Research progress in analytical methods of carbon nanomaterials

Xiu Huang, Qian Liu, Guibin Jiang

Article ID: 1953
Vol 2, Issue 1, 2021
DOI: https://doi.org/10.54517/aas.v2i1.1953
VIEWS - 60 (Abstract)

Abstract

 With the mass production and application of carbon nano materials, the detection and characterization methods of carbon nano materials in different media are particularly important. This paper reviews the commonly used characterization and detection technologies of carbon nanomaterials. Firstly, the separation and enrichment technology of carbon nanomaterials, including extraction separation, is introduced. The sample pretreatment technology of fractional separation and the combination of various separation methods, and then the electron microscope is reviewed. Spectrum. Thermal analysis. Electrochemical analysis. Isotope labeling, imaging and other characterization techniques, as well as fluorescence spectroscopy. Laser induced breakdown spectroscopy. Mass spectrometry. Scanning Raman microscope and quantitative analysis methods combined with various technologies, and some new carbon nano materials and some special characterization and detection methods are introduced. Finally, the future development trend and Prospect of carbon nano materials are prospected.

Keywords

Carbon nanomaterials; Analysis method; Carbon nanotubes; Graphene; Marking; Imaging

Full Text:

PDF



References

1. BAPTISTA F R, BELHOUT S A, GIORDANI S, et al.Chemical Society Reviews, 2015, 44(13):4433.

2. LI X, PING J, YING Y.TrAC-Trends in Analytical Chemistry, 2019, 113:1.

3. WANG J, LIU Q, LIANG Y, et al.Analytical and Bioanalytical Chemistry, 2016, 408(11):2861.

4. CAI D, MATARAZA J M, QIN Z H, et al.Nature Methods, 2005, 2(6):449.

5. BAKER S N, BAKER G A.Luminescent Carbon Nanodots:Emergent Nanolights.Angewandte Chemie-International Edition, 2010, 49(38):6726.

