A review on nanotechnological aspects in medicinal textile

Rai Dhirendra Prasad, Neeraj R. Prasad, Rai Surendra Prasad, Om Prakash Shrivastav, Saurabh R. Prasad, Suneera Banga, C. B. Desai, Prashant D. Sarvalkar, Mukesh N. Padvi, Walmik B. Shirsat, Anil Kumar Vaidya, Chandrakant Chiplunkar, Nirmala Prasad, Rai Rajnarayan Prasad

Article ID: 2694
Vol 5, Issue 1, 2024
DOI: https://doi.org/10.54517/aas.v5i1.2694
Received: 22 April 2024; Accepted: 19 May 2024; Available online: 3 June 2024; Issue release: 30 June 2024


Download PDF

Abstract

Nanoscience and Technology has become popular and touched almost every branch of science and technology. Textile engineering is also not exception. Various nanoparticles are being used in smart textiles and technical textile products. Medical textile is an important area and have much opportunities for innovation and discoveries. Therefore, nanomaterials are used in medical textiles to have exotic properties. Herein we have discussed several methods for the characterization of materials at nanoscale. The common spectroscopic techniques like UV-Visible spectroscopy and microscopic techniques like scanning electron microscopy and transmission electron microscope routinely used in material characterization are discussed in detail. In the last section of the article we discussed various applications of nanomaterials in modern medical textile. The nanomaterials are used in surgical gowns, sanitary napkins, UV protection appliances, antimicrobial coating, sutures etc. Some advanced nanomaterials can be used in disease diagnosis, flame retardants, efficient drug delivery systems etc.


Keywords

Nano-textile; flame retardant; drug delivery; polymeric nanoparticles; sanitary napkins


References

1. Miller D. Stone age or plastic age? Archaeological Dialogues. 2007; 14(1): 23-27. doi: 10.1017/s1380203807002152

2. Tsung CK, Hong WB, Shi QH, et al. Shape- and Orientation-Controlled Gold Nanoparticles Formed within Mesoporous Silica Nanofibers. Advanced Functional Materials. 2006; 16(17): 2225-2230. doi: 10.1002/adfm.200600535

3. Love JC, Estroff LA, Kriebel JK, et al. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chemical Reviews. 2005; 105(4): 1103-1170. doi: 10.1021/cr0300789

4. Miller WS, Zhuang L, BottemaJ, et al. Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A. 2000; 280(1):37-49. doi: 10.1016/S0921-5093(99)00653-X

5. Jones RM. Mechanics of composite materials. CRC Press. 1998.

6. Callister WD, Rethwisch DG. Fundamentals of materials science and engineering: an integrated approach. John Wiley & Sons; 2012.

7. Feynman RP. There's plenty of room at the bottom. Engineering and Science. 1960; 23(5): 22-36.

8. Arivalagan K, Ravichandran S, Rangasamy K, Karthikeyan E. Nanomaterials and its Potential Applications. International Journal of ChemTech Research. 2011; 3(2).

9. Ravi B. Investment Casting Development: Ancient and Modern Approaches. Business, Art. 2003.

10. Mondal B. Proceedings of the National Conference on Investment Casting: NCIC 2003. Allied Publishers. Asma and its evaluation for anti microbial activity; 2004.

11. Ravi B. Investment Casting Development: Ancient and Modern Approaches. In: Proceedings of the National Conference on Investment Casting: NCIC 2003; 2004. p. 2.

12. Linkov I, Steevens J (editors). Nanomaterials: Risks and Benefits. Springer Netherlands; 2009. doi: 10.1007/978-1-4020-9491-0

13. Dai L. Carbon nanotechnology: recent developments in chemistry, physics, materials science and device applications. Elsevier; 2006.

