Utilization of Ambient Ionization Mass Spectrometry in Forensic Toxicology Analysis

Wanying Cui, Zhongshan Yu, Jing Chang, Peng Zhao, Aihua Wang, Xiaojun Wu, Jiayi Li, Yunfeng Zhang

Article ID: 1983
Vol 2, Issue 1, 2021
DOI: https://doi.org/10.54517/aas.v2i1.1983
Received: 25 July 2021; Accepted: 20 September 2021; Available online: 07 October 2021;
Issue release: 31 December 2021

VIEWS - 1894 (Abstract)

Download PDF

Abstract

Ambient ionization mass spectrometry (AIMS) is a technique that allows for the analysis of target analytes in samples at atmospheric pressure with minimal or no sample preparation. Its advantages, including simplicity, speed, non-destructiveness, and broad applicability, make it highly useful in forensic toxicological analysis. This article provides an overview of the ambient ionization (AI) technique, categorizes samples into two types—in vivo and in vitro test materials—and summarizes AIMS applications in poison analysis across various sample types. It also explores future directions for AIMS in forensic toxicology.


Keywords

ambient ionization mass spectrometry (AIMS); mass spectrometry; forensic toxicological analysis


References

1.

1.         Wang FL, Li J, Lü FD, et al. Research and application of flourier transformation infrared spectroscopy in forensic medicine. Forensic Sci. Technol. 2017; 42(3): 222-226.

2.

2.         Li L, Zhou YX, Luo Y. Separation and analysis of common toxic drugs in biological fluids by solid phase extraction combined with GC-MS system. Acta Pharm. Sin. 2000; 35(7): 512-525.

3.

3.         Grapp M, Kaufmann C, Streit F, et al. Systematic forensic toxicological analysis by liquid-chromatography-quadrupole-time-of-flight mass spectrometry in serum and comparison to gas chromatography-mass spectrometry. Forensic Science International. 2018; 287: 63-73. doi: 10.1016/j.forsciint.2018.03.039

4.

4.         Xiang P, Sun Q, Shen B, et al. Segmental hair analysis using liquid chromatography-tandem mass spectrometry after a single dose of benzodiazepines. Forensic Science International. 2010; 204(1-3): 19-26.

5.

5.         Ma W, Li Z, Bai Y, et al. Applications of ambient mass spectrometry for rapid screening in food safety. Journal of Food Safety and Quality. 2015; 6(12): 4695-4701.

6.

6.         Huang X, Liu WL, Zhang Y, et al. Application of open ionization mass spectrometry in the study of Chinese herbal medicine (Chinese). Chin. Mass Spectrom. Soc. 2017; 38(1): 1-10.

7.

7.         Zhou QL, Zhu DN, Yang YF et al. Simultaneous quantification of twenty-one ginsenosides and their three aglycones in rat plasma by a developed UFLC–MS/MS assay: Application to a pharmacokinetic study of red ginseng. Journal of Pharmaceutical and Biomedical Analysis. 2017; 137: 1-12. doi: 10.1016/j.jpba.2017.01.009

8.

8.         Grange AH. An Inexpensive Autosampler to Maximize Throughput for an Ion Source that Samples Surfaces in Open Air. Environmental Forensics. 2008; 9(2-3): 127-136. doi: 10.1080/15275920802115860

9.

9.         Chen LC, Suzuki H, Mori K, et al. Mass Spectrometric Detection of Gaseous Hydrogen Peroxide in Ambient Air Using Dielectric Barrier Discharge as an Excitation Source. Chemistry Letters. 2009; 38(6): 520-521. doi: 10.1246/cl.2009.520

10.

10.      Li X, Xing J, Chang C, et al. Solid-phase extraction with the metal-organic framework MIL-101(Cr) combined with direct analysis in real time mass spectrometry for the fast analysis of triazine herbicides. Journal of Separation Science. 2014; 37(12): 1489-1495. doi: 10.1002/jssc.201400151

11.

11.      Guo X, Zhai J, Ma L, et al. Rapid on-site screening of five prohibited ingredients in cosmetics using thermal desorption-corona discharge ionization coupled with ion mobility spectrometry. Chinese Journal of Chromatography. 2019; 37(2): 233. doi: 10.3724/sp.j.1123.2018.09005

12.

