Colorimetric/ratio fluorescence determination of glucose using bifunctional carbon dots

Chunling Yuan, Xiaotiao Yao, Yuanjin Xu, Xiu Qin, Rui Shi, Shiqi Cheng, Yilin Wang

Article ID: 2043
Vol 4, Issue 1, 2023
DOI: https://doi.org/10.54517/aas.v4i1.2043
VIEWS - 52 (Abstract)

Abstract

Based on biomass (taro leaf). Iron was prepared by hydrothermal method with ammonium ferric sulfate dodecahydrate and urea as raw materials. Nitrogen Co doped carbon dots (Fe, N-CDs) were characterized by transmission electron microscopy and X-ray photoelectron spectroscopy. The Fe, N-CDs not only has peroxidase like activity, but also can produce strong fluorescence emission at 450 nm. Using Fe, N-CDs and o-phenylenediamine (OPD) as probes, a dual signal colorimetric/ratio fluorescence method for the determination of hydrogen peroxide (H2O2) was established. In the presence of H2O2, Fe, N-CDs catalyze the oxidation of OPD to yellow 2, 3-diaminophenazine (DAP), which has a characteristic absorption peak at 420 nm. Under the excitation of 360 nm wavelength light, DAP has strong fluorescence emission at 550 nm; DAP can quench the fluorescence of Fe and N-CDs at 450 nm due to the fluorescence internal filtering effect. Based on this, the absorbance of DAP at 420 nm (A420) and the fluorescence intensity ratio of DAP to Fe, N-CDs (I550/I450) can be used for the quantitative analysis of H2O2. Considering that glucose oxidase can catalyze the oxidation of glucose to H2O2, a colorimetric/ratio fluorescence dual signal glucose determination method was further developed. Under the conditions of pH=5.4, temperature 40℃, 1.75 mmol/L OPD and reaction time 25 min, when the glucose concentration is in the range of 1.0~100μmol/L, the values of A420 and I550/I450 have a good linear relationship with the concentration, and the detection limits of the method are respectively 0.8 (colorimetry) and 0.6 μmol/L (ratio fluorescence). The method was successfully applied to the determination of glucose in human serum.


Keywords

carbon point; colorimetry; ratio fluorescence; glucose; determination

Full Text:

PDF



References

1. Zhang J. L., Dai X., Song Z. L., Han R., Ma L. Z., Fan G. C., Luo X. L., Sens. Actuators B Chem., 2020, 304, 127304

2. Baek S. H., Roh J., Park C. Y., Kim M. W., Shi R., Kailasa S. K., Park T. J., Mat. Sci. Eng. C⁃Mater. 2020, 107, 110273

3. Xie W. Q., Gong Y. X., Yu K. X., J. Chromatogr. A, 2017, 1520143–146

4. Ling Z. L., Xu P., Zhong Z. Y., Wang F., Shu N., Zhang J., Tang X. G., Liu L., Liu X. D., Biomed. Chromatogr., 2016, 30(4), 601–605

5. Huang H. P., Yue Y. F., Xu L., LüL. L., Hu Y. M., Chem. J. Chinese Universities, 2017, 38(4), 554–560

6. Xu L., Lin Y. Q., Chen X., Lu Y. L., Yang W. S., Chem. J. Chinese Universities, 2016, 37(3), 442–447

7. Liu T., Zhang S. X., Liu W., Zhao S., Lu Z. W., Wang Y. Y., Wang G. T., Zou P., Wang X. X., Zhao Q. B., Rao H. B., Sens. Actua⁃tors B Chem., 2020, 305, 127524

8. Rashtbari S., Dehghan G., Amini M., Anal. Chim. Acta, 2020, 1110, 98–108

9. Cheng X. W., Huang L., Yang X. Y., Elzatahry A. A., Alghamdi A., Deng Y. H., J. Colloid Interf. Sci., 2019, 535, 425–435

10. Lin T. R., Zhong L. S., Guo L. Q., Fu F. F., Chen G. N., Nanoscale, 2014, 6, 11856–11862

11. Liu H., Hua Y., Cai Y. Y., Feng L. P., Li S., Wang H., Anal. Chim. Acta, 2019, 1092, 57–65

12. Yuan J., Cen Y., Kong X. J., Wu S., Liu C. L., Yu R. Q., Chu X., ACS Appl. Mater. Interfaces, 2015, 7, 10548−10555

13. Wang H. B., Chen Y., Li N., Lin Y. M., Microchim. Acta, 2017, 184, 515–523

14. Xiao N., Liu S. G., Mo S., Yang Y. Z., Han L., Ju Y. J., Li N. B., Luo H. Q., Sens. Actuators B Chem., 2015, 273, 1735–1743

