Natural and synthetic cavitands: Challenges in chemistry and pharmaceutical technology

María Antonia Martín Carmona

Article ID: 1957
Vol 2, Issue 1, 2021
DOI: https://doi.org/10.54517/aas.v2i1.1957
VIEWS - 30 (Abstract)

Abstract

Supramolecular chemistry involves non-covalent interactions and specific molecular recognition of molecules/analytes by host molecules or supramolecules. These events are present in synthesis, catalysis, chiral separations, design of sensors, cell signaling processes and drug transport by carriers. The typical behavior of supramolecules is derived from their ability to build well-structured self-assembled and self-organized entities.

Cavitands are a particular group of supramolecules possessing a cavity capable to include a variety of compounds thanks to host-guest non-covalent interactions developed among cavitands and analytes. Some typical cavitands are crown ethers, calixarenes, cucurbiturils, porphyrins and cyclodextrins. The two latter families are natural product cavitands that are generally considered models for molecular recognition of cations and organic and inorganic guest molecules, being attractive host molecules from the sustainability point of view. The natural cyclodextrins (α, β and γ-cd) are obtained with reasonable cost by enzymatic treatment of starch under adequate temperature conditions. They are profusely used in pharmaceutical, food and cosmetic industries due to their very low toxicity and side effects.

This review is focused on the relevance andapplications of cyclodextrins in pharmaceuticaltechnology for their ability to increase solubility and stabilize drug molecules, thereby enhancing their bioavailability. The association of cyclodextrins with diverse nanostructured materials, i.e. Carbon nanotubes, magnetic nanoparticles, silica and molecularly imprinted polymers, allows to synergize the properties of cyclodextrins and these nanostructured materials to reach highly specific molecular recognition of analytes. The exploitation of these benefits for analytical sample pre-treatment and chiral chromatographic separations are described. The use of cyclodextrins as mobile phases additives in hplc provides interesting results for green and sustainable chromatographic separations. Polymers incorporating cyclodextrins show exceptional adsorption properties for retaining toxic compounds and persistent organic pollutants from soils and water samples, allowing satisfactory recoveries of these environmental samples according to the stockholm convection principles.


Keywords

Keywords: Cavitands; cyclodextrins; Drugs bioavailability; Analytical chemistry; Analytical sample pretreatment; Chromatography; Sustainable chemistry

Full Text:

PDF



References

1. Shenderovich, ig. Gulliver in the country of lilliput: an interplay of noncovalent interactions. Molecules 2021; 26: 158-161.

2. Ariga k, kunitake t. Supramolecular chemistry. Fundamentals and applications, berlin heidelberg: springer-verlag 2006.

3. Schneider, hj. Binding mechanisms in supramolecular complexes. Angew chem int ed 2009; 48: 3924 3977.

4. Davis me, brewster me. Cyclodextrin-based pharmaceutics: past, present and future. Nat rev drug discov 2004; 3: 1023-1035.

5. Lagona j, mukhopadhyay p, chakrabarti s, isaacs, l. The cucurbit (n) uril family. Angew chem int ed 2005; 44: 4844-4870.

6. Gavvala k, sengupta a, hazra p. Modulation of photophysics and pka shift of the anticancer drug camptothecin in the nanocavities of supramolecular hosts. Chemphyschem 2013; 14: 532 542.

7. Li j. Cyclodextrin inclusion polymers forming hydrogels. Adv polym sci 2009; 175-203.

8. Kang so, llinares, jm, dayc vw, bowman-james k. Cryptand-like anion receptors. Chem soc rev 2010; 39: 3980 4003.

9. Anderson j, berthod a, pino v, stalcup am. Analytical separation science, volume 5, wiley-vch, 2016.

10. Szabo zi, foroughbakhshfasaei m, gal r, horwátz p, komjati b, noszál b, tóth g. Chiral separation of lenalidomide by liquid chromatography on polysaccharide-type stationary phases and by capillary electrophoresis using cyclodextrin selectors. J sep sci 2018; 41: 1414-1423.

11. Zhengyi l, kun z, yuan l, xiaoqiang s, leyong w. Synthesis of calix(4)proline derivatives and their chiral recognition for enantiomers of mandelic acid. Chin j org chem 2015; 35: 1531-1536.

