Stochastic dynamics mass spectrometric structural analysis of nucleotides

Bojidarka Ivanova

Article ID: 3043
Vol 5, Issue 2, 2024
DOI: https://doi.org/10.54517/aas.v5i2.3043
Received: 4 November 2024; Accepted: 10 December 2024; Available online: 25 December 2024;
Issue release: 30 December 2024

VIEWS - 45 (Abstract)

Download PDF

Abstract

The paper deals with innovative equations tackling exactly stochastic dynamics mass spectrometric experimental variable intensity of peak per span of scan time. They overcome limitations of classical methods for semi-quantifying analytes developed, so far, and exactly grasp observable variables and their fluctuations; thus, succeeding in determining analytes reliably both quantitatively and 3D structurally via soft ionization mass spectrometry. Given the paper’s goal of illustrating their crucial effect on mass spectrometric methodology as an irreplaceable approach to structurally analyse species, this study offers stochastic dynamics-based analysis of nucleotides. The major contribution is providing empirical justification of aspects of structural mass spectrometry analysing uridines and pseudouridines. The virtual identity of fragmentation patterns causes significant analytical challenges. The same is true for methyl-substituted guanosines which are often determined as mixtures. There are used ultra-high resolution electrospray ionization mass spectrometry, high accuracy computational static and molecular dynamics methods, and chemometrics. The study discusses controversial aspects of classical techniques. It illustrates how the innovative equations resolve disputable problems of structural analysis of nucleotides. It supports advanced formulas for achieving superior performances. There are obtained coefficients of linear correlation |r| = 0.9994–0.99923 determining N1-methyl-pseudouridine modified diphosphate compared with 5-methyluridine diphosphate N-acetylglucosamine. There are determined N2,N2-dimethylguanosine, uridine, pseudouridine, 5-methyl-uridine, 1-methyl-pseudouridine, 5,6-dihydrothymidine, galactosyl-queuosine, mannosyl-queuosine, adenosine, 2’-O-methyl-5-hydroxymethylcytidine, uridine triphosphate, thymidine diphosphate N-acetylglucosamine, 5-methyluridine diphosphate N-acetylglucosamine, and 7-methylguanosine-5’-phosphate modified derivative, respectively.

Keywords

stochastic dynamics mass spectrometry; quantum chemistry; nucleotides; 5-methyl-uridine; 1-methyl-pseudouridine; 3D structural analysis


References

1. Dávalos-Prado JZ, Megias-Perez R, Ros F, et al. Gas phase proton affinity and basicity of methylated uracil-derivatives. International Journal of Mass Spectrometry. 2021; 470: 116720. doi: 10.1016/j.ijms.2021.116720

2. Colasurdo DD, Pila MN, Iglesias DA, et al. Tautomerism of uracil and related compounds: A mass spectrometry study. European Journal of Mass Spectrometry. 2017; 24(2): 214-224. doi: 10.1177/1469066717712461

3. Barone V. DFT Meets Wave-Function Composite Methods for Characterizing Cytosine Tautomers in the Gas Phase. Journal of Chemical Theory and Computation. 2023; 19(15): 4970-4981. doi: 10.1021/acs.jctc.3c00465

4. Gosset-Erard C, Didierjean M, Pansanel J, et al. Nucleos’ID: A New Search Engine Enabling the Untargeted Identification of RNA Post-transcriptional Modifications from Tandem Mass Spectrometry Analyses of Nucleosides. Analytical Chemistry. 2023.

5. Ross RL, Yu N, Zhao R, et al. Automated Identification of Modified Nucleosides during HRAM-LC-MS/MS using a Metabolomics ID Workflow with Neutral Loss Detection. Journal of the American Society for Mass Spectrometry. 2023; 34(12): 2785-2792. doi: 10.1021/jasms.3c00298

6. Nakayama H, Yamauchi Y, Nobe Y, et al. Method for Direct Mass-Spectrometry-Based Identification of Monomethylated RNA Nucleoside Positional Isomers and Its Application to the Analysis of Leishmania rRNA. Analytical Chemistry. 2019; 91(24): 15634-15643. doi: 10.1021/acs.analchem.9b03735

