Exploring complex spectroscopic characteristics of (Ag)x/CuTl-1223 nanoparticles-superconductor composites through impedance and electric modulus analysis

M. Mumtaz, Mubasher Mubasher, Liaqat Ali, Mehwish Hassan, Abrar A. Khan, Haris Ahmed Abbasi, M. Nasir Khan

Article ID: 2313
Vol 1, Issue 1, 2023

VIEWS - 37 (Abstract)

Abstract

This study elucidates influence of silver (Ag) nanoparticles (NPs) on ac-conduction properties within the super conductive phase of Cu0.5Tl0.5Ba2Ca2Cu3O10−δ (CuTl-1223). The Ag NPs were prepared by sol-gel method and CuTl-1223 superconducting phase was prepared by conventional solid-state reaction method. The different weight percentages (wt.%) of Ag NPs were mixed with CuTl-1223 superconducting matrix in order to obtain (Ag)x/CuTl-1223; x = 0 ~ 4.0 wt.% nanoparticles-superconductor composites. Complex impedance spectroscopy (CIS) and complex electric modulus spectroscopy (CEMS) were conducted to probe the impact of Ag NPs addition along the grain-boundaries of the bulk CuTl-1223 superconducting matrix and on the resistive and capacitive contributions to the total impedance at different T (K) and f (Hz) values.


Keywords

Ag nanoparticles; CuTl-1223 superconducting phase; (Ag)x/CuTl-1223 composites; complex impedance spectroscopy; complex electric modulus spectroscopy

Full Text:

PDF



References

1. Sakhya AP, Dutta A, Sinha TP. Dielectric and impedance spectroscopic studies of neodymium gallate. Physica B: Condensed Matter 2016; 488: 1-7. doi: 10.1016/j.physb.2016.02.017

2. Thakur S, Rai R, Bdikin I, Valente MA. Impedance and Modulus Spectroscopy Characterization of Tb modified Bi0.8A0.1Pb0.1Fe0.9Ti0.1O3 Ceramics. Mat Res 2016; 19(1): 1-8. doi: 10.1590/1980-5373-mr-2015-0504

3. Tian F, Ohki Y. Electric modulus powerful tool for analyzing dielectric behavior. IEEE Trans Dielect Electr Insul 2014; 21(3): 929-931. doi: 10.1109/tdei.2014.6832233

4. Macdonald JR. Impedance Spectroscopy, Emphasizing Solid Materials and Systems. John Wiley & Sons; 1987.

5. Bashir J, Shaheen R. Structural and complex AC impedance spectroscopic studies of A2CoNbO6 (A = Sr, Ba) ordered double perovskites. Solid State Sciences 2011; 13(5): 993-999. doi: 10.1016/j.solidstatesciences.2011.02.003

6. Kundu R, Roy D, Bhattacharya S. Microstructure, electrical conductivity and modulus spectra of CdI2 doped nanocomposite-electrolytes. Physica B: Condensed Matter 2017; 507: 107-113. doi: 10.1016/j.physb.2016.11.036

7. Padmamalini N, Ambujam K. Impedance and modulus spectroscopy of ZrO2-TiO2-V2O5 nanocomposite. Karbala International Journal of Modern Science 2016; 2(4): 271-275. doi: 10.1016/j.kijoms.2016.10.001

8. Khan NA, Mumtaz M, Khurram AA. Frequency dependent dielectric properties of Cu0.5Tl0.5Ba2Ca2(Cu3-yZny)O10-d (y = 0, 1.0, 1.5, 2.0, 2.5) superconductors. J. Appl. Phys 2008; 104: 033916.

9. Qasim I, Waqee-ur-Rehman M, Mumtaz M, et al. Role of anti-ferromagnetic Cr nanoparticles in CuTl-1223 superconducting matrix. Journal of Alloys and Compounds 2015; 649: 320-326. doi: 10.1016/j.jallcom.2015.05.288

10. Ali L, Mumtaz M, Ali I, et al. Metallic Cu Nanoparticles Added to Cu0.5Tl0.5Ba2Ca2Cu3O10-δ Superconductor. J Supercond Nov Magn 2017; 31(2): 561-567. doi: 10.1007/s10948-017-4229-8