12. Crini g. Review: a history of cyclodextrins. Chem rev 2014; 114: 10940-10975.

13. Dodziuk h. (ed.), cyclodextrins and their complexes, wiley-vch, 2006.

14. Bilensoy e. (ed.), cyclodextrins in pharmaceutics, cosmetics, and biomedicine, john wiley & sons, 2011.

15. Kurkov sv, loftsson t. Cyclodextrins. Int j pharmaceut 2013; 453: 167 180.

16. Uekama k, hirayama f. Improvement of drug properties by cyclodextrins, pp. 813-840. in: the practice of medicinal chemistry, academic press, 2008.

17. Popielec a, loftsson t. Effects of cyclodextrins on the chemical stability of drugs. Int j pharmaceut 2017; 531: 532 542.

18. Muñoz-botella s, martín ma, del castillo b, lerner da, menéndez jc. Differentiating geometrical isomers of retinoids and controlling their photo-isomerization by complexation with cyclodextrins. Anal chim acta 2002; 468: 161-170.

19. Saokham p, muankaew c. Jansook p, loftsson t. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules 2018; 23: 1161 1175.

20. González-ruiz v, olives ai, martín ma. A down-scaled fluorimetric determination of the solubility properties of drugs to minimize waste generation. Green chem 2013; 15: 2558 2565.

21. Buszewski b, szultka m. Past, present, and future of solid phase extraction: a review. Crit rev anal chem 2012; 42: 198 213.

22. Andrade-eiroa a, canle m, leroy-cancellieri v, cerdá v. Solid-phase extraction of organic compounds: a critical review (part i). Trend anal chem 2016; 80: 641 - 654.

23. Andrade-eiroa a, canle m, leroy-cancellieri v, cerdá, v. Solid-phase extraction of organic compounds: a critical review (part ii). Trend anal chem 2016; 80: 655 667.

24. Płotka-wasylka j, szczepańska n, de la guardia m, namieśnik j. Modern trends in solid phase extraction: new sorbent media. Trend anal chem 2016; 77: 23 43.

25. Mehdinia a, aziz-zanjani mo. Advances for sensitive, rapid and selective extraction in different configurations of solid-phase microextraction. Trend anal chem 2013; 51: 13 22.

26. Trotta f, zanetti m, cavalli r. Cyclodextrin-based nanosponges as drug carriers. Beilstein j org chem 2012; 8: 2091-2099.

27. Swaminathan s, pastero l, serpe l, trotta f, vavia p, aquilano d, trotta m, zara gp, cavalli, r. Cyclodextrin-based nanosponges encapsulating camptothecin: physicochemical characterization, stability and cytotoxicity. Eur j pharm biopharm 2010; 74: 193-201.

28. Sherje ap, dravyakar br, kadam d, jadhav m. Cyclodextrin-based nanosponges: a critical review. Carbohyd polym 2017; 173: 37 49.

29. Cai k, li j, luo z, hu y, hou y, ding x. Β-cyclodextrin conjugated magnetic nanoparticles for diazepam removal from blood. Chem commun 2011; 47: 7719 7721.

30. Gaber-ahmed gh, badía-laíño r, garcía-calzón ja, díaz-garcía me. Magnetic nanoparticles graphitized with β-cyclodextrin for solid-phase extraction of 5-hydroxy-3-indole acetic acid. Microchim acta 2014; 181: 941 948.

31. Buszewski b, szultka m. Past, present, and future of solid phase extraction: a review. Crit rev anal chem 2012; 42: 198 213.

32. Azzouz a, kailasa sk, lee ss, rascón aj, ballesteros e, zhang m, kim kh. Review of nanomaterials as sorbents in solid-phase extraction for environmental samples. Trend anal chem 2018; 108: 347369.

33. Płotka-wasylka j, szczepańska n, de la guardia m, namieśnik j. Modern trends in solid phase extraction: new sorbent media. Trend anal chem 2016; 77: 23 43.

34. Xua z, kuang d, liu l, dengb q. Selective adsorption of norfloxacin in aqueous media by an imprinted polymer based on hydrophobic and electrostatic interactions. J pharm biomed anal 2007; 45: 54- 61.

35. Lay s, ni x, yu h, shen s. State-of-the-art applications of cyclodextrins as functional monomers in molecular imprinting techniques: a review. J sep sci 2016; 39: 2321 - 2331.

36. Yang y, li g, wu d, wen a, wu y, zhou x. Β-cyclodextrin-/aunpsfunctionalized covalent organic framework-based magnetic sorbent for solid phase extraction and determination of sulfonamides. Microchim acta 2020; 187: 278 -288.

