Asia Pacific Academy of Science Pte. Ltd. (APACSCI) specializes in international journal publishing. APACSCI adopts the open access publishing model and provides an important communication bridge for academic groups whose interest fields include engineering, technology, medicine, computer, mathematics, agriculture and forestry, and environment.
Advancements in analytical techniques for carbon nanomaterials
Vol 3, Issue 1, 2022
Issue release: 31 December 2022
VIEWS - 2578 (Abstract)
Download PDF
Abstract
With the mass production and application of carbon nanomaterials, effective detection and characterization methods in various media are crucial. This paper reviews commonly used techniques for analyzing carbon nanomaterials, starting with their separation and enrichment methods, including extraction and fractionation technologies. It then covers characterization techniques such as electron microscopy, spectroscopy, thermal analysis, electrochemical analysis, isotope labeling, imaging, fluorescence spectroscopy, laser-induced breakdown spectroscopy, mass spectrometry, scanning Raman microscopy, and quantitative analysis methods. The paper also introduces new carbon nanomaterials and specialized characterization methods, concluding with a discussion on future trends and prospects in the field.
Keywords
References
1.
2.
1. Baptista FR, Belhout SA, Giordani S, et al. Recent developments in carbon nanomaterial sensors. Chemical Society Reviews. 2015; 44(13): 4433-4453. doi: 10.1039/c4cs00379a
3.
2. Li X, Ping J, Ying Y. Recent developments in carbon nanomaterial-enabled electrochemical sensors for nitrite detection. TrAC Trends in Analytical Chemistry. 2019; 113: 1-12. doi: 10.1016/j.trac.2019.01.008
4.
3. Wang J, Liu Q, Liang Y, et al. Recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry. Analytical and Bioanalytical Chemistry. 2016; 408(11): 2861-2873. doi: 10.1007/s00216-015-9255-4
5.
4. Cai D, Mataraza JM, Qin ZH, et al. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nature Methods. 2005; 2(6): 449-454. doi: 10.1038/nmeth761
6.
5. Baker SN, Baker GA. Luminescent Carbon Nanodots: Emergent Nanolights. Angewandte Chemie International Edition. 2010; 49(38): 6726-6744. doi: 10.1002/anie.200906623
7.
6. Karbasi S, Alizadeh ZM. Effects of multi-wall carbon nanotubes on structural and mechanical properties of poly(3-hydroxybutyrate)/chitosan electrospun scaffolds for cartilage tissue engineering. Bulletin of Materials Science. 2017; 40(6): 1247-1253. doi: 10.1007/s12034-017-1479-9
8.
7. Mao HY, Laurent S, Chen W, et al. Graphene: Promises, Facts, Opportunities, and Challenges in Nanomedicine. Chemical Reviews. 2013; 113(5): 3407-3424. doi: 10.1021/cr300335p
9.
8. Schipper ML, Nakayama-Ratchford N, Davis CR, et al. A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nature Nanotechnology. 2008; 3(4): 216-221. doi: 10.1038/nnano.2008.68
10.
9. Nel A, Xia T, Mädler L, et al. Toxic Potential of Materials at the Nanolevel. Science. 2006; 311(5761): 622-627. doi: 10.1126/science.1114397
11.
10. Colvin VL. The potential environmental impact of engineered nanomaterials. Nature Biotechnology. 2003; 21(10): 1166-1170. doi: 10.1038/nbt875
12.
11. Wang H, Yang ST, Cao A, et al. Quantification of Carbon Nanomaterials in Vivo. Accounts of Chemical Research. 2012; 46(3): 750-760. doi: 10.1021/ar200335j
13.
12. Ding W, Li L, Xiong K, et al. Shape Fixing via Salt Recrystallization: A Morphology-Controlled Approach To Convert Nanostructured Polymer to Carbon Nanomaterial as a Highly Active Catalyst for Oxygen Reduction Reaction. Journal of the American Chemical Society. 2015; 137(16): 5414-5420. doi: 10.1021/jacs.5b00292
14.