15. Zhang W. C., Li X., Xu X. C., He Y. F., Qiu F. X., Pan J. M., Niu X. H., J. Mater. Chem. B, 2019, 7, 223–239

16. Wang C. K., Tan R., Li L. B., Liu D., Chem. Res. Chinese Universities, 2019, 35(5), 767–774

17. Zhong Q. M., Huang X. H., Qin Q. M., Su A. M., Chen Y. Y., Liu X. Y., Wang Y. L., Chinese J. Anal. Chem., 2018, 46(7), 1062–1068

18. Geng X., Sun Y. Q., Li Z. H., Yang R., Zhao Y. M., Guo Y. F., Xu J. J., Li F. T., Wang Y., Lu S. Y., Qu L. B. Small, 2019, 15, 1901517

19. Guo S., Sun Y. Q., Geng X., Yang R., Xiao L. H., Qu L. B., Li Z. H., J. Mater. Chem. B, 2020, 8, 736–742

20. Chen Y. Y., Qin X., Yuan C. L., Shi R., Wang Y. L., Dyes and Pigments, 2020, 181, 108529

21. Su A. M., Wang D., Shu X., Zhong Q. M., Chen Y. R., Liu J. C., Wang Y. L., Chem. Res. Chinese Universities, 2018, 34(2), 164–168

22. Yuan C. L., Qin X., Xu Y. J., Jing Q. Q., Shi R., Wang Y. L., Microchem. J., 2020, 159, 105365

23. Yadav P. K., Singh V. K., Chandra S., Bano D., Kumar V., Talat M., Hasan S. H., ACS Biomater. Sci. Eng., 2019, 5, 623–632

24. Chandra S., Singh V. K., Yadav P. K., Bano D., Kumar V., Pandey V. K., Talat M., Hasan S. H., Anal. Chim. Acta, 2019, 1054, 145–156

25. Wang L. Z., Liu Y., Yang Z. P., Wang Y. Y., Rao H. B., Yue G. Z., Wu C. M., Lu C. F., Wang X. X., Dyes and Pigments, 2020, 180, 108486

26. Zhuo S. J., Guan Y. Y., Hui L., Fang J., Zhang P., Du J. Y., Analyst, 2019, 144, 656–662

27. Hu Y. F., Zhang L. L., Li X. F., Liu R. J., Lin L. Y., Zhao S. L., ACS Sustainable Chem. Eng., 2017, 5, 4992–5000

28. Sun X. H., He J., Yang S. H., Zheng M. D., Wang Y. Y., Ma S., Zheng H. P., J. Photoch. Photobio. B, 2017, 175, 219–225

29. Shen J., Shang S. M., Chen X. Y., Wang D., Cai Y., Mat. Sci. Eng. C⁃Mater. 2017, 76, 856–864

30. Gu D., Shang S. M., Yu, Q., Shen J., Appl. Surf. Sci., 2016, 390, 38–42

31. Wen X. P., Shi L. H., Wen G. M., Li Y. Y., Dong C., Yang J., Shuang S. M., Sens. Actuators B Chem., 2015, 221, 769–776

32. Yang W. Q., Huang T. T., Zhao M. M., Luo F., Weng W., Wei Q. H., Lin Z. Y., Chen G. N., Talanta, 2017, 164, 1–6

33. Fang A. J., Long Q., Wu Q. Q., Li H. T., Zhang Y. Y., Yao S. Z., Talanta, 2016, 148, 129–134

34. Qian P. C., Qin Y. N., Lyu Y., L., Li Y., F., Wang L., Wang S., Liu Y. Q., Anal. Bioanal. Chem. 2019, 411, 1517–1524

35. Xing Z. C., Tian J. Q., Asiri A. M., Qusti A. H., Al⁃Youbi A. O., Sun X. P., Biosens. Bioelectron., 2014, 52, 452–457

Refbacks

  • There are currently no refbacks.