37. Shahrebabak sm, saber-tehrani m, faraji m, shabanian m, aberoomand-azar p. Magnetic solid phase extraction based on poly(βcyclodextrin-ester) functionalized silica-coated magnetic nanoparticles (nps) for simultaneous extraction of the malachite green and crystal violet from aqueous samples. Environ monit assess 2020; 192; 262275.

38. Zhang p, cui x, yang x, zhang s, zhou w, gao h, lu r. Dispersive micro-solid-phase extraction of benzoylurea insecticides in honey samples with a β-cyclodextrin-modified attapulgite composite as sorbent. J sep sci 2016; 39: 412 418.

39. Yazdanpanah m, nojavan s. Micro-solid phase extraction of some polycyclic aromatic hydrocarbons from environmental water samples using magnetic β-cyclodextrin-carbon nano-tube composite as a sorbent. J chromatogr a 2019; 1585: 34 45.

40. Li n, chena j, shi yp. Magnetic reduced graphene oxide functionalized with β-cyclodextrins magnetic solid-phase extraction adsorbents for the determination of phytohormones in tomatoes coupled with high performance liquid chromatography. J chromatogr a 2016; 1441: 24 33.

41. Li r, jiang zt, wang rx. Solid phase extraction combined direct spectrophotometric determination of brilliant blue in food using β-cyclodextrin polymer. Food anal methods 2009; 2: 264 - 270.

42. Faraji h, husain sw, helalizadeh m. Determination of phenolic compounds in environmental water samples after solid phase extraction with β-cyclodextrin-bonded silica particles coupled with a novel liquid-phase microextraction followed by gas chromatography-mass spectrometry j sep sci 2012; 35: 107 113.

43. Alsbaiee a, smith bj, xiao l, ling y, helbling de, dichtel wr. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature 2016; 529: 190 194.

44. Yang y, long y, cao q, li k, liu f. Molecularly imprinted polymer using β-cyclodextrin as functional monomer for the efficient recognition of bilirubin. Anal chim acta 2008; 606: 92 97.

45. Yongfeng k, wuping d, yan l, junxia k, jing x. Molecularly imprinted polymers of allyl-β-cyclodextrin and methacrylic acid for the solidphase extraction of phthalate. Carbohyd polym 2012; 88: 459 464.

46. Guo y, liang x, wang y, liu y, zhu g, gui w. Cyclodextrin-based molecularly imprinted polymers for the efficient recognition of pyrethroids in aqueous media. J appl polym sci 2013; 128: 4014 4022.

47. Surikumaran h, mohamad s, sarih nm. Molecular imprinted polymer of methacrylic acid functionalised β-cyclodextrin for selective removal of 2,4-dichlorophenol. Int j mol sci 2014; 15: 6111 6136.

48. Ikai t, okamoto y. Structure control of polysaccharide derivatives for efficient separation of enantiomers by chromatography. Chem rev 2009; 109: 6077 6101.

49. Zhou j, yang b, tang j, tang w. Cationic cyclodextrin clicked chiral stationary phase for versatile enantioseparations in high-performance liquid chromatography. J chromatogr a 2016; 1467: 169-177.

50. Silva m, pérez-quintanilla d, morante-zarcero s, sierra i, marina ml, aturki z, fanali s. Ordered mesoporous silica functionalized with β-cyclodextrin derivative for stereoisomer separation of flavanones and flavanone glycosides by nano-liquid chromatography and capillary electrochromatography. J chromatogr a 2017; 1490: 166 176.

51. Yao x, tan tty, wang y. Thiol-ene click chemistry derived cationic cyclodextrin chiral stationary phase and its enhanced separation performance in liquid chromatography. J chromatogr a 2014; 1326: 80 88.

52. Pang l, zhou j, tang j, ng sc, tang w. Evaluation of perphenylcarbamated cyclodextrin clicked chiral stationary phase for enantioseparations in reversed phase high performance liquid chromatography. J chromatogr a 2014; 1363: 119 127.

53. Kučerová g, procházková h, kalíkova k, tesařová e. Sulfobutylether-β-cyclodextrin as a chiral selector for separation of amino acids and dipeptides in chromatography. J chromatogr a 2016; 1467: 356 362.

