Glutathione’s potential to attenuate quorum sensing induced biofilm formation in Klebsiella pneumoniae and Serratia marcescens

Abhijit Patra, Sirisha L. Vavilala

Article ID: 2542
Vol 1, Issue 1, 2023

VIEWS - 42 (Abstract)

Abstract

Rapid advancements not only facilitate human adaptation but also trigger environmental adjustments. While pivotal discoveries like Penicillin revolutionized medicine, the subsequent overuse of antibiotics led to diminishing efficacy due to antibiotic resistance. Addressing biofilm formation as a major contributor to antimicrobial resistance and recognizing quorum sensing as a key factor in biofilm formation, there is a need for new strategies. Glutathione, a natural antioxidant, has shown promising potential as an effective antimicrobial agent and a reliable component for cellular defence in the immune system. This study explores the capability of Glutathione to mitigate quorum sensing-induced biofilm formation in Klebsiella pneumoniae and Serratia marcescens. The results demonstrated that glutathione induced ROS-mediated cell death in these bacteria. Glutathione exhibited a maximum inhibition of approximately 85% in biofilm formation for both K. pneumoniae and S. marcescens. It also effectively disrupted preformed biofilms by degrading the eDNA of the EPS layer of matured biofilms. Interestingly, glutathione attenuated the quorum sensing pathway, as evidenced by reduced production of virulence factors, thereby mitigating QS-induced biofilm formation in both bacteria. This work lays the groundwork for further exploration in developing glutathione as a novel antibiotic to combat antibiotic resistance.


Keywords

Glutathione; antibiotic resistance; biofilms; quorum sensing; Serratia marcescens; Klebsiella pneumoniae

Full Text:

PDF



References

1. Das T, Paino D, Manoharan A, et al. Conditions under which glutathione disrupts the biofilms and improves antibiotic efficacy of both ESKAPE and NON-ESKAPE species. Front Microbiol. 2019; 10: 2000. doi: 10.3389/FMICB.2019.02000/BIBTEX

2. Nett J, Andes D. Candida albicans biofilm development, modeling a host–pathogen interaction. Current Opinion in Microbiology. 2006; 9(4): 340-345. doi: 10.1016/j.mib.2006.06.007

3. Monteiro R, Pereira MO, Sousa AM. Exploring glutathione as an adjuvant of anti-biofilm strategies against Pseudomonas aeruginosa. Chempor. 2018.

4. Zhang W, McLamore ES, Wu R, et al. Glutathione‐Gated Potassium Efflux as a Mechanism of Active Biofilm Detachment. Water Environment Research. 2014; 86(5): 462-469. doi: 10.2175/106143013x13807328849855

5. Morris D, Khurasany M, Nguyen T, et al. Glutathione and infection. Biochimica et Biophysica Acta (BBA) - General Subjects. 2013; 1830(5): 3329-3349. doi: 10.1016/j.bbagen.2012.10.012

6. Bazargani MM, Rohloff J. Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control. 2016; 61: 156-164. doi: 10.1016/j.foodcont.2015.09.036

7. Vishwakarma J, V.L S. Unraveling the anti-biofilm potential of green algal sulfated polysaccharides against Salmonella enterica and Vibrio harveyi. Applied Microbiology and Biotechnology. 2020; 104(14): 6299-6314. doi: 10.1007/s00253-020-10653-5

8. Vishwakarma J, Vavilala SL. Evaluating the antibacterial and antibiofilm potential of sulphated polysaccharides extracted from green algaeChlamydomonas reinhardtii. Journal of Applied Microbiology. 2019; 127(4): 1004-1017. doi: 10.1111/jam.14364

9. Shaikh SA, Priyadarsini IK, Vavilala SL. Ebselen’s Potential to Inhibit Planktonic and Biofilm Growth of Neisseria mucosa. Current Chemical Biology. 2022; 16(1): 61-69. doi: 10.2174/2212796816666220330090107

10. Shaikh SA, Patel B, Priyadarsini IK, et al. Combating planktonic and biofilm growth of Serratia marcescens by repurposing ebselen. International Microbiology. 2022; 26(4): 693-704. doi: 10.1007/s10123-022-00301-5

11. Graziano TS, Cuzzullin MC, Franco GC, et al. Statins and Antimicrobial Effects: Simvastatin as a Potential Drug against Staphylococcus aureus Biofilm. PLOS ONE. 2015; 10(5): e0128098. doi: 10.1371/journal.pone.0128098

12. Sasirekha B, Megha DM, Sharath Chandra MS, Soujanya R. Study on effect of different plant extracts on microbial biofilms. Asian J Biotechnol. 2015; 7: 1-12. doi: 10.3923/ajbkr.2015.1.12

13. Geier H, Mostowy S, Cangelosi GA, et al. Autoinducer-2 Triggers the Oxidative Stress Response in Mycobacterium avium, Leading to Biofilm Formation. Applied and Environmental Microbiology. 2008; 74(6): 1798-1804. doi: 10.1128/aem.02066-07

14. Nithya C, Felix LO, Selvaraj K, et al. Biofilm inhibitory potential of Chlamydomonas sp. extract against Pseudomonas aeruginosa. 2014.