12.      Green FM, Salter TL, Stokes P, et al. Ambient mass spectrometry: advances and applications in forensics. Surface and Interface Analysis. 2009; 42(5): 347-357. doi: 10.1002/sia.3131

13.

13.      Ifa DR, Jackson AU, Paglia G, et al. Forensic applications of ambient ionization mass spectrometry. Analytical and Bioanalytical Chemistry. 2009; 394(8): 1995-2008. doi: 10.1007/s00216-009-2659-2

14.

14.      Morelato M, Beavis A, Kirkbride P, et al. Forensic applications of desorption electrospray ionisation mass spectrometry (DESI-MS). Forensic Science International. 2013; 226(1-3): 10-21. doi: 10.1016/j.forsciint.2013.01.011

15.

15.      Correa DN, Santos JM, Eberlin LS, et al. Forensic Chemistry and Ambient Mass Spectrometry: A Perfect Couple Destined for a Happy Marriage? Analytical Chemistry. 2016; 88(5): 2515-2526. doi: 10.1021/acs.analchem.5b02397

16.

16.      Takáts Z, Wiseman JM, Gologan B, et al. Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization. Science. 2004; 306(5695): 471-473. doi: 10.1126/science.1104404

17.

17.      Cody RB, Laramée JA, Durst HD. Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions. Analytical Chemistry. 2005; 77(8): 2297-2302. doi: 10.1021/ac050162j

18.

18.      Takáts Z, Cotte-Rodriguez I, Talaty N, et al. Direct, trace level detection of explosives on ambient surfaces by desorption electrospray ionization mass spectrometry. Chem Commun. 2005; (15): 1950-1952. doi: 10.1039/b418697d

19.

19.      Haddad R, Sparrapan R, Eberlin MN. Desorption sonic spray ionization for (high) voltage‐free ambient mass spectrometry. Rapid Communications in Mass Spectrometry. 2006; 20(19): 2901-2905. doi: 10.1002/rcm.2680

20.

20.      Sampson JS, Hawkridge AM, Muddiman DC. Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) fourier transform ion cyclotron resonance mass spectrometry. Journal of the American Society for Mass Spectrometry. 2006; 17(12): 1712-1716. doi: 10.1016/j.jasms.2006.08.003

21.

21.      Haapala M, Pól J, Saarela V, et al. Desorption Atmospheric Pressure Photoionization. Analytical Chemistry. 2007; 79(20): 7867-7872. doi: 10.1021/ac071152g

22.

22.      Hiraoka K, Nishidate K, Mori K, et al. Development of probe electrospray using a solid needle. Rapid Communications in Mass Spectrometry. 2007; 21(18): 3139-3144. doi: 10.1002/rcm.3201

23.

23.      Feider CL, Krieger A, DeHoog RJ, et al. Ambient Ionization Mass Spectrometry: Recent Developments and Applications. Analytical Chemistry. 2019; 91(7): 4266-4290. doi: 10.1021/acs.analchem.9b00807

24.

24.      Hanley L, Wickramasinghe R, Yung YP. Laser Desorption Combined with Laser Postionization for Mass Spectrometry. Annual Review of Analytical Chemistry. 2019; 12(1): 225-245. doi: 10.1146/annurev-anchem-061318-115447

25.

25.      Minakata K, Nozawa H, Yamagishi I, et al. MALDI-TOF mass spectrometric determination of four amphetamines in blood. Forensic Toxicology. 2014; 32(2): 299-304. doi: 10.1007/s11419-014-0229-6

26.

26.      Teunissen SF, Fedick PW, Berendsen BJA, et al. Novel Selectivity-Based Forensic Toxicological Validation of a Paper Spray Mass Spectrometry Method for the Quantitative Determination of Eight Amphetamines in Whole Blood. Journal of the American Society for Mass Spectrometry. 2017; 28(12): 2665-2676. doi: 10.1007/s13361-017-1790-0

27.

27.      Jett R, Skaggs C, Manicke NE. Drug screening method development for paper spray coupled to a triple quadrupole mass spectrometer. Analytical Methods. 2017; 9(34): 5037-5043. doi: 10.1039/c7ay01009e

28.

28.      Usui K, Minami E, Fujita Y, et al. A fast paraquat quantitation method in human serum using probe electrospray ionization–tandem mass spectrometry for emergency settings. Journal of Pharmacological and Toxicological Methods. 2019; 100: 106610. doi: 10.1016/j.vascn.2019.106610

29.