13. Huang X, Liu Q, Yao S, et al. Recent progress in the application of nanomaterials in the analysis of emerging chemical contaminants. Analytical Methods. 2017; 9(19): 2768-2783. doi: 10.1039/c7ay00859g
15.
14. TUZEN M, SOYLAK M. Multiwalled carbon nanotubes for speciation of chromium in environmental samples. Journal of Hazardous Materials. 2007; 147(1-2): 219-225. doi: 10.1016/j.jhazmat.2006.12.069
16.
15. Herrmann A, Diederich F, Thilgen C, et al. Chemistry of the Higher Fullerenes: Preparative isolation of C76 by HPLC and synthesis, separation, and characterization of Diels‐Alder monoadducts of C70 and C76. Helvetica Chimica Acta. 1994; 77(7): 1689-1706. doi: 10.1002/hlca.19940770703
17.
16. Hawkins JM, Lewis TA, Loren SD, et al. Organic chemistry of C60 (buckminsterfullerene): chromatography and osmylation. The Journal of Organic Chemistry. 1990; 55(26): 6250-6252. doi: 10.1021/jo00313a009
18.
17. Li J, Zhang M, Sun B, et al. Separation and purification of fullerenols for improved biocompatibility. Carbon. 2012; 50(2): 460-469. doi: 10.1016/j.carbon.2011.08.073
19.
18. Nadler M, Mahrholz T, Riedel U, et al. Preparation of colloidal carbon nanotube dispersions and their characterisation using a disc centrifuge. Carbon. 2008; 46(11): 1384-1392. doi: 10.1016/j.carbon.2008.05.024
20.
19. Cai D, Blair D, Dufort FJ, et al. Interaction between carbon nanotubes and mammalian cells: characterization by flow cytometry and application. Nanotechnology. 2008; 19(34): 345102. doi: 10.1088/0957-4484/19/34/345102
21.
20. Wilson NR, Pandey PA, Beanland R, et al. Graphene Oxide: Structural Analysis and Application as a Highly Transparent Support for Electron Microscopy. ACS Nano. 2009; 3(9): 2547-2556. doi: 10.1021/nn900694t
22.
21. Oshida K, Nakazawa T, Miyazaki T, Endo M. Application of image processing techniques for analysis of nano- and micro-spaces in carbon materials. Synthetic Metals. 2001; 125(2): 223. doi: 10.1016/S0379-6779(01)00535-5
23.
22. Yehliu K, Vander Wal RL, Boehman AL. Development of an HRTEM image analysis method to quantify carbon nanostructure. Combustion and Flame. 2011; 158(9): 1837-1851. doi: 10.1016/j.combustflame.2011.01.009
24.
23. Gaddam CK, Huang CH, Vander Wal RL. Quantification of nano-scale carbon structure by HRTEM and lattice fringe analysis. Pattern Recognition Letters. 2016; 76: 90-97. doi: 10.1016/j.patrec.2015.08.028
25.
24. Yang ZQ, Verbeeck J, Schryvers D, et al. TEM and Raman characterisation of diamond micro- and nanostructures in carbon spherules from upper soils. Diamond and Related Materials. 2008; 17(6): 937-943. doi: 10.1016/j.diamond.2008.01.104
26.
25. Guo D, Wei H, Chen X, et al. 3D hierarchical nitrogen-doped carbon nanoflower derived from chitosan for efficient electrocatalytic oxygen reduction and high performance lithium–sulfur batteries. Journal of Materials Chemistry A. 2017; 5(34): 18193-18206. doi: 10.1039/c7ta04728b
27.
26. Zhang H, Cao G, Wang Z, et al. Growth of Manganese Oxide Nanoflowers on Vertically-Aligned Carbon Nanotube Arrays for High-Rate Electrochemical Capacitive Energy Storage. Nano Letters. 2008; 8(9): 2664-2668. doi: 10.1021/nl800925j
28.
27. Ma X, Yuan B. Fabrication of carbon nanoflowers by plasma-enhanced chemical vapor deposition. Applied Surface Science. 2009; 255(18): 7846-7850. doi: 10.1016/j.apsusc.2009.03.061
29.