7. Mi S, Cai S, Xue M, et al. HIF-1α/METTL1/m7G axis is involved in CRC response to hypoxia. Biochemical and Biophysical Research Communications. 2024; 693: 149385. doi: 10.1016/j.bbrc.2023.149385

8. Losito I, Angelico R, Introna B, et al. Cytosine to uracil conversion through hydrolytic deamination of cytidine monophosphate hydroxy‐alkylated on the amino group: a liquid chromatography – electrospray ionization – mass spectrometry investigation. Journal of Mass Spectrometry. 2012; 47(10): 1384-1393. doi: 10.1002/jms.3078

9. Hayashi J, Hamada T, Sasaki I, et al. Synthesis of novel cationic spermine-conjugated phosphotriester oligonucleotide for improvement of cell membrane permeability. Bioorganic & Medicinal Chemistry Letters. 2015; 25(17): 3610-3615. doi: 10.1016/j.bmcl.2015.06.071

10. Ma B, Zarth AT, Carlson ES, et al. Methyl DNA Phosphate Adduct Formation in Rats Treated Chronically with 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone and Enantiomers of Its Metabolite 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol. Chemical Research in Toxicology. 2017; 31(1): 48-57. doi: 10.1021/acs.chemrestox.7b00281

11. Favretto D, Traldi P, Celon E, et al. Role of different 5‐substituents on the mass spectrometric behaviour of uracil. Organic Mass Spectrometry. 1993; 28(10): 1179-1183. doi: 10.1002/oms.1210281032

12. Lönnberg T. Nucleic acids through condensation of nucleosides and phosphorous acid in the presence of sulfur. Beilstein Journal of Organic Chemistry. 2016; 12: 670-673. doi: 10.3762/bjoc.12.67

13. Guo S, Wang Y, Zhou D, et al. Electric Field-Assisted Matrix Coating Method Enhances the Detection of Small Molecule Metabolites for Mass Spectrometry Imaging. Analytical Chemistry. 2015; 87(12): 5860-5865. doi: 10.1021/ac504761t

14. Feliu C, Peyret H, Vautier D, et al. Simultaneous quantification of 8 nucleotides and adenosine in cells and their medium using UHPLC-HRMS. Journal of Chromatography B. 2020; 1148: 122156. doi: 10.1016/j.jchromb.2020.122156

15. Zhang Q, Liang J, Li X, et al. Exploring antithrombotic mechanisms and effective constituents of Lagopsis supina using an integrated strategy based on network pharmacology, molecular docking, metabolomics, and experimental verification in rats. Journal of Ethnopharmacology. 2025; 336: 118717. doi: 10.1016/j.jep.2024.118717

16. Brancato G, Rega N, Barone V. Microsolvation of uracil anion radical in aqueous solution: a QM/MM study. Chemical Physics Letters. 2010; 500(1-3): 104-110. doi: 10.1016/j.cplett.2010.09.078

17. Barannikov V, Tyunina E. Regularities of changes in thermodynamic parameters induced by the complex formation of uracil with some aromatic amio-acids in buffer solution and pH 7.4. ChemChemTech; 2022.

18. Nakajima K, Ito E, Ohtsubo K, et al. Mass Isotopomer Analysis of Metabolically Labeled Nucleotide Sugars and N- and O-Glycans for Tracing Nucleotide Sugar Metabolisms. Molecular & Cellular Proteomics. 2013; 12(9): 2468-2480. doi: 10.1074/mcp.m112.027151

19. Ito J, Herter T, Baidoo EEK, et al. Analysis of plant nucleotide sugars by hydrophilic interaction liquid chromatography and tandem mass spectrometry. Analytical Biochemistry. 2014; 448: 14-22. doi: 10.1016/j.ab.2013.11.026

20. Borisova M, Gisin J, Mayer C. The N-Acetylmuramic Acid 6-Phosphate Phosphatase MupP Completes the Pseudomonas Peptidoglycan Recycling Pathway Leading to Intrinsic Fosfomycin Resistance. mBio. 2017; 8(2). doi: 10.1128/mbio.00092-17

21. Konda S, Batchu UR, Nagendla NK, et al. Silver Nanoparticles Induced Metabolic Perturbations in Pseudomonas aeruginosa: Evaluation Using the UPLC-QTof-MSE Platform. Chemical Research in Toxicology. 2023; 37(1): 20-32. doi: 10.1021/acs.chemrestox.3c00154