14. Stix G. Little Big Science. Scientific American. 2001; 285(3): 32-37. doi: 10.1038/scientificamerican0901-32

15. Roco MC.. From vision to the implementation of the US National Nanotechnology Initiative. Journal of Nanoparticle Research. 2001; 3(1): 5-11. doi: 10.1023/A:1011429917892

16. Park H, Cannizzaro C, Vunjak-Novakovic G, et al. Nanofabrication and Microfabrication of Functional Materials for Tissue Engineering. Tissue Engineering. 2007; 13(8): 1867-1877. doi: 10.1089/ten.2006.0198

17. Maye MM, Lou Y, Zhong CJ. Core−Shell Gold Nanoparticle Assembly as Novel Electrocatalyst of CO Oxidation. Langmuir. 2000; 16(19): 7520-7523. doi: 10.1021/la000503i

18. Sharma, Kal Renganathan. Nanostructuring operations in nanoscale science and engineering. McGraw-Hill Education,2010

19. Friend R, Burroughes J, Shimoda T. Polymer diodes. Physics World. 1999; 12(6): 35-40. doi: 10.1088/2058-7058/12/6/27

20. Richerson D. Modern ceramic engineering: properties, processing, and use in design. CRC press; 2005.

21. Carpi F, De Rossi D, Kornbluh R, et al. Dielectric elastomers as electromechanical transducers: Fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology. Elsevier; 2011.

22. Wang ZL, Kang ZC, Uchino K. Functional and Smart Materials: Structural Evolution and Structure Analysis. Physics Today. 1998; 51(11): 70-71. doi: 10.1063/1.882083

23. Ozin GA, Arsenault A, Cademartiri L. Nanochemistry: A Chemical Approach to Nanomaterials. Published online December 12, 2008. doi: 10.1039/9781849737395

24. Banerjee R, Furukawa H, Britt D, et al. Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective Capture Properties. Journal of the American Chemical Society. 2009; 131(11): 3875-3877. doi: 10.1021/ja809459e

25. Fesmire S. John Dewey and moral imagination: Pragmatism in ethics. Indiana University Press; 2003.

26. Taniguchi N. On the basic concept of nanotechnology. Available online: https://www.scribd.com/document/372768443/On-the-Basic-Concept-of-Nano-technology (accessed on 2 March 2024).

27. Chaudhuri RG. Synthesis and characterization of SiAgBr core shell nanoparticles. ResearchGate; 2009.

28. Nazari ZE, Iranshahi M. Biologically active sesquiterpene coumarins fromFerulaspecies. Phytotherapy Research. 2010; 25(3): 315-323. doi: 10.1002/ptr.3311

29. Ebnesajjad S. Surface and material characterization techniques. In: Handbook of adhesives and surface preparation. William Andrew Publishing; 2011. pp. 31-48.

30. Savanur IA. Physico-Chemical Analysis and Evaluation of Antibacterial and Antifungal Activity of Arogyavardhini Vati. Diss. Rajiv Gandhi University of Health Sciences (India); 2010.

31. Hahnemann S. Organon of medicine. B. Jain publishers; 2002.

32. Hayat MA. Colloidal gold: principles, methods, and applications. Elsevier; 2012.

33. Galarraga Soto E, Luna Hermosa G. Design criteria for minimum basic potable water services in suburban neighborhoods (Spanish). Revista técnica informativa. XIX aniversario IEOS. 1984; 26-30.

34. Freestone I, Meeks N, Sax M, et al. The Lycurgus Cup—A Roman nanotechnology. Gold Bulletin. 2007; 40(4): 270-277. doi: 10.1007/bf03215599

35. Link S, Wang ZL, El-Sayed MA. Alloy Formation of Gold−Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition. The Journal of Physical Chemistry B. 1999; 103(18): 3529-3533. doi: 10.1021/jp990387w

36. Steinke JM, Shepherd AP. Comparison of Mie theory and the light scattering of red blood cells. Applied Optics. 1988; 27(19): 4027. doi: 10.1364/ao.27.004027

37. Singh H, Pal Singh B. The next big thing is the really small. Nanotechnology: A conceptual study. International Journal of Information Technology & Computer Sciences Perspectives. 2013; 2(3): 606-612.

38. Prasad, Rai Dhirendra, et al. Emerging Trends of Bioactive Nano-materials in Modern Veterinary Science and Animal Husbandry. ES Food & Agroforestry; 2024.