11. Mohammed NH. Effect of MgO Nano-oxide Additions on the Superconductivity and Dielectric Properties of Cu0.25Tl0.75Ba2Ca3Cu4O12-δ Superconducting Phase. J Supercond Nov Magn 2011; 25(1): 45-53. doi: 10.1007/s10948-011-1207-4

12. Mumtaz M, Imran M, Khan MN. Frequency-Dependent Electric Modulus Spectroscopy of (Co3O4)x/(CuTl)-1223 Nanoparticles–Superconductor Composites. Journal of Elec Materi 2019; 48(6): 3588-3594. doi: 10.1007/s11664-019-07103-y

13. Mumtaz M, Naveed M, Amin B, et al. Temperature dependent impedance spectroscopy of (Co3O4)x/CuTl-1223 nanoparticles-superconductor composites. Ceramics International 2018; 44(4): 4351-4359. doi: 10.1016/j.ceramint.2017.12.029

14. Naveed M, Mumtaz M, Khan R, et al. Conduction mechanism and impedance spectroscopy of (MnFe2O4)x/CuTl-1223 nanoparticles-superconductor composites. Journal of Alloys and Compounds 2017; 712: 696-703. doi: 10.1016/j.jallcom.2017.04.034

15. Khan AA, Mumtaz M, Ali L, et al. AC Conduction Mechanism in (Cu)x/(CuTl)-1223 Nanoparticles–Superconductor Composites. J Low Temp Phys 2020; 199(5-6): 1268-1298. doi: 10.1007/s10909-020-02417-2

16. Qasim I, Waqee-ur-Rehman M, Mumtaz M, Nadeem K. Role of Co nanoparticles in CuTl-1223 superconductor. Ceramics International 2016; 42(1): 1122-1127. doi: 10.1016/j.ceramint.2015.09.040

17. Jabbar A, Qasim I, Khan KM, et al. Synthesis and superconducting properties of (Au)x/CuTl-1223 composites. Journal of Alloys and Compounds 2015; 618: 110-114. doi: 10.1016/j.jallcom.2014.08.162

18. Mumtaz M, Ali L, Khan MN, Sajid MU. Tuning of Dielectric Parameters of (NiFe2O4)x/CuTl-1223 Nano-superconductor Composites by Temperature and Frequency. J Supercond Nov Magn 2016; 29(5): 1181-1186. doi: 10.1007/s10948-016-3393-6

19. Waqee-ur-Rehman M, Qasim I, Mumtaz M, et al. Resistive transition and flux flow mechanism in CoFe2O4 nanoparticles added Cu0.5Tl0.5Ba2Ca2Cu3O10−δ superconductor. Journal of Alloys and Compounds 2016; 657: 348-352. doi: 10.1016/j.jallcom.2015.10.112

20. Jabbar A, Qasim I, Waqee-ur-Rehman M, et al. Structural and Superconducting Properties of (Al2O3)y/CuTl-1223 Composites. Journal of Elec Materi 2014; 44(1): 110-116. doi: 10.1007/s11664-014-3405-x

21. Sahu T, Behera B. Investigation on structural, dielectric and ferroelectric properties of samarium-substituted BiFeO3-PbTiO3 composites. J Adv Dielect 2017; 7(1): 1750001. doi: 10.1142/s2010135x17500011

22. Khan AA, Sohail M, Rahim M, et al. Frequency and temperature dependent dielectric constant of (Ag)x/CuTl-1223 nanoparticles-superconductor composites. Journal of Alloys and Compounds 2020; 825: 154138. doi: 10.1016/j.jallcom.2020.154138

23. Rabbani MW, Ali L, Mumtaz M, Hussain Gul I. Infield superconducting properties of nano-sized Ag added Cu0.5Tl0.5Ba2Ca2Cu3O10−δ. Progress in Natural Science: Materials International 2017; 27(4): 487-490. doi: 10.1016/j.pnsc.2017.06.011

24. Jabbar A, Qasim I, Mumtaz M, Nadeem K. Synthesis and superconductivity of (Ag)x/CuTl-1223 composites. Progress in Natural Science: Materials International 2015; 25(3): 204-208. doi: 10.1016/j.pnsc.2015.06.001