22. Wang S, Zhang J, Wei F, et al. Facile Synthesis of Sugar Nucleotides from Common Sugars by the Cascade Conversion Strategy. Journal of the American Chemical Society. 2022; 144(22): 9980-9989. doi: 10.1021/jacs.2c03138

23. Liu H, Li Y, Du J, et al. Novel acetylation‐aided migrating rearrangement of uridine‐diphosphate‐N‐acetylglucosamine in electrospray ionization multistage tandem mass spectrometry. Journal of Mass Spectrometry. 2005; 41(2): 208-215. doi: 10.1002/jms.979

24. Fang J, Guan W, Cai L, et al. Systematic study on the broad nucleotide triphosphate specificity of the pyrophosphorylase domain of the N-acetylglucosamine-1-phosphate uridyltransferase from Escherichia coli K12. Bioorganic & Medicinal Chemistry Letters. 2009; 19(22): 6429-6432. doi: 10.1016/j.bmcl.2009.09.039

25. Jurga S, Barciszewski J. Epitranscriptomics. Springer International Publishing; 2021. doi: 10.1007/978-3-030-71612-7

26. Mosammaparast N. DNA Damage Responses. Springer US; 2022. doi: 10.1007/978-1-0716-2063-2

27. Jora M, Lobue PA, Ross RL, et al. Detection of ribonucleoside modifications by liquid chromatography coupled with mass spectrometry. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 2019; 1862(3): 280-290. doi: 10.1016/j.bbagrm.2018.10.012

28. Levola H, Kooser K, Itälä E, et al. Comparison of VUV radiation induced fragmentation of thymidine and uridine nucleosides—The effect of methyl and hydroxyl groups. International Journal of Mass Spectrometry. 2014; 370: 96-100. doi: 10.1016/j.ijms.2014.07.008

29. Wiebers JL, Shapiro JA. Sequence analysis of oligodeoxyribonucleotides by mass spectrometry. 1. Dinucleoside monophosphates. Biochemistry. 1977; 16(6): 1044-1050. doi: 10.1021/bi00625a003

30. Sugiyama C, Furusho A, Todoroki K, et al. Selective analysis of intracellular UDP-GlcNAc and UDP-GalNAc by hydrophilic interaction liquid chromatography-mass spectrometry. Analytical Methods. 2024; 16(12): 1821-1825. doi: 10.1039/d4ay00122b

31. Wilson MS, McCloskey JA. Chemical ionization mass spectrometry of nucleosides. Mechanisms of ion formation and estimations of proton affinity. Journal of the American Chemical Society. 1975; 97(12): 3436-3444. doi: 10.1021/ja00845a026

32. Dudley E, Bond L. Mass spectrometry analysis of nucleosides and nucleotides. Mass Spectrometry Reviews. 2013; 33(4): 302-331. doi: 10.1002/mas.21388

33. Wolken J, Turecek F. Proton affinity of uracil. A computational study of protonation sites. Journal of the American Society of Mass Spectrometry. 2000.

34. Abma GL, Parkes MA, Horke DA. Preparation of Tautomer-Pure Molecular Beams by Electrostatic Deflection. The Journal of Physical Chemistry Letters. 2024; 15(17): 4587-4592. doi: 10.1021/acs.jpclett.4c00768

35. Molina FL, Broquier M, Soorkia S, et al. Selective Tautomer Production and Cryogenic Ion Spectroscopy of Radical Cations: The Uracil and Thymine Cases. The Journal of Physical Chemistry A. 2024; 128(18): 3596-3603. doi: 10.1021/acs.jpca.4c02199

36. Salpin JY, Haldys V, Steinmetz V, et al. Protonation of methyluracils in the gas phase: The particular case of 3-methyluracil. International Journal of Mass Spectrometry. 2018; 429: 47-55. doi: 10.1016/j.ijms.2017.05.004

37. Nei Y, Akinyemi TE, Steill JD, et al. Infrared multiple photon dissociation action spectroscopy of protonated uracil and thiouracils: Effects of thioketo-substitution on gas-phase conformation. International Journal of Mass Spectrometry. 2010; 297(1-3): 139-151. doi: 10.1016/j.ijms.2010.08.005