28. Kharisov B. A Review for Synthesis of Nanoflowers. Recent Patents on Nanotechnology. 2008; 2(3): 190-200. doi: 10.2174/187221008786369651
30.
29. Liu L, Zhou K, He P, et al. Synthesis and microwave absorption properties of carbon coil–carbon fiber hybrid materials. Materials Letters. 2013; 110: 76-79. doi: 10.1016/j.matlet.2013.07.131
31.
30. Alves JO, Zhuo C, Levendis YA, et al. Microstructural analysis of carbon nanomaterials produced from pyrolysis/combustion of Styrene-Butadiene-Rubber (SBR). Materials Research. 2011; 14(4): 499-504. doi: 10.1590/s1516-14392011005000078
32.
31. Bal S, Saha S. Comparison and analysis of physical properties of carbon nanomaterial-doped polymer composites. High Performance Polymers. 2014; 26(8): 953-960. doi: 10.1177/0954008314535823
33.
32. Farre M, Sanchis J, Barcelo D. Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. Trends in Analytical Chemistry. 2011; 30(3): 517. doi: 10.1016/j.trac.2010.11.014
34.
33. Jarrah NA, van Ommen JG, Lefferts L. Growing a carbon nano-fiber layer on a monolith support; effect of nickel loading and growth conditions. Journal of Materials Chemistry. 2004; 14(10): 1590. doi: 10.1039/b314585a
35.
34. Chinthaginjala JK, Bitter JH, Lefferts L. Thin layer of carbon-nano-fibers (CNFs) as catalyst support for fast mass transfer in hydrogenation of nitrite. Applied Catalysis A: General. 2010; 383(1-2): 24-32. doi: 10.1016/j.apcata.2010.05.013
36.
35. Keller D. Reconstruction of STM and AFM images distorted by finite-size tips. Surface Science. 1991; 253(1-3): 353. doi: 10.1016/0039-6028(91)90606-S
37.
36. Li QS, Lee GYH, Ong CN, et al. AFM indentation study of breast cancer cells. Biochemical and Biophysical Research Communications. 2008; 374(4): 609-613. doi: 10.1016/j.bbrc.2008.07.078
38.
37. Rief M, Gautel M, Oesterhelt F, et al. Reversible Unfolding of Individual Titin Immunoglobulin Domains by AFM. Science. 1997; 276(5315): 1109-1112. doi: 10.1126/science.276.5315.1109
39.
38. Brihuega I, Mallet P, González-Herrero H, et al. Unraveling the Intrinsic and Robust Nature of van Hove Singularities in Twisted Bilayer Graphene by Scanning Tunneling Microscopy and Theoretical Analysis. Physical Review Letters. 2012; 109(19). doi: 10.1103/physrevlett.109.196802
40.
39. Hagen A, Hertel T. Quantitative Analysis of Optical Spectra from Individual Single-Wall Carbon Nanotubes. Nano Letters. 2003; 3(3): 383-388. doi: 10.1021/nl020237o
41.
40. Huang X, Liu Q, Jiang G. Tuning the performance of graphene as a dual-ion-mode MALDI matrix by chemical functionalization and sample incubation. Talanta. 2019; 199: 532-540. doi: 10.1016/j.talanta.2019.03.010
42.
41. Liu Q, Cheng M, Wang J, et al. Graphene Oxide Nanoribbons: Improved Synthesis and Application in MALDI Mass Spectrometry. Chemistry – A European Journal. 2015; 21(14): 5594-5599. doi: 10.1002/chem.201406280
43.
42. Yu S, Jeong SG, Chung O, et al. Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity. Solar Energy Materials and Solar Cells. 2014; 120: 549-554. doi: 10.1016/j.solmat.2013.09.037
44.
43. Röding M, Bradley SJ, Nydén M, et al. Fluorescence Lifetime Analysis of Graphene Quantum Dots. The Journal of Physical Chemistry C. 2014; 118(51): 30282-30290. doi: 10.1021/jp510436r
45.