6. KARBASI S, ALIZADEH Z M.Bulletin of Materials Science, 2017, (6):1247.

7. MAO H Y, LAURENT S, CHEN W, et al.Chemical Reviews, 2013, 113(5):3407.

8. SCHIPPER M L, NAKAYAMA-RATCHFORD N, DAVIS C R, et al.Nature Nanotechnology, 2008, 3(4):216.

9. NEL A, XIA T, MADLER L, et al.Science, 2006, 311(5761):622.

10. COLVIN V L.Nature Biotechnology, 2003, 21(10):1166.

11. WANG H, YANG S T, CAO A, et al.Accounts of Chemical Research, 2013, 46(3):750.

12. DING W, LI L, XIONG K, et al.Journal of the American Chemical Society, 2015, 137(16):5414.

13. HUANG X, LIU Q, YAO S, et al.Analytical Methods, 2017, 9(19):2768.

14. TUZEN M, SOYLAK M.Journal of Hazardous Materials, 2007, 147(1-2):219.

15. PENG H, ALVAREZ N T, KITTRELL C, et al.Journal of the American Chemical Society, 2006, 128(26):8396.

16. CHEN B L, SELEGUE J P.Analytical Chemistry, 2002, 74(18):4774.

17. CHUN J, FAGAN J A, HOBBIE E K, et al.Analytical Chemistry, 2008, 80(7):2514.

18. HUBER S A, BALZ A, ABERT M, et al.Water Research, 2011, 45(2):879.

19. KARLSSON N G, WILSON N L, WIRTH H J, et al.Rapid Communications in Mass Spectrometry, 2004, 18(19): 2282.

20. AHMED M, YAJADDA M M A, HAN Z J, et al.Journal of Chromatography A, 2014, 1360:100.

21. DUAN W H, GONG K, WANG Q.Carbon, 2011, 49(9):3107.

22. HERRMANN A, DIEDERICH F, THILGEN C, et al.Helvetica Chimica Acta, 1994, 77(7):1689.

23. HAWKINS J M, LEWIS T A, LOREN S D, et al.Journal of Organic Chemistry, 1990, 55(26):6250.

24. LI J, ZHANG M, SUN B, et al.Carbon, 2012, 50(2):460.

25. NADLER M, MAHRHOLZ T, RIEDEL U, et al.Carbon, 2008, 46(11):1384.

26. CAI D, BLAIR D, DUFORT F J, et al.Nanotechnology, 2008, 19(34):1.

27. WILSON N R, PANDEY P A, BEANLAND R, et al.Acs Nano, 2009, 3(9):2547.

28. OSHIDA K, NAKAZAWA T, MIYAZAKI T, et al.Synthetic Metals, 2001, 125(2):223.

29. YEHLIU K, VANDER WAL R L, BOEHMAN A L.Combustion and Flame, 2011, 158(9):1837.

30. GADDAM C K, HUANG C H, VANDER WAL R L.Pattern Recognition Letters, 2016, 76:90.

31. YANG Z Q, VERBEECK J, SCHRYVERS D, et al.Diamond and Related Materials, 2008, 17(6):937.

32. GUO D, WEI H, CHEN X, et al.Journal of Materials Chemistry A, 2017, 5(34):18193.

33. ZHANG H, CAO G, WANG Z, et al.Nano Letters, 2008, 8(9):2664.

34. MA X, YUAN B.Applied Surface Science, 2009, 255(18):7846.

35. KHARISOV B I.Recent Patents on Nanotechnology, 2008, 2(3):190.

36. LIU L, ZHOU K, HE P, et al.Materials Letters, 2013, 110:76.

37. ALVES J O, ZHUO C, LEVENDIS Y A, et al.Materials Research-Ibero-American Journal of Materials, 2011, 14(4): 499.

38. BAL S, SAHA S.High Performance Polymers, 2014, 26(8):953.

39. FARRE M, SANCHIS J, BARCELO D.TrAC-Trends in Analytical Chemistry, 2011, 30(3):517.

40. JARRAH N A, VAN OMMEN J G, LEFFERTS L.Journal of Materials Chemistry, 2004, 14(10):1590.

41. CHINTHAGINJALA J K, BITTER J H, LEFFERTS L.Applied Catalysis a-General, 2010, 383(1-2):24.

42. KELLER D.Surface Science, 1991, 253(1-3):353.

43. LI Q S, LEE G Y H, ONG C N, et al.Biochemical and Biophysical Research Communications, 2008, 374(4):609.

44. RIEF M, GAUTEL M, OESTERHELT F, et al.Science, 1997, 276(5315):1109.

45. BRIHUEGA I, MALLET P, GONZALEZ-HERRERO H, et al.Physical Review Letters, 2012, 109(19):196802.

46. HAGEN A, HERTEL T.Nano Letters, 2003, 3(3):383.

47. HUANG X, LIU Q, JIANG G.Talanta, 2019, 199:532. 708

48. LIU Q, CHENG M, WANG J, et al.Chemistry-a European Journal, 2015, 21(14):5594.

49. YU S, JEONG S G, CHUNG O, et al.Solar Energy Materials and Solar Cells, 2014, 120:549.

50. ROEDING M, BRADLEY S J, NYDEN M, et al.Journal of Physical Chemistry C, 2014, 118(51):30282.

51. DENK W, STRICKLER J H, WEBB W W.Science, 1990, 248(4951):73.

52. ESTEVES DA SILVA J C G, GONCALVES H M R.Trac-Trends in Analytical Chemistry, 2011, 30(8):1327.

53. WILD E, JONE S C.Environmental Science & Technology, 2009, 43(14):5290.

54. XIE Y, HUANG Q, HUANG B.Carbon, 2009, 47(9):2292.

55. HEISE H M, KUCKUK R, OJHA A K, et al.Journal of Raman Spectroscopy, 2009, 40(3):344.

56. ZHANG N, TONG L, ZHANG J.Chemistry of Materials, 2016, 28(18):6426.

57. LIU Z, LI X, TABAKMAN S M, et al.Journal of the American Chemical Society, 2008, 130(41):13540.

58. YANG D, VELAMAKANNI A, BOZOKLU G, et al.Carbon, 2009, 47(1):145.

59. BUDDE H, COCA-LOPEZ N, SHI X, et al.ACS Nano, 2016, 10(2):1756.

60. SAITO Y, VERMA P, MASUI K, et al.Journal of Raman Spectroscopy, 2009, 40(10):1434.

61. HU Q, HIRAI M, JOSHI R K, et al.Journal of Physics D-Applied Physics, 2009, 42(2):025301.

62. LIN C T, CHEN T H, CHIN T S, et al.Carbon, 2008, 46(5):741.

63. HUANG X, LIU Q, FU J, et al.Analytical Chemistry, 2016, 88(7):4107.

64. BAUGHMAN R H, ZAKHIDOV A A, DE HEER W A.Science, 2002, 297(5582):787.

65. JARIWALA D, SANGWAN V K, LAUHON L J, et al.Chemical Society Reviews, 2013, 42(7):2824.

66. ALLEN M J, TUNG V C, KANER R B.Chemical Reviews, 2010, 110(1):132.

67. WANG H F, WANG J, DENG X Y, et al.Journal of Nanoscience and Nanotechnology, 2004, 4(8):1019.

68. DENG X, JIA G, WANG H, et al.Carbon, 2007, 45(7):1419.

69. YANG S-T, GUO W, LIN Y, et al.Journal of Physical Chemistry C, 2007, 111(48):17761.

70. JI Z Q, SUN H, WANG H, et al.Journal of Nanoparticle Research, 2006, 8(1):53.

71. XU J Y, LI Q __________N, LI J G, et al.Carbon, 2007, 45(9):1865.

72. TIAN L, WANG X, CAO L, et al.Journal of Nanomaterials, 2010, 2010:11.

73. SAHA S K, CHOWDHURY D P, DAS S K, et al.Nuclear Instruments & Methods in Physics Research Section BBeam Interactions with Materials and Atoms, 2006, 243(2):277.