38. Ryszka M, Pandey R, Rizk C, et al. Dissociative multi-photon ionization of isolated uracil and uracil-adenine complexes. International Journal of Mass Spectrometry. 2016; 396: 48-54. doi: 10.1016/j.ijms.2015.12.006

39. Mirzoyan VS, Melik-Ogandzhanyan RG, Rusavskaya TN, et al. Investigation of azoles and azines. 76. Mass spectra of 5- and 6-substituted uracils. Chemistry of Heterocyclic Compounds. 1990; 26(4): 446-455. doi: 10.1007/bf00497220

40. Ivanova B, Spiteller M. An Experimental and Theoretical Mass Spectrometric Quantification of Non-Covalent Interactions in High Order Homogeneous Self-Associates of Nucleobases and Nucleosides. NOVA Science Publisher; 2018.

41. Razakov R, Kasimov AK. Study of nucleic acid bases by the DADI method. Chemistry of Natural Compounds. 1979; 15(6): 743-747. doi: 10.1007/bf00565577

42. Chen W, Liu Y, Wei M, et al. Studies on effect of Ginkgo biloba L. leaves in acute gout with hyperuricemia model rats by using UPLC-ESI-Q-TOF/MS metabolomic approach. RSC Advances. 2017; 7(68): 42964-42972. doi: 10.1039/c7ra08519b

43. Chen C, Laviolette SR, Whitehead SN, et al. Imaging of Neurotransmitters and Small Molecules in Brain Tissues Using Laser Desorption/Ionization Mass Spectrometry Assisted with Zinc Oxide Nanoparticles. Journal of the American Society for Mass Spectrometry. 2021; 32(4): 1065-1079. doi: 10.1021/jasms.1c00021

44. Wu J, McLuckey SA. Gas-phase fragmentation of oligonucleotide ions. International Journal of Mass Spectrometry. 2004; 237(2-3): 197-241. doi: 10.1016/j.ijms.2004.06.014

45. Zeng J, Wang Z, Huang X, et al. Comprehensive Profiling by Non‐targeted Stable Isotope Tracing Capillary Electrophoresis‐Mass Spectrometry: A New Tool Complementing Metabolomic Analyses of Polar Metabolites. Chemistry–A European Journal. 2019; 25(21): 5427-5432. doi: 10.1002/chem.201900539

46. Moseley HN, Lane AN, Belshoff AC, et al. A novel deconvolution method for modeling UDP-N-acetyl-D-glucosamine biosynthetic pathways based on 13C mass isotopologue profiles under non-steady-state conditions. BMC Biology. 2011; 9(1). doi: 10.1186/1741-7007-9-37

47. Garcia AD, Chavez JL, Mechref Y. Sugar nucleotide quantification using multiple reaction monitoring liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry. 2013; 27(15): 1794-1800. doi: 10.1002/rcm.6631

48. Antoniewicz MR. A guide to 13C metabolic flux analysis for the cancer biologist. Experimental & Molecular Medicine. 2018; 50(4): 1-13. doi: 10.1038/s12276-018-0060-y

49. Wang Z, Liu PK, Li L. A Tutorial Review of Labeling Methods in Mass Spectrometry-Based Quantitative Proteomics. ACS Measurement Science Au. 2024; 4(4): 315-337. doi: 10.1021/acsmeasuresciau.4c00007

50. Duan L, Cooper DE, Scheidemantle G, et al. 13C tracer analysis suggests extensive recycling of endogenous CO2 in vivo. Cancer & Metabolism. 2022; 10(1). doi: 10.1186/s40170-022-00287-8

51. Bowman MJ, Zaia J. Tags for the Stable Isotopic Labeling of Carbohydrates and Quantitative Analysis by Mass Spectrometry. Analytical Chemistry. 2007; 79(15): 5777-5784. doi: 10.1021/ac070581b

52. Cooks RG, Kruger TL. Intrinsic basicity determination using metastable ions. Journal of the American Chemical Society. 1977; 99(4): 1279-1281. doi: 10.1021/ja00446a059

53. McLuckey SA, Cameron D, Cooks RG. Proton affinities from dissociations of proton-bound dimers. Journal of the American Chemical Society. 1981; 103(6): 1313-1317. doi: 10.1021/ja00396a001

54. Kenttaemaa H, Cooks R. Internal energy distribution acquired through collision activation at low and high energies. International Journal of Mass Spectrometry. 1985.