44. Denk W, Strickler JH, Webb WW. Two-Photon Laser Scanning Fluorescence Microscopy. Science. 1990; 248(4951): 73-76. doi: 10.1126/science.2321027
46.
45. Esteves da Silva JCG, Gonçalves HMR. Analytical and bioanalytical applications of carbon dots. TrAC Trends in Analytical Chemistry. 2011; 30(8): 1327-1336. doi: 10.1016/j.trac.2011.04.009
47.
46. Wild E, Jones KC. Novel Method for the Direct Visualization of in Vivo Nanomaterials and Chemical Interactions in Plants. Environmental Science & Technology. 2009; 43(14): 5290-5294. doi: 10.1021/es900065h
48.
47. Heise HM, Kuckuk R, Ojha AK, et al. Characterisation of carbonaceous materials using Raman spectroscopy: a comparison of carbon nanotube filters, single‐ and multi‐walled nanotubes, graphitised porous carbon and graphite. Journal of Raman Spectroscopy. 2008; 40(3): 344-353. doi: 10.1002/jrs.2120
49.
48. Zhang N, Tong L, Zhang J. Graphene-Based Enhanced Raman Scattering toward Analytical Applications. Chemistry of Materials. 2016; 28(18): 6426-6435. doi: 10.1021/acs.chemmater.6b02925
50.
49. Liu Z, Li X, Tabakman SM, et al. Multiplexed Multicolor Raman Imaging of Live Cells with Isotopically Modified Single Walled Carbon Nanotubes. Journal of the American Chemical Society. 2008; 130(41): 13540-13541. doi: 10.1021/ja806242t
51.
50. Yang D, Velamakanni A, Bozoklu G, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon. 2009; 47(1): 145-152. doi: 10.1016/j.carbon.2008.09.045
52.
51. Budde H, Coca-López N, Shi X, et al. Raman Radiation Patterns of Graphene. ACS Nano. 2015; 10(2): 1756-1763. doi: 10.1021/acsnano.5b06631
53.
52. Saito Y, Verma P, Masui K, et al. Nano‐scale analysis of graphene layers by tip‐enhanced near‐field Raman spectroscopy. Journal of Raman Spectroscopy. 2009; 40(10): 1434-1440. doi: 10.1002/jrs.2366
54.
53. Hu Q, Hirai M, Joshi RK, et al. Structural and electrical characteristics of nitrogen-doped nanocrystalline diamond films prepared by CVD. Journal of Physics D: Applied Physics. 2008; 42(2): 025301. doi: 10.1088/0022-3727/42/2/025301
55.
54. Lin CT, Chen TH, Chin TS, et al. Quasi two-dimensional carbon nanobelts synthesized using a template method. Carbon. 2008; 46(5): 741-746. doi: 10.1016/j.carbon.2008.01.034
56.
55. Huang X, Liu Q, Fu J, et al. Screening of Toxic Chemicals in a Single Drop of Human Whole Blood Using Ordered Mesoporous Carbon as a Mass Spectrometry Probe. Analytical Chemistry. 2016; 88(7): 4107-4113. doi: 10.1021/acs.analchem.6b00444
57.
56. Baughman RH, Zakhidov AA, de Heer WA. Carbon Nanotubes--the Route Toward Applications. Science. 2002; 297(5582): 787-792. doi: 10.1126/science.1060928
58.
57. Jariwala D, Sangwan VK, Lauhon LJ, et al. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev. 2013; 42(7): 2824-2860. doi: 10.1039/c2cs35335k
59.
58. Allen MJ, Tung VC, Kaner RB. Honeycomb Carbon: A Review of Graphene. Chemical Reviews. 2009; 110(1): 132-145. doi: 10.1021/cr900070d
60.
59. Wang H, Wang J, Deng X, et al. Biodistribution of Carbon Single-Wall Carbon Nanotubes in Mice. Journal of Nanoscience and Nanotechnology. 2004; 4(8): 1019-1024. doi: 10.1166/jnn.2004.146
61.