25. Jabbar A, Mumtaz M, Nadeem K. Noble metals (Ag, Au) nanoparticles addition effects on superconducting properties of CuTl-1223 phase. Eur Phys J Appl Phys 2015; 69(3): 30601. doi: 10.1051/epjap/2015140356

26. Hussain G, Jabbar A, Qasim I, et al. Activation energy and excess conductivity analysis of (Ag)x/CuTl-1223 nano-superconductor composites. Journal of Applied Physics 2014; 116(10). doi: 10.1063/1.4895051

27. Qasim I, Waqee-ur-Rehman M, Mumtaz M, et al. Ferromagnetic (Ni) nanoparticles–CuTl-1223 superconductor composites. Journal of Magnetism and Magnetic Materials 2016; 403: 60-67. doi: 10.1016/j.jmmm.2015.11.066

28. Sharma S, Shamim K, Ranjan A, et al. Impedance and modulus spectroscopy characterization of lead free barium titanate ferroelectric ceramics. Ceramics International 2015; 41(6): 7713-7722. doi: 10.1016/j.ceramint.2015.02.102

29. Kumari K, Ashutosh P, Kamal P. Dielectric, Impedance/Modulus and Conductivity Studies on [Bi0.5(Na1-xKx)0.5]0.94Ba0.06TiO3, (0.16≤ x≤ 0.20) Lead-Free Ceramics. American Journal of Materials Science 2016; 6(1).

30. Sahoo PS, Panigrahi A, Patri SK, Choudhary RNP. Impedance and modulus spectroscopy studies of Ba3SrSmTi2V6O28 ceramics. Journal of Material Science 2010; 28(763).

31. Nasri S, Ben Hafsia AL, Tabellout M, Megdiche M. Complex impedance, dielectric properties and electrical conduction mechanism of La0.5Ba0.5FeO3-δ perovskite oxides. RSC Adv 2016; 6(80): 76659-76665. doi: 10.1039/c6ra10589k

32. Lily, Kumari K, Prasad K, Choudhary RNP. Impedance spectroscopy of (Na0.5Bi0.5)(Zr0.25Ti0.75)O3 lead-free ceramic. Journal of Alloys and Compounds 2008; 453(1-2): 325-331. doi: 10.1016/j.jallcom.2006.11.081

33. Ahmad I, Akhtar MJ, Younas M, et al. Small polaronic hole hopping mechanism and Maxwell-Wagner relaxation in NdFeO3. Journal of Applied Physics 2012; 112(7). doi: 10.1063/1.4754866

34. Belal Hossen M, Akther Hossain AKM. Complex impedance and electric modulus studies of magnetic ceramic Ni0.27Cu0.10Zn0.63Fe2O4. J Adv Ceram 2015; 4(3): 217-225. doi: 10.1007/s40145-015-0152-2

35. Koops CG. On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audiofrequencies. Phys Rev 1951; 83(1): 121-124. doi: 10.1103/physrev.83.121

36. Rahmouni H, Smari M, Cherif B, et al. Conduction mechanism, impedance spectroscopic investigation and dielectric behavior of La0.5Ca0.5-xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). Dalton Trans 2015; 44(22): 10457-10466. doi: 10.1039/c5dt00444f

37. Liu J, Duan CG, Yin WG, et al. Large dielectric constant and Maxwell-Wagner relaxation in Bi2∕3Cu3Ti4O12. Phys. Rev. B 2004; 70: 144106.

38. Venkataraman BH, Varma KBR. Microstructural, dielectric, impedance and electric modulus studies on vanadium—doped and pure strontium bismuth niobate (SrBi2Nb2O9) ceramics. J Mater Sci: Mater Electron 2005; 16(6): 335-344. doi: 10.1007/s10854-005-1144-8

39. Liu J, Duan CG, Yin WG, et al. Dielectric permittivity and electric modulus in Bi2Ti4O11. The Journal of Chemical Physics 2003; 119(5): 2812-2819. doi: 10.1063/1.1587685

40. Roy A K, Prasad K, Prasad A. Piezoelectric, impedance, electric modulus and AC conductivity studies on (Bi0.5Na0.5)0.95Ba0.05TiO3 ceramic. PAC 2013; 7(2): 81-91. doi: 10.2298/pac1302081r

Refbacks

  • There are currently no refbacks.