55. Collette C, De Pauw E. Calibration of the internal energy distribution of ions produced by electrospray. Rapid Comminication in Mass. Spectrometry; 1988.

56. Kertesz TM, Hall LH, Hill DW, et al. CE50: Quantifying collision induced dissociation energy for small molecule characterization and identification. Journal of the American Society for Mass Spectrometry. 2009; 20(9): 1759-1767. doi: 10.1016/j.jasms.2009.06.002

57. Carlo MJ, Nanney ALM, Patrick AL. Energy-Resolved In-Source Collison-Induced Dissociation for Isomer Discrimination. Journal of the American Society for Mass Spectrometry. 2024; 35(11): 2631-2641. doi: 10.1021/jasms.4c00118

58. Jankowski W, Hoffmann M, Półrul P, et al. Study of protonated dimers of cytosine, cytidine, and deoxycytidine using survival yield method and quantum mechanics calculations. Rapid Communications in Mass Spectrometry. 2023; 37(24). doi: 10.1002/rcm.9661

59. Meng C, Han Q, Wang X, et al. Determination and Quantitative Comparison of Nucleosides in two Cordyceps by HPLC–ESI–MS-MS. Journal of Chromatographic Science. 2019; 57(5): 426-433. doi: 10.1093/chromsci/bmz012

60. Li Z, Zhang HX, Li Y, et al. Method for Quantification of Ribonucleotides and Deoxyribonucleotides in Human Cells Using (Trimethylsilyl) diazomethane Derivatization Followed by Liquid Chromatography–Tandem Mass Spectrometry. Analytical Chemistry. 2018; 91(1): 1019-1026. doi: 10.1021/acs.analchem.8b04281

61. Strzelecka D, Chmielinski S, Bednarek S, et al. Analysis of mononucleotides by tandem mass spectrometry: investigation of fragmentation pathways for phosphate- and ribose-modified nucleotide analogues. Scientific Reports. 2017; 7(1). doi: 10.1038/s41598-017-09416-6

62. Soo EC, Aubry AJ, Logan SM, et al. Selective Detection and Identification of Sugar Nucleotides by CE−Electrospray-MS and Its Application to Bacterial Metabolomics. Analytical Chemistry. 2003; 76(3): 619-626. doi: 10.1021/ac034875i

63. Addepalli B, Limbach PA. Mass Spectrometry-Based Quantification of Pseudouridine in RNA. Journal of the American Society for Mass Spectrometry. 2011; 22(8): 1363-1372. doi: 10.1007/s13361-011-0137-5

64. Cherneva TD, Todorova MM, Bakalska RI, et al. Experimental and theoretical study of the cytosine tautomerism through excited states. Journal of Molecular Modeling. 2023; 29(10). doi: 10.1007/s00894-023-05707-0

65. Wang WJ, Wang T, Zhao Y, et al. Theoretical Insights into N-Glycoside Bond Cleavage of 5-Carboxycytosine by Thymine DNA Glycosylase: A QM/MM Study. The Journal of Physical Chemistry B. 2024; 128(19): 4621-4630. doi: 10.1021/acs.jpcb.4c00221

66. Parida C, Chowdhuri S. Solvation structure and hydrogen bond dynamics of uracil–water and thymine–water: A comparison of different force fields of uracil and thymine. Chemical Physics Letters. 2024; 846: 141357. doi: 10.1016/j.cplett.2024.141357

67. Ivanova B. Stochastic Dynamic Mass Spectrometric Quantitative and Structural Analyses of Pharmaceutics and Biocides in Biota and Sewage Sludge. International Journal of Molecular Sciences. 2023; 24(7): 6306. doi: 10.3390/ijms24076306

68. Ivanova B. Structural Analysis of Polylactic Acid in Composite Starch Biopolymers—A Stochastic Dynamics Mass Spectrometric Approach. Innovation Discovery. 2024; 1(3): 26. doi: 10.53964/id.2024026

69. Ivanova B. Stochastic dynamics mass spectrometric and Fourier transform infrared spectroscopic structural analyses of composite biodegradable plastics. Pollution Study. 2024; 5(1): 2741. doi: 10.54517/ps.v5i1.2741

70. Ivanova B. Stochastic dynamics mass spectrometric structural analysis of poly(methyl methacrylate). Universal Journal of Carbon Research. 2024.