60. Deng X, Jia G, Wang H, et al. Translocation and fate of multi-walled carbon nanotubes in vivo. Carbon. 2007; 45(7): 1419-1424. doi: 10.1016/j.carbon.2007.03.035
62.
61. Yang S, Guo W, Lin Y, et al. Biodistribution of Pristine Single-Walled Carbon Nanotubes In Vivo. The Journal of Physical Chemistry C. 2007; 111(48): 17761-17764. doi: 10.1021/jp070712c
63.
62. Ji ZQ, Sun H, Wang H, et al. Biodistribution and tumor uptake of C60(OH) x in mice. Journal of Nanoparticle Research. 2005; 8(1): 53-63. doi: 10.1007/s11051-005-9001-5
64.
63. Xu JY, Li QN, Li JG, et al. Biodistribution of 99mTc-C60(OH)x in Sprague–Dawley rats after intratracheal instillation. Carbon. 2007; 45(9): 1865-1870. doi: 10.1016/j.carbon.2007.04.030
65.
64. Tian L, Wang X, Cao L, et al. Preparation of Bulk 13C‐Enriched Graphene Materials. Journal of Nanomaterials. 2010; 2010(1). doi: 10.1155/2010/742167
66.
65. Saha SK, Chowdhury DP, Das SK, et al. Encapsulation of radioactive isotopes into C60 fullerene cage by recoil implantation technique. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2006; 243(2): 277-281. doi: 10.1016/j.nimb.2005.08.156
67.
66. Singh R, Pantarotto D, Lacerda L, et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proceedings of the National Academy of Sciences. 2006; 103(9): 3357-3362. doi: 10.1073/pnas.0509009103
68.
67. Li YG, Huang X, Liu RL, et al. Synthesis of [14C] quincetone. Journal of Radioanalytical and Nuclear Chemistry. 2005; 265(1): 127-131. doi: 10.1007/s10967-005-0802-x
69.
68. Bullard-Dillard R, Creek KE, Scrivens WA, et al. Tissue Sites of Uptake of14C-Labeled C60. Bioorganic Chemistry. 1996; 24(4): 376-385. doi: 10.1006/bioo.1996.0032
70.
69. Chen S, Xiong C, Liu H, et al. Mass spectrometry imaging reveals the sub-organ distribution of carbon nanomaterials. Nature Nanotechnology. 2015; 10(2): 176-182. doi: 10.1038/nnano.2014.282
71.
70. Bussy C, Cambedouzou J, Lanone S, et al. Carbon Nanotubes in Macrophages: Imaging and Chemical Analysis by X-ray Fluorescence Microscopy. Nano Letters. 2008; 8(9): 2659-2663. doi: 10.1021/nl800914m
72.
71. Bauhofer W, Kovacs JZ. A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology. 2009; 69(10): 1486-1498. doi: 10.1016/j.compscitech.2008.06.018
73.
72. Wang Y, Jaiswal M, Lin M, et al. Electronic Properties of Nanodiamond Decorated Graphene. ACS Nano. 2012; 6(2): 1018-1025. doi: 10.1021/nn204362p
74.
73. Cioffi CT, Palkar A, Melin F, et al. A Carbon Nano‐Onion–Ferrocene Donor–Acceptor System: Synthesis, Characterization and Properties. Chemistry – A European Journal. 2009; 15(17): 4419-4427. doi: 10.1002/chem.200801818
75.
74. Zhang Q, Nghiem J, Silverberg GJ, et al. Semiquantitative Performance and Mechanism Evaluation of Carbon Nanomaterials as Cathode Coatings for Microbial Fouling Reduction. Liu SJ, ed. Applied and Environmental Microbiology. 2015; 81(14): 4744-4755. doi: 10.1128/aem.00582-15
76.
75. Doudrick K, Herckes P, Westerhoff P. Detection of Carbon Nanotubes in Environmental Matrices Using Programmed Thermal Analysis. Environmental Science & Technology. 2012; 46(22): 12246-12253. doi: 10.1021/es300804f
77.
76. Akbar NS. Heat transfer and carbon nano tubes analysis for the peristaltic flow in a diverging tube. Meccanica. 2014; 50(1): 39-47. doi: 10.1007/s11012-014-0067-y
78.