39. Eckert J, Das J, Pauly S, et al. Mechanical properties of bulk metallic glasses and composites. Journal of Materials Research. 2007; 22(2): 285-301. doi: 10.1557/jmr.2007.0050

40. Dorfman BF. Some Trends and Challenges in Nanomechanics: Up-To-Date Review of Selected Patents and Patent Applications. Recent Patents on Mechanical Engineeringe. 2010; 3(3): 191-205. doi: 10.2174/2212797611003030191

41. Lanas J, Alvarez-Galindo JI. (2003). Masonry repair lime-based mortars: factors affecting the mechanical behavior. Cement and concrete research. 33(11): 1867-1876. doi: 10.1016/S0008-8846(03)00210-2

42. Ovid'ko IA. Superplasticity and ductility of superstrong nanomaterials.Rev. Adv. Mater. Sci. 2005; 10(2): 89.

43. Lokwani P. Magnetic particles for drug delivery: an overview. Int J Res Pharm Biomed Sci. 2011; 2(2): 465-473.

44. Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature. 2003; 424(6950): 824-830. doi: 10.1038/nature01937

45. Kumar KVA, Sajna MS, Thomas V, et al. Plasmonic and Energy Studies of Ag Nanoparticles in Silica-Titania Hosts. Plasmonics. 2014; 9(3): 631-636. doi: 10.1007/s11468-014-9674-7

46. Yushanov SP, Gritter LT, Crompton JS, Koppenhoefer KC. Surface Plasmon Resonance. In: COMSOL Conference; 2012.

47. Shipway AN, Katz E, Willner I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem. 2000; 1(1): 18-52. doi: 10.1002/1439-7641(20000804)1:1<18::AID-CPHC18>3.0.CO;2-L

48. Mulvaney P. Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir. 1996; 12(3): 788-800. doi: 10.1021/la9502711

49. Chang YA. On the temperature dependence of the bulk modulus and the Anderson-Grüneisen parameter δ of oxide compounds. Journal of Physics and Chemistry of Solids. 1967; 28(4): 697-701. doi:10.1016/0022-3697(67)90101-1

50. Yguerabide J, Yguerabide EE. Light-Scattering Submicroscopic Particles as Highly Fluorescent Analogs and Their Use as Tracer Labels in Clinical and Biological Applications. Analytical Biochemistry. 1998; 262(2): 137-156. doi: 10.1006/abio.1998.2759

51. Zhang S, Lin L, Kumar A. Materials characterization techniques. CRC Press; 2008.

52. Kawabata A, Kubo R. Electronic Properties of Fine Metallic Particles. II. Plasma Resonance Absorption. Journal of the Physical Society of Japan. 1966; 21(9): 1765-1772. doi: 10.1143/jpsj.21.1765

53. Link S, El-Sayed MA. Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. The Journal of Physical Chemistry B. 1999; 103(21): 4212-4217. doi: 10.1021/jp984796o

54. Prasad RD. A Review on Nanotechnology from Prehistoric to Modern Age. ES General. 2024; 4: 1117.

55. Burda C, Chen X, Narayanan R, et al. Chemistry and Properties of Nanocrystals of Different Shapes. Chemical Reviews. 2005; 105(4): 1025-1102. doi: 10.1021/cr030063a

56. Halas NJ, Lal S, Chang WS, et al. Plasmons in Strongly Coupled Metallic Nanostructures. Chemical Reviews. 2011; 111(6): 3913-3961. doi: 10.1021/cr200061k

57. Bansmann J, Baker S, Binns C, et al. Magnetic and structural properties of isolated and assembled clusters. Surface Science Reports. 2005; 56(6-7): 189-275. doi: 10.1016/j.surfrep.2004.10.001

58. Gupta A, Sun JZ. Spin-polarized transport and magnetoresistance in magnetic oxides. Journal of magnetism and magnetic materials. 1999; 200(1): 24-43. doi:10.1016/S0304-8853(99)00373-X

59. Tarling D, Hrouda F. Magnetic anisotropy of rocks. Springer; 1993.

60. Ju-Nam Y, Lead JR. Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Science of The Total Environment. 2008; 400(1-3): 396-414. doi: 10.1016/j.scitotenv.2008.06.042

61. Mahmoudi M, Hofmann H, Rothen-Rutishauser B, et al. Assessing the In Vitro and In Vivo Toxicity of Superparamagnetic Iron Oxide Nanoparticles. Chemical Reviews. 2011; 112(4): 2323-2338. doi: 10.1021/cr2002596