71. Ivanova B, Spiteller M. Stochastic Dynamic Electrospray Ionization Mass Spectrometric Quantitative Analysis of Metronidazole in Human Urine. Analytical Chemistry Letters. 2022; 12(3): 322-348. doi: 10.1080/22297928.2022.2086822

72. Borges AL, Thuy-Boun P. Orbitrap LC-MS/MS data for phage nucleosides(1.0) [Data set]. Zenodo; 2022. doi: 10.5281/ZENODO.7319990.

73. Frisch M, Trucks G, Schlegel H, et al. Gaussian 09, 98. Gaussian, Inc., Pittsburgh, Wallingford CT; 2009.

74. Helgaker T, Jensen H, Jrgensen P, et al. Dalton Program Package. [https://daltonprogram.org/]; 2011.

75. Gordon MS, Schmidt MW. Advances in electronic structure theory. Theory and Applications of Computational Chemistry; Elsevier, Amsterdam, 2005.

76. Nielsen A, Holder A. Gauss View 5.0, User’s Reference. Pittsburgh GausView03 Program Package. GAUSSIAN Inc.; 2009.

77. Burkert U, Allinger N. Molecular mechanics in ACS Monograph 177. American Chemical Society, Washington D.C.; 1982.

78. Allinger NL. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. Journal of the American Chemical Society. 1977; 99(25): 8127-8134. doi: 10.1021/ja00467a001

79. Hempel A, Lane BG, Camerman N. Pseudouridine. Acta Crystallographica Section C Crystal Structure Communications. 1997; 53(11): 1707-1709. doi: 10.1107/s0108270197009323

80. Kelley C. Iterative Methods for optimization. SIAM Front. Appl. Mathematics; 2009.

81. Otto M. Chemometrics, 3rd ed. Wiley, Weinheim; 2017.

82. Apache OpenOffice. Available online: http://de.openoffice.org (accessed on 3 May 2024).

83. Madsen K, Nielsen H, Tingleff T. Informatics and mathematical modelling, 2nd ed. DTU Press; 2004.

84. Miller J, Miller J. Statistics and chemometrics for analytical chemistry. Pentice Hall, London; 1988.

85. Taylor J. Quality assurance of chemical measurements. Lewis Publishers, Inc; 1987.

86. Schroee G, Trenkler D. Exact and randomization distributions of Kolmogorov-Smirnov tests two or three samples. Computational Statistics & Data Analysis; 1995.

87. Fay MP, Proschan MA. Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Statistics Surveys. 2010; 4(none). doi: 10.1214/09-ss051

88. Freidlin B, Gastwirth JL. Should the Median Test be Retired from General Use? The American Statistician. 2000; 54(3): 161-164. doi: 10.1080/00031305.2000.10474539

89. Li Y, Yu H, Zhao W, et al. Analysis of urinary methylated nucleosides of patients with coronary artery disease by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry. 2014; 28(19): 2054-2058. doi: 10.1002/rcm.6986

90. Thumbs P. Synthese der natürlichen tRNA-Modifikation Galaktosylqueuosin und Untersuchungen zur Struktur der natürlichen tRNA-Modifikation Mannosylqueuosin. LMU Munich; 2013.

91. Thumbs P, Ensfelder TT, Hillmeier M, et al. Synthesis of Galactosyl‐Queuosine and Distribution of Hypermodified Q‐Nucleosides in Mouse Tissues. Angewandte Chemie International Edition. 2020; 59(30): 12352-12356. doi: 10.1002/anie.202002295

92. Pichler A, Hillmeier M, Heiss M, et al. Synthesis and Structure Elucidation of Glutamyl-Queuosine. Journal of the American Chemical Society. 2023; 145(47): 25528-25532. doi: 10.1021/jacs.3c10075

93. Shaw SJ, Desiderio DM, Tsuboyama K, et al. Mass spectrometry of nucleic acid components. Analogs of adenosine. Journal of the American Chemical Society. 1970; 92(8): 2510-2522. doi: 10.1021/ja00711a049