79.
80.
77. Bom D, Andrews R, Jacques D, et al. Thermogravimetric Analysis of the Oxidation of Multiwalled Carbon Nanotubes: Evidence for the Role of Defect Sites in Carbon Nanotube Chemistry. Nano Letters. 2002; 2(6): 615-619. doi: 10.1021/nl020297u
81.
78. Kong BD, Paul S, Nardelli MB, et al. First-principles analysis of lattice thermal conductivity in monolayer and bilayer graphene. Physical Review B. 2009; 80(3). doi: 10.1103/physrevb.80.033406
82.
79. Goli P, Ning H, Li X, et al. Thermal Properties of Graphene–Copper–Graphene Heterogeneous Films. Nano Letters. 2014; 14(3): 1497-1503. doi: 10.1021/nl404719n
83.
80. Kosynkin DV, Higginbotham AL, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature. 2009; 458(7240): 872-876. doi: 10.1038/nature07872
84.
81. Gholampour A, Valizadeh Kiamahalleh M, Tran DNH, et al. From Graphene Oxide to Reduced Graphene Oxide: Impact on the Physiochemical and Mechanical Properties of Graphene–Cement Composites. ACS Applied Materials & Interfaces. 2017; 9(49): 43275-43286. doi: 10.1021/acsami.7b16736
85.
82. Jin Z, McNicholas TP, Shih CJ, et al. Click Chemistry on Solution-Dispersed Graphene and Monolayer CVD Graphene. Chemistry of Materials. 2011; 23(14): 3362-3370. doi: 10.1021/cm201131v
86.
83. Lalwani G, Kwaczala AT, Kanakia S, et al. Fabrication and characterization of three-dimensional macroscopic all-carbon scaffolds. Carbon. 2013; 53: 90-100. doi: 10.1016/j.carbon.2012.10.035
87.
84. Heymann D, Korochantsev A, Nazarov MA, et al. Search for fullerenes C60and C70in Cretaceous–Tertiary boundary sediments from Turkmenistan, Kazakhstan, Georgia, Austria, and Denmark. Cretaceous Research. 1996; 17(3): 367-380. doi: 10.1006/cres.1996.0023
88.
85. Jehlička J, Frank O, Hamplová V, et al. Low extraction recovery of fullerene from carbonaceous geological materials spiked with C60. Carbon. 2005; 43(9): 1909-1917. doi: 10.1016/j.carbon.2005.02.040
89.
86. Englert JM, Vecera P, Knirsch KC, et al. Scanning-Raman-Microscopy for the Statistical Analysis of Covalently Functionalized Graphene. ACS Nano. 2013; 7(6): 5472-5482. doi: 10.1021/nn401481h
90.
87. Santa T, Yoshioka D, Homma H, et al. High-Performance Liquid Chromatography of Fullerence (C60) in Plasma Using Ultraviolet and Mass Spectrometric Detection. Biological and Pharmaceutical Bulletin. 1995; 18(9): 1171-1174. doi: 10.1248/bpb.18.1171
91.
88. Isaacson CW, Usenko CY, Tanguay RL, et al. Quantification of Fullerenes by LC/ESI-MS and Its Application to in Vivo Toxicity Assays. Analytical Chemistry. 2007; 79(23): 9091-9097. doi: 10.1021/ac0712289
92.
89. Ku BK, Emery MS, Maynard AD, et al. In situstructure characterization of airborne carbon nanofibres by a tandem mobility–mass analysis. Nanotechnology. 2006; 17(14): 3613-3621. doi: 10.1088/0957-4484/17/14/042
93.
90. Mazzuckelli LF, Methner MM, Birch ME, et al. Identification and Characterization of Potential Sources of Worker Exposure to Carbon Nanofibers During Polymer Composite Laboratory Operations. Journal of Occupational and Environmental Hygiene. 2007; 4(12): D125-D130. doi: 10.1080/15459620701683871
94.
