Fluorescence Determination of Anthrax Biomarker Based on Copper-doped Carbon Nanodots

Peng Hua, Yu Huang, Yang Zhou, Fanyi He, Qionghui Yang, Weimei Zhu

Article ID: 1946
Vol 2, Issue 1, 2021
DOI: https://doi.org/10.54517/aas.v2i1.1946
VIEWS - 36 (Abstract)

Abstract

In this study, water-soluble copper-doped carbon nanodots(Cu-CDs) with high fluores- cence quantum yield were prepared by one-step hydrothermal method using citric acid and ethylenedi- amine as precursors and copper sulfate as metal dopants. A new method for the fluorescence determi- nation of anthrax biomarker based on copper-doped carbon nanodots was established based on the strong chelation of 2, 6-pyridinedicarboxylic acid(DPA) with carbon nanodots. Under the optimum experimental conditions, there were good linear relationships for the fluorescence quenching rate of Cu-CDs with DPA in the concentration ranges of 5-100 nmol/L(r2 = 0.9941) and 150-400 nmol/L(r2 = 0.9976), and the detection limit of the proposed method was 2.3 nmol/L. With the advantages of low cost, high specificity, high sensitivity and simple operation, the method has a good application prospect in detection of anthrax biomarker.


Keywords

Copper-doped carbon nanodots; Fluorescent probes; Anthrax biomarker; 2, 6-pyridin- edicarboxylic acid

Full Text:

PDF



References

1. Chen L, Fang Z G.Inorg. Chim. Acta, 2018, 477: 51–58.

2. Gao N, Zhang Y F, Huang P C, Xiang Z H, Wu F Y, Mao L Q.Anal. Chem., 2018, 90(11): 7004–7011.

3. Shi K Y, Yang Z C, Dong L H, Yu B.Sens. Actuators B, 2018, 266: 263–269.

4. Yilmaz M D, Oktem H A.Anal. Chem., 2018, 90(6): 4221–4225.

5. Li Y X, Li X Q, Wang D, Shen C C, Yang M H.Microchim. Acta, 2018, 185(9): 2978.

6. Rong M C, Liang Y C, Zhao D L, Chen B J, Pan C, Deng X Z, Chen Y B, He J.Sens. Actuators B, 2018, 265:498–505.

7. Wang Q X, Xue S F, Chen Z H, Ma S H, Zhang S Q, Shi G Y, Zhang M.Biosens. Bioelectron., 2017, 94: 388–393.

8. Donmez M, Oktem H A, Yilmaz M D.Carbohydr. Polym., 2018, 180: 226–230.

9. Li T, Tang J L, Fang F, Fang D, Fang X, Chu X Y, Li J H, Wang F, Wang X H, Wei Z P.J. Funct. Mater., 2015, 9(36): 9012–9025.

10. Zhang X F, Lu J B, Wang X M.J. Instrum. Anal., 2018, 37(2):198–203.

11. Hou X F, Hu Y, Wang P, Yang L J, Al–Awak M M, Tang Y G, Twara F K, Qian H J, Sun Y P.Carbon, 2017, 122: 389–394.

12. Wang ZR, Zhang G H, Guo M Y.Chin J. Lumin., 2016, 6(37): 654–661.

13. Zhu S J, Meng Q N, Wang L, Zhang J H, Song Y B, Jin H, Zhang K, Sun H C, Wang H Y, Yang B. Angew. Chem. Int. Ed., 2013, 52(14): 3953–3957.

14. Zhan X F, Tang J S, Wu J, Cao Z K.J. Instrum. Anal., 2016, 35(11): 1461–1465.

15. Peng Z L, Han X, Li S H, Al–Youbi A O, Bashammakh A S, El–Shahawi M S, LeblancRM.Coord. Chem.Rev., 2017, 343: 256–277.

16. Bera K, Sau A, Mondal P, MukherjeeR, Mookherjee D, Metya A, Kundu A K, Mandal D, Satpati B, Chakrabarti O, Basu S.Chem. Mater., 2016, 28(20): 7404–7413.

17. Lin L P, Luo Y X, Tsai P Y, Wang J J, Chen X.Trends Anal. Chem., 2018, 103: 87–101.

18. Devi P, Thakur A, Chopra S, Kaur N, Kumar P, Singh N, Kumar M, Shivaprasad S M, Nayak M K.ACS Appl. Mater. Interfaces, 2017, 9(15): 13448–13456.

19. Li P J, Ang A N, Feng H T, Li S F Y.J. Mater. Chem. C, 2017, 5(28): 6962–6972.

Refbacks

  • There are currently no refbacks.