94. Muftakhov MV, Shchukin PV. Resonant electron capture by uridine and deoxyuridine molecules: Fragmentation with charge transfer. Rapid Communications in Mass Spectrometry. 2019; 33(5): 482-490. doi: 10.1002/rcm.8354

95. Ptasińska S, Candori P, Denifl S, et al. Dissociative ionization of the nucleosides thymidine and uridine by electron impact. Chemical Physics Letters. 2005; 409(4-6): 270-276. doi: 10.1016/j.cplett.2005.04.102

96. Jora M, Burns AP, Ross RL, et al. Differentiating Positional Isomers of Nucleoside Modifications by Higher-Energy Collisional Dissociation Mass Spectrometry (HCD MS). Journal of the American Society for Mass Spectrometry. 2018; 29(8): 1745-1756. doi: 10.1007/s13361-018-1999-6

97. Giessing AMB, Scott LG, Kirpekar F. A Nano-Chip-LC/MSn Based Strategy for Characterization of Modified Nucleosides Using Reduced Porous Graphitic Carbon as a Stationary Phase. Journal of the American Society for Mass Spectrometry. 2011; 22(7). doi: 10.1007/s13361-011-0126-8

98. Habermehl G, Christ BG. Synthese von Pseudouridin C. Justus Liebigs Annalen der Chemie. 1978; 1978(3): 427-430. doi: 10.1002/jlac.197819780308

99. Ji M, Lee H, Kim Y, et al. Metabolomic Study of Normal and Modified Nucleosides in the Urine of Mice with Lipopolysaccharide‐Induced Sepsis by LC–MS/MS. Bulletin of the Korean Chemical Society. 2021; 42(4): 611-617. doi: 10.1002/bkcs.12240

100. Wei F, Yuan R, Wen Q, et al. Systematic Enzymatic Synthesis of dTDP‐Activated Sugar Nucleotides. Angewandte Chemie International Edition. 2023; 62(20). doi: 10.1002/anie.202217894

101. Fang J, Xue M, Gu G, et al. A chemoenzymatic route to synthesize unnatural sugar nucleotides using a novel N-acetylglucosamine-1-phosphate pyrophosphorylase from Camphylobacter jejuni NCTC 11168. Bioorganic & Medicinal Chemistry Letters. 2013; 23(15): 4303-4307. doi: 10.1016/j.bmcl.2013.06.003

102. Guo Z, Li J, Qin H, et al. Biosynthesis of the Carbamoylated D‐Gulosamine Moiety of Streptothricins: Involvement of a Guanidino‐N‐glycosyltransferase and an N‐Acetyl‐D‐gulosamine Deacetylase. Angewandte Chemie International Edition. 2015; 54(17): 5175-5178. doi: 10.1002/anie.201412190

103. Li S, Wang S, Wang Y, et al. Gram-scale production of sugar nucleotides and their derivatives. Green Chemistry. 2021; 23(7): 2628-2633. doi: 10.1039/d1gc00711d

104. Masuko S, Bera S, Green DE, et al. Chemoenzymatic Synthesis of Uridine Diphosphate-GlcNAc and Uridine Diphosphate-GalNAc Analogs for the Preparation of Unnatural Glycosaminoglycans. The Journal of Organic Chemistry. 2012; 77(3): 1449-1456. doi: 10.1021/jo202322k

105. McLuckey S, Van Berkel G, Glish G. Tandem mass spectrometry of small, multiply charged oligonucleotides. Journal of the American Society for Mass Spectrometry. 1992.

106. Hogg AM, Kelland JG, Vederas JC, et al. Nucleosides and nucleotides part 24 Investigation of ribo‐ and deoxyribonucleosides and ‐nucleotides by fast‐ atom‐bombardment mass spectrometry. Helvetica Chimica Acta. 1986; 69(4): 908-917. doi: 10.1002/hlca.19860690419

107. Price NPJ, Jackson MA, Vermillion KE, et al. Rhodium-catalyzed reductive modification of pyrimidine nucleosides, nucleotide phosphates, and sugar nucleotides. Carbohydrate Research. 2020; 488: 107893. doi: 10.1016/j.carres.2019.107893

108. Haas TM, Mundinger S, Qiu D, et al. Stable Isotope Phosphate Labelling of Diverse Metabolites is Enabled by a Family of 18O‐Phosphoramidites**. Angewandte Chemie International Edition. 2021; 61(5). doi: 10.1002/anie.202112457