29.      Kauppila TJ, Talaty N, Kuuranne T, et al. Rapid analysis of metabolites and drugs of abuse from urine samples by desorption electrospray ionization-mass spectrometry. The Analyst. 2007; 132(9): 868. doi: 10.1039/b703524a

30.

30.      Kennedy JH, Palaty J, Gill CG, et al. Rapid analysis of fentanyls and other novel psychoactive substances in substance use disorder patient urine using paper spray mass spectrometry. Rapid Communications in Mass Spectrometry. 2018; 32(15): 1280-1286. doi: 10.1002/rcm.8164

31.

31.      Jagerdeo E, Abdel-Rehim M. Screening of cocaine and its metabolites in human urine samples by direct analysis in real-time source coupled to time-of-flight mass spectrometry after online preconcentration utilizing microextraction by packed sorbent. Journal of the American Society for Mass Spectrometry. 2009; 20(5): 891-899. doi: 10.1016/j.jasms.2009.01.010

32.

32.      Rodriguez-Lafuente A, Mirnaghi FS, Pawliszyn J. Determination of cocaine and methadone in urine samples by thin-film solid-phase microextraction and direct analysis in real time (DART) coupled with tandem mass spectrometry. Analytical and Bioanalytical Chemistry. 2013; 405(30): 9723-9727. doi: 10.1007/s00216-013-6993-z

33.

33.      Cone EJ, Huestis MA. Interpretation of Oral Fluid Tests for Drugs of Abuse. Annals of the New York Academy of Sciences. 2007; 1098(1): 51-103. doi: 10.1196/annals.1384.037

34.

34.      Jhang C, Lee H, He Y, et al. Rapid screening and determination of 4-chloroamphetamine in saliva by paper spray-mass spectrometry and capillary electrophoresis-mass spectrometry. Electrophoresis. 2012; 33(19-20): 3073-3078. doi: 10.1002/elps.201200270

35.

35.      Pirro V, Jarmusch AK, Vincenti M, et al. Direct drug analysis from oral fluid using medical swab touch spray mass spectrometry. Analytica Chimica Acta. 2015; 861: 47-54. doi: 10.1016/j.aca.2015.01.008

36.

36.      Wang X, Hua Z, Yang Z, et al. Low‐temperature plasma‐probe mass spectrometry based method for determination of new psychoactive substances in oral fluid. Rapid Communications in Mass Spectrometry. 2018; 32(11): 913-918. doi: 10.1002/rcm.8112

37.

37.      Morato NM, Pirro V, Fedick PW, et al. Quantitative Swab Touch Spray Mass Spectrometry for Oral Fluid Drug Testing. Analytical Chemistry. 2019; 91(11): 7450-7457. doi: 10.1021/acs.analchem.9b01637

38.

38.      Miki A, Katagi M, Shima N, et al. Imaging of methamphetamine incorporated into hair by MALDI-TOF mass spectrometry. Forensic Toxicology. 2011; 29(2): 111-116. doi: 10.1007/s11419-011-0109-2

39.

39.      Deimler RE, Razunguzwa TT, Reschke BR, et al. Direct analysis of drugs in forensic applications using laser ablation electrospray ionization-tandem mass spectrometry (LAESI-MS/MS). Anal Methods. 2014; 6(13): 4810-4817. doi: 10.1039/c4ay01043d

40.

40.      Cuypers E, Flinders B, Bosman IJ, et al. Hydrogen peroxide reactions on cocaine in hair using imaging mass spectrometry. Forensic Science International. 2014; 242: 103-110. doi: 10.1016/j.forsciint.2014.06.035

41.

41.      Kauppila TJ, Arvola V, Haapala M, et al. Direct analysis of illicit drugs by desorption atmospheric pressure photoionization. Rapid Communications in Mass Spectrometry. 2008; 22(7): 979-985. doi: 10.1002/rcm.3461

42.

42.      Steiner RR, Larson RL. Validation of the Direct Analysis in Real Time Source for Use in Forensic Drug Screening. Journal of Forensic Sciences. 2009; 54(3): 617-622. doi: 10.1111/j.1556-4029.2009.01006.x

43.

43.      Fedick PW, Pu F, Morato NM, et al. Identification and Confirmation of Fentanyls on Paper using Portable Surface Enhanced Raman Spectroscopy and Paper Spray Ionization Mass Spectrometry. Journal of the American Society for Mass Spectrometry. 2020; 31(3): 735-741. doi: 10.1021/jasms.0c00004

44.