54. Li l, lurie is. Regioisomeric and enantiomeric analyses of 24 designer cathinones and phenethylamines using ultra high performance liquid chromatography and capillary electrophoresis with added cyclodextrins. Foresnic sci int 2015; 254: 148-157.

55. Tong s, zhang h, shen m, ito y, yan j. Enantioseparation of mandelic acid derivatives by high performance liquid chromatography with substituted β-cyclodextrin as chiral mobile phase additive and evaluation of inclusion complex formation. J chromatogr b 2014; 962: 44 51.

56. Olives ai, gonzález-ruiz v, martín ma. Sustainable and eco-friendly alternatives for liquid chromatographic analysis. Acs sustain chem eng 2017; 5: 5618-5634.

57. Dembek m, bocian s. Pure water as a mobile phase in liquid chromatography techniques. Trend anal chem 2020; 123: 115793.

58. González-ruiz v, olives ai, martín ma. Spe/rp-hplc using c1 columns: an environmentally friendly alternative to conventional reverse-phase separations for quantitation of beta-carboline alkaloids in human serum samples. Anal bioanal chem 2011; 400: 395 - 401.

59. León ag, olives ai, del castillo b, martín ma. Influence of the presence of methyl cyclodextrins in high-performance liquid chromatography mobile phases on the separation of β-carboline alkaloids. J chromatogr a 2008; 1192: 254 258.

60. González-ruiz v, león ag, olives ai, martín ma, menéndez jc. Ecofriendly liquid chromatographic separations based on the use of cyclodextrins as mobile phase additives. Green chem 2011; 13: 115-126.

61. S. Kawano, t. Kida, k. Miyawaki, y. Noguchi, e. Kato, t. Nakano, m. Akashi. Cyclodextrin polymers as highly effective adsorbents for removal and recovery of polychlorobiphenyl (pcb) contaminants in insulating oil. Environ sci technol 2014; 48: 8094 8100.

62. Alsbaiee a, smith bj, xiao l, ling y, helbling de, dichtel wr. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature 2016; 529: 190 194.

63. Bhattarai b, muruganandham m, suri rps. Development of high efficiency silica coated β-cyclodextrin polymeric adsorbent for the removal of emerging contaminants of concern from water. J hazard mater 2014; 273: 146 - 154.

64. Zhoua y, cheng g, chen k, lu j, lei j, pu s. Adsorptive removal of bisphenol a, chloroxylenol, and carbamazepine from water using a novel β-cyclodextrin polymer. Ecotox environ safe 2019; 170: 278-285.

65. Tang p, sun q, zhao l, tang y, liu y, pu h, gan n, liu y, li h. A simple and green method to construct cyclodextrin polymer for the effective and simultaneous estrogen pollutant and metal removal. Chem eng j 2019; 366: 598 - 607.

66. Bragança de carvalho l, garcia carvalho t, magriotis zm, castro ramalho t, matos alves pinto l. Cyclodextrin/silica hybrid adsorbent for removal of methylene blue in aqueous media. J incl phenom macrocycl chem 2014; 78: 77 - 87.

67. Wang s, li y, fan x, zhang f, zhang g. Β-cyclodextrin functionalized graphene oxide: an efficient and recyclable adsorbent for the removal of dye pollutants. Front chem sci eng 2015; 9: 77 - 83.

68. Shao d, sheng g, chen c, wang x, nagatsu m. Removal of polychlorinated biphenyls from aqueous solutions using β-cyclodextrin graphitized multiwalled carbon nanotubes. Chemosphere 2010; 79: 679 685.

69. Zhang f, wu w, sharma s, tong g, deng y. Synthesis of cyclodextrin-functionalized cellulose nanofibril aerogel as a highly effective adsorbent for phenol pollutant removal. Bioresources 2015; 10: 7555 - 7568.

70. Qin x, bai l, tan y, li l, song f, wang y. Β-cyclodextrin-crosslinked polymeric adsorbent for simultaneous removal and stepwise recovery of organic dyes and heavy metal ions: fabrication, performance and mechanisms. Chem eng j 2019; 372: 1007 - 1018.

71. Zhao f, repo e, yin d, meng y, jafari s, sillanpaa m. Edta-crosslinked β-cyclodextrin: an environmentally friendly bifunctional.

72. Adsorbent for simultaneous adsorption of metals and cationic dyes. Environ sci technol 2015; 49: 10570 - 10580.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 María Antonia Martín Carmona

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.