62. Pankhurst QA, Connolly J, Jones SK, et al. Applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics. 2003; 36(13): R167-R181. doi: 10.1088/0022-3727/36/13/201

63. Stensberg MC, Wei Q, McLamore ES, et al. Toxicological Studies on Silver Nanoparticles: Challenges and Opportunities in Assessment, Monitoring and Imaging. Nanomedicine. 2011; 6(5): 879-898. doi: 10.2217/nnm.11.78

64. Lin AWH, Lewinski NA, West JL, et al. Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells. Journal of Biomedical Optics. 2005; 10(6): 064035. doi: 10.1117/1.2141825

65. Prum RO, Quinn T, Torres RH. Anatomically diverse butterfly scales all produce structural colours by coherent scattering. Journal of Experimental Biology. 2006; 209(4): 748-765. doi: 10.1242/jeb.02051

66. Narayanan R, El-Sayed MA. Effect of Catalysis on the Stability of Metallic Nanoparticles: Suzuki Reaction Catalyzed by PVP-Palladium Nanoparticles. Journal of the American Chemical Society. 2003; 125(27): 8340-8347. doi: 10.1021/ja035044x

67. Prasad SR, Vinod BK, Neeraj RP. Applications of Nanotechnology in Textile: A Review. ES Food & Agroforestry. 2023; 15: 1019.

68. Cheong S, Watt JD, Tilley RD. Shape control of platinum and palladium nanoparticles for catalysis. Nanoscale. 2010; 2(10): 2045. doi: 10.1039/c0nr00276c

69. Motta C. First-principles study of electronic transport in organic molecular junctions [PhD thesis]. Università degli Studi di Milano-Bicocca; 2013.

70. Ferry D, Goodnick SM. Transport in Nanostructures. Cambridge University Press; 1997. doi: 10.1017/cbo9780511626128

71. Ramos A, Morgan H, Green NG, et al. Ac electrokinetics: a review of forces in microelectrode structures. Journal of Physics D: Applied Physics. 1998; 31(18): 2338-2353. doi: 10.1088/0022-3727/31/18/021

72. Bethe HA. Theory of the Effective Range in Nuclear Scattering. Physical Review. 1949; 76(1): 38-50. doi: 10.1103/physrev.76.38

73. Cushing BL, Kolesnichenko VL, O’Connor CJ. Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles. Chemical Reviews. 2004; 104(9): 3893-3946. doi: 10.1021/cr030027b

74. Tao AR, Habas S, Yang P. Shape Control of Colloidal Metal Nanocrystals. Small. 2008; 4(3): 310-325. doi: 10.1002/smll.200701295

75. Kent SBH. Chemical synthesis of peptides and proteins. Annual Review of Biochemistry. 1988; 57(1): 957-989. doi: 10.1146/annurev.bi.57.070188.004521

76. Zangwill A. Physics at Surfaces. Cambridge University Press; 1988. doi: 10.1017/cbo9780511622564

77. Akiyoshi K, Kobayashi S, Shichibe S, et al. Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. Journal of Controlled Release. 1998; 54(3), 313-320. doi: 10.1016/S0168-3659(98)00017-0

78. Hogg R, Healy TW, Fuerstenau DW. Mutual coagulation of colloidal dispersions. Transactions of the Faraday Society. 1966; 62: 1638. doi: 10.1039/tf9666201638

79. Cordes EH, Dunlap RB. Kinetics of organic reactions in micellar systems. Accounts of Chemical Research. 1969; 2(11): 329-337. doi: 10.1021/ar50023a002

80. Green M. The nature of quantum dot capping ligands. Journal of Materials Chemistry. 2010; 20(28): 5797. doi: 10.1039/c0jm00007h

81. Toshima N, Yonezawa T. Bimetallic nanoparticles—novel materials for chemical and physical applications. New Journal of Chemistry. 1998; 22(11): 1179-1201. doi: 10.1039/a805753b

82. Wang W, Efrima S, Regev O. Directing Silver Nanoparticles into Colloid−Surfactant Lyotropic Lamellar Systems. The Journal of Physical Chemistry B. 1999; 103(27): 5613-5621. doi: 10.1021/jp983125n