91. Tai JT, Lai YC, Yang JH, et al. Quantifying Nanosheet Graphene Oxide Using Electrospray-Differential Mobility Analysis. Analytical Chemistry. 2015; 87(7): 3884-3889. doi: 10.1021/ac504671k
95.
92. Wang X, Xu JB, Xie W, et al. Quantitative Analysis of Graphene Doping by Organic Molecular Charge Transfer. The Journal of Physical Chemistry C. 2011; 115(15): 7596-7602. doi: 10.1021/jp200386z
96.
93. Li CY, Chou TW. A structural mechanics approach for the analysis of carbon nanotubes. International Journal of Solids and Structures. 2003; 40(10): 2487. doi: 10.1016/S0020-7683(03)00056-8
97.
94. Behfar K, Naghdabadi R. Nanoscale vibrational analysis of a multi-layered graphene sheet embedded in an elastic medium. Composites Science and Technology. 2005; 65(7-8): 1159-1164. doi: 10.1016/j.compscitech.2004.11.011
98.
95. He XQ, Kitipornchai S, Liew KM. Resonance analysis of multi-layered graphene sheets used as nanoscale resonators. Nanotechnology. 2005; 16(10): 2086-2091. doi: 10.1088/0957-4484/16/10/018
99.
96. Potts JR, Shankar O, Du L, et al. Processing–Morphology–Property Relationships and Composite Theory Analysis of Reduced Graphene Oxide/Natural Rubber Nanocomposites. Macromolecules. 2012; 45(15): 6045-6055. doi: 10.1021/ma300706k
100.
97. Song M, Gong Y, Yang J, et al. Free vibration and buckling analyses of edge-cracked functionally graded multilayer graphene nanoplatelet-reinforced composite beams resting on an elastic foundation. Journal of Sound and Vibration. 2019; 458: 89-108. doi: 10.1016/j.jsv.2019.06.023
101.
98. Ouyang W, Xu Z, Jia S, et al. Multilayer-graphene reinforced 316L matrix composites preparation by laser deposited additive manufacturing: microstructure and mechanical property analysis. Materials Research Express. 2019; 6(9): 096557. doi: 10.1088/2053-1591/ab2f2e
102.
99. Cui JP, Zhao WS, Yin WY, et al. Signal Transmission Analysis of Multilayer Graphene Nano-Ribbon (MLGNR) Interconnects. IEEE Transactions on Electromagnetic Compatibility. 2012; 54(1): 126-132. doi: 10.1109/temc.2011.2172947
103.
100. Nasiri SH, Moravvej-Farshi MK, Faez R. Stability Analysis in Graphene Nanoribbon Interconnects. IEEE Electron Device Letters. 2010; 31(12): 1458-1460. doi: 10.1109/led.2010.2079312
104.
105.
106.
101. Huang SF, Terakura K, Ozaki T, et al. First-principles calculation of the electronic properties of graphene clusters doped with nitrogen and boron: Analysis of catalytic activity for the oxygen reduction reaction. Physical Review B. 2009; 80(23). doi: 10.1103/physrevb.80.235410
107.
102. Palacios JJ, Ynduráin F. Critical analysis of vacancy-induced magnetism in monolayer and bilayer graphene. Physical Review B. 2012; 85(24). doi: 10.1103/physrevb.85.245443
108.
103. Ekşiogˇlu B, Nadarajah A. Structural analysis of conical carbon nanofibers. Carbon. 2006; 44(2): 360-373. doi: 10.1016/j.carbon.2005.07.007
109.
104. Fakhrabadi MMS, Khani N, Omidvar R, et al. Investigation of elastic and buckling properties of carbon nanocones using molecular mechanics approach. Computational Materials Science. 2012; 61: 248-256. doi: 10.1016/j.commatsci.2012.04.029
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Xiu Huang, Qian Liu, Guibin Jiang
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Prof. Sivanesan Subramanian
Anna University, India
Prof. Pascal Lorenz
University of Haute Alsace, France
Dortmund University of Technology, Germany.
Interests: Mass spectrometry, Molecular Structural Analysis, Methodology; Application; Biological, Environmental and Food samples.