109. Kammerer B, Frickenschmidt A, Müller CE, et al. Mass spectrometric identification of modified urinary nucleosides used as potential biomedical markers by LC–ITMS coupling. Analytical and Bioanalytical Chemistry. 2005; 382(4): 1017-1026. doi: 10.1007/s00216-005-3232-2

110. Luan T, Su G, He Y, et al. Isolation and Identification of Water-Soluble Nitrogenous Compounds of Chlorella Growth Factors from Chlorella pyrenoidosa. Chemistry of Natural Compounds. 2024; 60(3): 592-594. doi: 10.1007/s10600-024-04390-8

111. Liu C, Dou X, Zhao Y, et al. IGF2BP3 promotes mRNA degradation through internal m7G modification. Nature Communications. 2024; 15(1). doi: 10.1038/s41467-024-51634-w

112. Unger SE, Schoen AE, Cooks RG, et al. Identification of modified nucleosides by secondary-ion and laser-desorption mass spectrometry. The Journal of Organic Chemistry. 1981; 46(23): 4765-4769. doi: 10.1021/jo00336a028

113. Tuytten R, Lemière F, Esmans EL, et al. In-source CID of guanosine: Gas phase ion-molecule reactions. Journal of the American Society for Mass Spectrometry. 2006; 17(8): 1050-1062. doi: 10.1016/j.jasms.2006.03.012

114. Kasprzyk R, Starek BJ, Ciechanowicz S, et al. Fluorescent Turn‐On Probes for the Development of Binding and Hydrolytic Activity Assays for mRNA Cap‐Recognizing Proteins. Chemistry—A European Journal. 2019; 25(27): 6728-6740. doi: 10.1002/chem.201900051

115. Strenkowska M, Wanat P, Ziemniak M, et al. Preparation of Synthetically Challenging Nucleotides Using Cyanoethyl P-Imidazolides and Microwaves. Organic Letters. 2012; 14(18): 4782-4785. doi: 10.1021/ol302071f

116. Raczyńska ED, Zientara K, Kolczyńska K, et al. Change of tautomeric equilibria, intramolecular interactions and π-electron delocalization when going from phenol to uracil. Journal of Molecular Structure: THEOCHEM. 2009; 894(1-3): 103-111. doi: 10.1016/j.theochem.2008.10.025

117. Raczyńska ED, Zientara K, Stępniewski TM, et al. Stability, polarity, intramolecular interactions and π-electron delocalization for all eighteen tautomers rotamers of uracil. DFT studies in the gas phase. Collection of Czechoslovak Chemical Communications. 2009; 74(1): 57-72. doi: 10.1135/cccc2008149

118. Udagawa T. Theoretical analysis on the aromaticity of uracil: Important electronic configurations and solvent effect on the aromaticity. Chemical Physics Letters. 2015; 637: 115-119. doi: 10.1016/j.cplett.2015.07.057

119. Roberts JD, Streitwieser A, Regan CM. Small-Ring Compounds. X. Molecular Orbital Calculations of Properties of Some Small-Ring Hydrocarbons and Free Radicals1. Journal of the American Chemical Society. 1952; 74(18): 4579-4582. doi: 10.1021/ja01138a038

120. Dewar M. The molecular orbital theory of organic chemistry. McGraw-Hill, New York, 1969.

121. Burrows CJ, Muller JG. Oxidative Nucleobase Modifications Leading to Strand Scission. Chemical Reviews. 1998; 98(3): 1109-1152. doi: 10.1021/cr960421s

122. Vemula H, Bobba S, Putty S, et al. Ion-pairing liquid chromatography–tandem mass spectrometry-based quantification of uridine diphosphate-linked intermediates in the Staphylococcus aureus cell wall biosynthesis pathway. Analytical Biochemistry. 2014; 465: 12-19. doi: 10.1016/j.ab.2014.07.024

123. Chandran J, Aravind U, Aravindakumar C. Sonochemical transformation of thymidine: A mass spectrometric study. Ultrasonics Sonochemistry. 2015; 27.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Bojidarka Ivanova

License URL: https://creativecommons.org/licenses/by/4.0/


This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).