83. Parak WJ, Gerion D, Pellegrino T, et al. Biological applications of colloidal nanocrystals. Nanotechnology. 2003; 14(7): R15-R27. doi: 10.1088/0957-4484/14/7/201

84. Dahl JA, Maddux BLS, Hutchison JE. Toward Greener Nanosynthesis. Chemical Reviews. 2007; 107(6): 2228-2269. doi: 10.1021/cr050943k

85. Katz E, Willner I. Integrated Nanoparticle–Biomolecule Hybrid Systems: Synthesis, Properties, and Applications. Angewandte Chemie International Edition. 2004; 43(45): 6042-6108. doi: 10.1002/anie.200400651

86. West JL, Halas NJ. Applications of nanotechnology to biotechnology: Commentary. Current opinion in Biotechnology. 2000; 11(2): 215-217. doi:10.1016/S0958-1669(00)00082-3

87. Slowing II, Trewyn BG, Giri S, et al. Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications. Advanced Functional Materials. 2007; 17(8): 1225-1236. doi: 10.1002/adfm.200601191

88. Lu AH, Salabas EL, Schüth F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angewandte Chemie International Edition. 2007; 46(8): 1222-1244. doi: 10.1002/anie.200602866

89. LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nature Biotechnology. 2003; 21(10): 1184-1191. doi: 10.1038/nbt876

90. Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine. 2010; 6(2): 257-262. doi: 10.1016/j.nano.2009.07.002

91. Kelly KL, Coronado E, Zhao LL, et al. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B. 2002; 107(3): 668-677. doi: 10.1021/jp026731y

92. Son SU, Jang Y, Yoon KY, et al. Facile Synthesis of Various Phosphine-Stabilized Monodisperse Palladium Nanoparticles through the Understanding of Coordination Chemistry of the Nanoparticles. Nano Letters. 2004; 4(6): 1147-1151. doi: 10.1021/nl049519

93. Judeinstein P, Sanchez C. Hybrid organic–inorganic materials: a land of multidisciplinarity. J Mater Chem. 1996; 6(4): 511-525. doi: 10.1039/jm9960600511

94. Giersig M, Pastoriza-Santos I, Liz-Marzán LM. Evidence of an aggregative mechanism during the formation of silver nanowires in N,N-dimethylformamide. J Mater Chem. 2004; 14(4): 607-610. doi: 10.1039/b311454f

95. Zheng N, Stucky GD. A General Synthetic Strategy for Oxide-Supported Metal Nanoparticle Catalysts. Journal of the American Chemical Society. 2006; 128(44): 14278-14280. doi: 10.1021/ja0659929

96. Haxell JP, Williams KG, Wilson DE. Stabilized pigmented hot melt ink containing nitrogen-modified acrylate polymer as dispersion-stabilizer agent.U.S. Patent No. 5,221,335. 1991.

97. Gilley RM, Meyers WE., Shannon WM, Tice TR. xx. U.S. Patent No. 4,585,482. xx

98. Dubey SP, Lahtinen M, Sillanpää M. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochemistry. 2010; 45(7): 1065-1071. doi: 10.1016/j.procbio.2010.03.024

99. Mukherjee P, Ahmad A, Mandal D, et al. Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angewandte Chemie International Edition. 2001; 40(19): 3585-3588. doi:10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K

100. Nazeruddin GM, Prasad NR, Prasad SR, et al. In-vitro bio-fabrication of silver nanoparticle using Adhathoda vasica leaf extract and its anti-microbial activity. Physica E: Low-dimensional Systems and Nanostructures. 2014; 61: 56-61. doi: 10.1016/j.physe.2014.02.023

101. Lee SW, Mao C, Flynn CE, et al. Ordering of Quantum Dots Using Genetically Engineered Viruses. Science. 2002; 296(5569): 892-895. doi: 10.1126/science.1068054

102. Gunther FA. Residues of Pesticides and Other Foreign Chemicals in Foods and Feeds / Rückstände von Pesticiden Und Anderen Fremdstoffen in Nahrungs- Und Futtermitteln. Springer New York; 1969. doi: 10.1007/978-1-4615-8443-8