44.      Burr DS, Fatigante WL, Lartey JA, et al. Integrating SERS and PSI-MS with Dual Purpose Plasmonic Paper Substrates for On-Site Illicit Drug Confirmation. Analytical Chemistry. 2020; 92(9): 6676-6683. doi: 10.1021/acs.analchem.0c00562

45.

45.      Nyadong L, Harris GA, Balayssac S, et al. Combining Two-Dimensional Diffusion-Ordered Nuclear Magnetic Resonance Spectroscopy, Imaging Desorption Electrospray Ionization Mass Spectrometry, and Direct Analysis in Real-Time Mass Spectrometry for the Integral Investigation of Counterfeit Pharmaceuticals. Analytical Chemistry. 2009; 81(12): 4803-4812. doi: 10.1021/ac900384j

46.

46.      Culzoni MJ, Dwivedi P, Green MD, et al. Ambient mass spectrometry technologies for the detection of falsified drugs. Med Chem Commun. 2014; 5(1): 9-19. doi: 10.1039/c3md00235g

47.

47.      Bradshaw R, Rao W, Wolstenholme R, et al. Separation of overlapping fingermarks by Matrix Assisted Laser Desorption Ionisation Mass Spectrometry Imaging. Forensic Science International. 2012; 222(1-3): 318-326. doi: 10.1016/j.forsciint.2012.07.009

48.

48.      Sisco E, Demoranville LT, Gillen G. Evaluation of C60 secondary ion mass spectrometry for the chemical analysis and imaging of fingerprints. Forensic Science International. 2013; 231(1-3): 263-269. doi: 10.1016/j.forsciint.2013.05.026

49.

49.      Du QY, Dong LP, Wu XJ, et al. Advances in research on methods for testing the living characteristic components in fingerprint. Chem.Res. Appl. 2020; 32(1): 1-8. doi: 10.3969/j.issn.1004-1656.2020.01.001

50.

50.      Ifa DR, Manicke NE, Dill AL, et al. Latent Fingerprint Chemical Imaging by Mass Spectrometry. Science. 2008; 321(5890): 805. doi: 10.1126/science.1157199

51.

51.      Rowell F, Hudson K, Seviour J. Detection of drugs and their metabolites in dusted latent fingermarks by mass spectrometry. The Analyst. 2009; 134(4): 701. doi: 10.1039/b813957c

52.

52.      Bailey MJ, Bradshaw R, Francese S, et al. Rapid detection of cocaine, benzoylecgonine and methylecgonine in fingerprints using surface mass spectrometry. The Analyst. 2015; 140(18): 6254-6259. doi: 10.1039/c5an00112a

53.

53.      Su H, Lin YP, Yang SC, et al. Rapid detection of non-volatile household pesticides in drained gastric juice by ambient mass spectrometry for emergency management. Analytica Chimica Acta. 2019; 1066: 69-78. doi: 10.1016/j.aca.2019.03.013

54.

54.      Talaty N, Takáts Z, Cooks RG. Rapid in situ detection of alkaloids in plant tissue under ambient conditions using desorption electrospray ionization. The Analyst. 2005; 130(12): 1624. doi: 10.1039/b511161g

55.

55.      Longo CM, Musah RA. An Efficient Ambient Ionization Mass Spectrometric Approach to Detection and Quantification of the Mescaline Content of Commonly Abused Cacti from the Echinopsis Genus. Journal of Forensic Sciences. 2019; 65(1): 61-66. doi: 10.1111/1556-4029.14134

56.

56.      Kuo TH, Dutkiewicz EP, Pei J, et al. Ambient Ionization Mass Spectrometry Today and Tomorrow: Embracing Challenges and Opportunities. Analytical Chemistry. 2019; 92(3): 2353-2363. doi: 10.1021/acs.analchem.9b05454

57.

57.      Guo XY, Huang XM, Zhai JF, et al. Research Advances in Ambient Ionization and Miniature Mass Spectrometry. Chin. J. Anal. Chem. 2019; 47(3): 335-346.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Wanying Cui, Zhongshan Yu, Jing Chang, Peng Zhao, Aihua Wang, Xiaojun Wu, Jiayi Li, Yunfeng Zhang

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).