Heart Rhythm. 2017; 14(2): 265-272. doi: 10.1016/j.hrthm.2016.10.010

18. Ghanem RN, Burnes JE, Waldo AL, et al.Imaging dispersion of myocardial repolarization, II: noninvasive recon-struction of epicardial measures. Circulation. 2001; 104(11): 1306-1312. doi: 10.1161/hc3601.094277

19. Ramanathan C, Jia P, Ghanem R, et al. Activation and repolarization of the normal human heart under complete physiological conditions. Proceedings of the National Academy of Sciences. 2006; 103(16): 6309-6314. doi: 10.1073/pnas.0601533103

20. Meijborg VM, Chauveau S, Janse MJ, et al. Interventricular dispersion in repolarization causes bifid T waves in dogs with dofetilide-induced long QT syndrome. Heart Rhythm. 2015; 12(6): 1343-1351. doi: 10.1016/j.hrthm.2015.02.026

21. Arteyeva NV, Goshka SL, Sedova KA, et al. What does the T (peak)-T(end)interval reflect? An experimental and model study. Journal of Electrocardiology. 2013; 46(4): 296.e1-296.e8. doi: 10.1016/j.jelectrocard.2013.02.001

22. Xia Y, Yang Y. The electrophysiological mechanism of T wave formation and its controversy. Progress in cardiology. 2010; 31(04): 497.

23. Boukens BJ, Meijborg VMF, Belterman CN, et al. Local transmural action potential gradients are absent in the isolated, intact dog heart but present in the corresponding coronary-perfused wedge. Physiological Reports. 2017; 5(10): e13251. doi: 10.14814/phy2.13251

24. Yuan S, Kongstad O, Hertervig E, et al. Global repolarization sequence of the ventricular endocardium: monophasic action potential mapping in swine and humans. Pacing and Clinical Electrophysiology. 2001; 24(10): 1479-1488. doi: 10.1046/j.1460-9592.2001.01479.x

25. Conrath CE, Wilders R, Coronel R, et al. Intercellular coupling through gap junctions masks M cells in the human heart. Cardiovascular Research. 2004; 62(2): 407-414. doi: 10.1016/j.cardiores.2004.02.016

26. Mines GR. On functional analysis by the action of electrolytes. The Journal of Physiology. 1913; 46(3): 188-235. doi: 10.1113/jphysiol.1913.sp001588

27. Wilson FN. The T deflection of the electrocardiogram. Trans Assn Am Physicians. 1931; 46: 29.

28. Higuchi T, Nakaya Y. T wave polarity related to the repolarization process of epicardial and endocardial ventricular surfaces. American Heart Journal. 1984; 108(2): 290.

29. Cowan JC, Hilton CJ, Griffiths CJ, et al. Sequence of epicardial repolarisation and configuration of the T wave. Heart. 1988; 60(5): 424-433. doi: 10.1136/hrt.60.5.424

30. Opthof T, Janse MJ, Meijborg VM, et al. Dispersion in ventricular repolarization in the human, canine and porcine heart. Progress in Biophysics and Molecular Biology. 2016; 120(1-3): 222-235. doi: 10.1016/j.pbiomolbio.2016.01.007

31. Maffessanti F, Wanten J, Potse M, et al. The relation between local repolarization and T-wave morphology in heart failure patients. International Journal of Cardiology. 2017; 241: 270-276. doi: 10.1016/j.ijcard.2017.02.056

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Cheng Chen, Yunlong Xia

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).