103. Singaravelu G, Arockiamary JS, Kumar VG, et al. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids and Surfaces B: Biointerfaces. 2007; 57(1): 97-101. doi: 10.1016/j.colsurfb.2007.01.010

104. Weber KP, Petersen EJ, Bissegger S, et al. Effect of gold nanoparticles and ciprofloxacin on microbial catabolism: a community‐based approach. Environmental Toxicology and Chemistry. 2013; 33(1): 44-51. doi: 10.1002/etc.2412

105. Ahmad A, Senapati S, Khan MI, et al. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete,Rhodococcusspecies. Nanotechnology. 2003; 14(7): 824-828. doi: 10.1088/0957-4484/14/7/323

106. Mandal D, Bolander ME, Mukhopadhyay D, et al. The use of microorganisms for the formation of metal nanoparticles and their application. Applied Microbiology and Biotechnology. 2005; 69(5): 485-492. doi: 10.1007/s00253-005-0179-3

107. Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science. 2010; 156(1-2): 1-13. doi: 10.1016/j.cis.2010.02.001

108. Fayaz AM, Balaji K, Girilal M, et al. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine. 2010; 6(1): 103-109. doi: 10.1016/j.nano.2009.04.006

109. Mukherjee P, Senapati S, Mandal D, et al. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem. 2002; 3(5): 461-463. doi:10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X

110. Gericke M, Pinches A. Biological synthesis of metal nanoparticles. Hydrometallurgy. 2006; 83(1-4): 132-140. doi: 10.1016/j.hydromet.2006.03.019

111. Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine. 2010; 6(2): 257-262. doi: 10.1016/j.nano.2009.07.002

112. Basavaraja S, Balaji SD, Lagashetty A, et al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Materials Research Bulletin. 2008; 43(5): 1164-1170. doi: 10.1016/j.materresbull.2007.06.020

113. Nanda A, Saravanan M. Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine: Nanotechnology, Biology and Medicine. 2009; 5(4): 452-456. doi: 10.1016/j.nano.2009.01.012

114. Shahverdi AR, Minaeian S, Shahverdi HR, et al. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach. Process Biochemistry. 2007; 42(5): 919-923. doi: 10.1016/j.procbio.2007.02.005

115. Shahverdi AR, Fakhimi A, Shahverdi HR, et al. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine: Nanotechnology, Biology and Medicine. 2007; 3(2): 168-171. doi: 10.1016/j.nano.2007.02.001

116. Prasad, Rai Dhirendra, et al. A review on modern characterization techniques for analysis of nanomaterials and biomaterials. ES Energy & Environment. 2024; 23: 1087.

117. Bhainsa KC, D’Souza SF. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids and Surfaces B: Biointerfaces. 2006; 47(2): 160-164. doi: 10.1016/j.colsurfb.2005.11.026

118. Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: technological concepts and future applications. Journal of Nanoparticle Research. 2007; 10(3): 507-517. doi: 10.1007/s11051-007-9275-x

119. Mukherjee P, Ahmad A, Mandal D, et al. Fungus-Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis. Nano Letters. 2001; 1(10): 515-519. doi: 10.1021/nl0155274

120. Shaligram NS, Bule M, Bhambure R, et al. Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochemistry. 2009; 44(8): 939-943. doi: 10.1016/j.procbio.2009.04.009

121. Narayanan KB, Natarajan S. Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science. 2010; 156(1-2): 1-13.

122. Lee SY. Improved metal cluster deposition on a genetically engineered tobacco mosaic virus template. Nanotechnology. 2005; 16: S435.

123. Elechiguerra JL, Burt JL, Morones JR, et al. Interaction of silver nanoparticles with HIV-1. Journal of Nanobiotechnology. 2005; 3(1). doi: 10.1186/1477-3155-3-6

124. Nam KT, Kim DW, Yoo PJ, et al. Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes. Science. 2006; 312(5775): 885-888. doi: 10.1126/science.1122716

125. Kowshik M, Ashtaputre S, Kharrazi S, et al. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology. 2002; 14(1): 95-100. doi: 10.1088/0957-4484/14/1/321