74. SINGH R, PANTAROTTO D, LACERDA L, et al.Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(9):3357.

75. LI Y G, HUANG X, LIU R L, et al.Journal of Radioanalytical and Nuclear Chemistry, 2005, 265(1):127.

76. BULLARDDILLARD R, CREEK K E, SCRIVENS W A, et al.Bioorganic Chemistry, 1996, 24(4):376.

77. CHEN S, XIONG C, LIU H, et al.Nature Nanotechnology, 2015, 10(2):176.

78. BUSSY C, CAMBEDOUZOU J, LANONE S, et al.Nano Letters, 2008, 8(9):2659.

79. BAUHOFER W, KOVACS J Z.Composites Science and Technology, 2009, 69(10):1486.

80. WANG Y, JAISWAL M, LIN M, et al.ACS Nano, 2012, 6(2):1018.

81. CIOFFI C T, PALKAR A, MELIN F, et al.Chemistry-a European Journal, 2009, 15(17):4419.

82. ZHANG Q, NGHIEM J, SILVERBERG G J, et al.Applied and Environmental Microbiology, 2015, 81(14):4744.

83. DOUDRICK K, HERCKES P, WESTERHOFF P.Environmental Science & Technology, 2012, 46(22):12246.

84. AKBAR N S.Meccanica, 2015, 50(1):39.

85. BOM D, ANDREWS R, JACQUES D, et al.Nano Letters, 2002, 2(6):615.

86. KONG B D, PAUL S, NARDELLI M B, et al.Physical Review B, 2009, 80(3):033406.

87. GOLI P, NING H, LI X, et al.Nano Letters, 2014, 14(3):1497.

88. KOSYNKIN D V, HIGGINBOTHAM A L, SINITSKII A, et al.Nature, 2009, 458(7240):872.

89. GHOLAMPOUR A, KIARNAHALLEH M V, TRAN D N H, et al.ACS Applied Materials &Interfaces, 2017, 9 (49):43275.

90. JIN Z, MCNICHOLAS T P, SHIH C J, et al.Chemistry of Materials, 2011, 23(14):3362.

91. LALWANI G, KWACZALA A T, KANAKIA S, et al.Carbon, 2013, 53:90.

92. HEYMANN D, KOROCHANTSEV A, NAZAROV M A, et al.Cretaceous Research, 1996, 17(3):367.

93. JEHLICKA J, FRANK O, HAMPLOVA V, et al.Carbon, 2005, 43(9):1909. 709

94. JINNO K, KOHRIKAWA C.Chimica Oggi-Chemistry Today, 1998, 16(1-2):9.

95. ENGIERT J M, VECERA P, KNIRSCH K C, et al.ACS Nano, 2013, 7(6):5472.

96. SANTA T, YOSHIOKA D, HOMMA H, et al.Biological &Pharmaceutical Bulletin, 1995, 18(9):1171.

97. ISAACSON C W, USENKO C Y, TANGUAY R L, et al.Analytical Chemistry, 2007, 79(23):9091.

98. KU B K, EMERY M S, MAYNARD A D, et al.Nanotechnology, 2006, 17(14):3613.

99. MAZZUCKELLI L F, METHNER M M, BIRCH M E, et al.Journal of Occupational and Environmental Hygiene, 2007, 4(12):D125.

100. TAI J T, LAI Y C, YANG J H, et al.Analytical Chemistry, 2015, 87(7):3884.

101. WANG X, XU J-B, XIE W, et al.Journal of Physical Chemistry C, 2011, 115(15):7596.

102. LI C Y, CHOU T W.International Journal of Solids and Structures, 2003, 40(10):2487.

103. BEHFAR K, NAGHDABADI R.Composites Science and Technology, 2005, 65(7-8):1159.

104. HE X Q, KITIPORNCHAI S, LIEW K M.Nanotechnology, 2005, 16(10):2086.

105. POTTS J R, SHANKAR O, DU L, et al.Macromolecules, 2012, 45(15):6045.

106. SONG M, GONG Y, YANG J, et al.Journal of Sound and Vibration, 2019, 458:89.

107. OUYANG W, XU Z, JIA S, et al.Materials Research Express, 2019, 6(9):096557.

108. CUI J P, ZHAO W S, YIN W Y, et al.Ieee Transactions on Electromagnetic Compatibility, 2012, 54(1):126.

109. NASIRI S H, MORAVVEJ-FARSHI M K, FAEZ R.Ieee Electron Device Letters, 2010, 31(12):1458.

110. HUANG S-F, TERAKURA K, OZAKI T, et al.Physical Review B, 2009, 80(23):235410.

111. PALACIOS J J, YNDURAIN F.Physical Review B, 2012, 85(24):245443.

112. EKSIOGLU B, NADARAJAH A.Carbon, 2006, 44(2):360.

113. FAKHRABADI M M S, KHANI N, OMIDVAR R, et al.Computational Materials Science, 2012, 61:248.

Refbacks

  • There are currently no refbacks.