126. Ankamwar B, Damle C, Ahmad A, et al. Biosynthesis of Gold and Silver Nanoparticles Using Emblica Officinalis Fruit Extract, Their Phase Transfer and Transmetallation in an Organic Solution. Journal of Nanoscience and Nanotechnology. 2005; 5(10): 1665-1671. doi: 10.1166/jnn.2005.184

127. Kim KS, Demberelnyamba D, Lee H. Size-Selective Synthesis of Gold and Platinum Nanoparticles Using Novel Thiol-Functionalized Ionic Liquids. Langmuir. 2003; 20(3): 556-560. doi: 10.1021/la0355848

128. Kramer RM, Li C, Carter DC, et al. Engineered Protein Cages for Nanomaterial Synthesis. Journal of the American Chemical Society. 2004; 126(41): 13282-13286. doi: 10.1021/ja046735b

129. Sharma NC, Sahi SV, Nath S, et al. Synthesis of Plant-Mediated Gold Nanoparticles and Catalytic Role of Biomatrix- Embedded Nanomaterials. Environmental Science & Technology. 2007; 41(14): 5137-5142. doi: 10.1021/es062929a

130. MubarakAli D, Thajuddin N, Jeganathan K, et al. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids and Surfaces B: Biointerfaces. 2011; 85(2): 360-365. doi: 10.1016/j.colsurfb.2011.03.009

131. Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, et al. Alfalfa Sprouts: A Natural Source for the Synthesis of Silver Nanoparticles. Langmuir. 2003; 19(4): 1357-1361. doi: 10.1021/la020835i

132. Chung TH, Wu SH, Yao M, et al. The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials. 2007; 28(19): 2959-2966. doi: 10.1016/j.biomaterials.2007.03.006

133. Brunner TJ, Wick P, Manser P, et al. In Vitro Cytotoxicity of Oxide Nanoparticles: Comparison to Asbestos, Silica, and the Effect of Particle Solubility. Environmental Science & Technology. 2006; 40(14): 4374-4381. doi: 10.1021/es052069i

134. Nathan CF, Hibbs JB Jr. Role of nitric oxide synthesis in macrophage antimicrobial activity. Current opinion in immunology. 1991; 3(1): 65-70. doi:10.1016/0952-7915(91)90079-G

135. Nathan CF, Murray HW, Wiebe ME, et al. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. The Journal of experimental medicine. 1983; 158(3): 670-689. doi: 10.1084/jem.158.3.670

136. Giusti MM, Wrolstad RE. Characterization and Measurement of Anthocyanins by UV‐Visible Spectroscopy. Current Protocols in Food Analytical Chemistry. 2001; 00(1). doi: 10.1002/0471142913.faf0102s00

137. Stefanov P. The identification problem for the attenuated x-ray transform. American Journal of Mathematics. 2014; 136: 1215-1247.

138. Dennison DM. The infra-red spectra of polyatomic molecules. Part II. Reviews of Modern Physics. 1940; 12: 175.

139. Sturhahn W. Nuclear resonant spectroscopy. Journal of Physics: Condensed Matter. 2004; 16(5): S497-S530. doi: 10.1088/0953-8984/16/5/009

140. Harris RK. Nuclear magnetic resonance spectroscopy: a physicochemical view. Harlow, Essex, England: Longman scientific & technical; 1986.

141. Goldstein JI, Newbury DE, Echlin P, et al. Scanning Electron Microscopy and X-Ray Microanalysis. Springer US; 2003. doi: 10.1007/978-1-4615-0215-9

142. Williams DB, Carter CB. Transmission Electron Microscopy. Springer US; 1996. doi: 10.1007/978-1-4757-2519-3

143. Dhirendra Prasad NR. Synthesis of Npble Metallic Nanomaterials and Their Applications in Organic Reactions. Savitribai Phule Pune University; 2014.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Rai Dhirendra Prasad, Neeraj R. Prasad, Rai Surendra Prasad, Om Prakash Shrivastav, Saurabh R. Prasad, Suneera Banga, C. B. Desai, Prashant D. Sarvalkar, Mukesh N. Padvi, Walmik B. Shirsat, Anil Kumar Vaidya, Chandrakant Chiplunkar, Nirmala Prasad, Rai Ra

License URL: https://creativecommons.org/licenses/by/4.0/


This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).