15. Eko Sukohidayat N, Zarei M, Baharin B, et al. Purification and Characterization of Lipase Produced by Leuconostoc mesenteroides Subsp. mesenteroides ATCC 8293 Using an Aqueous Two-Phase System (ATPS) Composed of Triton X-100 and Maltitol. Molecules. 2018; 23(7): 1800. doi: 10.3390/molecules23071800

16. Kauffmann F, Møller V. On amino acid decarboxylases of salmonella types and on the kcn test. Acta Pathologica Microbiologica Scandinavica. 1955; 36(2): 173-178. doi: 10.1111/j.1699-0463.1955.tb04584.x

17. Salini R, Pandian SK. Interference of quorum sensing in urinary pathogen Serratia marcescens by Anethum graveolens. Pathogens and Disease. 2015; 73(6). doi: 10.1093/femspd/ftv038

18. Alharbe R, Almansour A, Kwon DH. Antibacterial activity of exogenous glutathione and its synergism on antibiotics sensitize carbapenem-associated multidrug resistant clinical isolates of Acinetobacter baumannii. International Journal of Medical Microbiology. 2017; 307(7): 409-414. doi: 10.1016/j.ijmm.2017.07.009

19. Silvan JM, Zorraquin-Peña I, Gonzalez de Llano D, et al. Antibacterial Activity of Glutathione-Stabilized Silver Nanoparticles Against Campylobacter Multidrug-Resistant Strains. Frontiers in Microbiology. 2018; 9. doi: 10.3389/fmicb.2018.00458

20. Cotter PD, Hill C. Surviving the Acid Test: Responses of Gram-Positive Bacteria to Low pH. Microbiology and Molecular Biology Reviews. 2003; 67(3): 429-453. doi: 10.1128/mmbr.67.3.429-453.2003

21. Schairer DO, Chouake JS, Kutner AJ, et al. Evaluation of the antibiotic properties of glutathione. J. Drugs Dermatol. 2013; 12: 1272-1277.

22. Estey T, Kang J, Schwendeman SP, et al. BSA Degradation Under Acidic Conditions: A Model For Protein Instability During Release From PLGA Delivery Systems. Journal of Pharmaceutical Sciences. 2006; 95(7): 1626-1639. doi: 10.1002/jps.20625

23. Sorokin VA, Gladchenko GO, Valeev VA. DNA protonation at low ionic strength of solution. Die Makromolekulare Chemie. 1986; 187(5): 1053-1063. doi: 10.1002/macp.1986.021870502

24. Choi AHK, Slamti L, Avci FY, et al. The pgaABCD Locus of Acinetobacter baumannii Encodes the Production of Poly-β-1-6- N -Acetylglucosamine, Which Is Critical for Biofilm Formation. Journal of Bacteriology. 2009; 191(19): 5953-5963. doi: 10.1128/jb.00647-09

25. Brossard KA, Campagnari AA. The Acinetobacter baumannii Biofilm-Associated Protein Plays a Role in Adherence to Human Epithelial Cells. Infection and Immunity. 2012; 80(1): 228-233. doi: 10.1128/iai.05913-11

26. Sahu PK, Iyer PS, Oak AM, et al. Characterization of eDNA from the Clinical StrainAcinetobacter baumanniiAIIMS 7 and Its Role in Biofilm Formation. The Scientific World Journal. 2012; 2012: 1-10. doi: 10.1100/2012/973436

27. Gawande PV, Leung KP, Madhyastha S. Antibiofilm and Antimicrobial Efficacy of DispersinB®-KSL-W Peptide-Based Wound Gel Against Chronic Wound Infection Associated Bacteria. Current Microbiology. 2014; 68(5): 635-641. doi: 10.1007/s00284-014-0519-6

28. Blasi F, Page C, Rossolini GM, et al. The effect of N -acetylcysteine on biofilms: Implications for the treatment of respiratory tract infections. Respiratory Medicine. 2016; 117: 190-197. doi: 10.1016/j.rmed.2016.06.015

29. Choi YS, Kim C, Moon JH, et al. Removal and killing of multispecies endodontic biofilms by N -acetylcysteine. Brazilian Journal of Microbiology. 2018; 49(1): 184-188. doi: 10.1016/j.bjm.2017.04.003

30. Meury J, Kepes A. Glutathione and the gated potassium channels of Escherichia coli. The EMBO Journal. 1982; 1(3): 339-343. doi: 10.1002/j.1460-2075.1982.tb01171.x

31. Rutherford ST, Bassler BL. Bacterial Quorum Sensing: Its Role in Virulence and Possibilities for Its Control. Cold Spring Harbor Perspectives in Medicine. 2012; 2(11): a012427-a012427. doi: 10.1101/cshperspect.a012427

32. Park M, Do E, Jung WH. Lipolytic Enzymes Involved in the Virulence of Human Pathogenic Fungi. Mycobiology. 2013; 41(2): 67-72. doi: 10.5941/myco.2013.41.2.67

33. Sethupathy S, Shanmuganathan B, Kasi PD, et al. Alpha-bisabolol from brown macroalga Padina gymnospora mitigates biofilm formation and quorum sensing controlled virulence factor production in Serratia marcescens. Journal of Applied Phycology. 2015; 28(3): 1987-1996. doi: 10.1007/s10811-015-0717-z

34. Henares BM, Higgins KE, Boon EM. Discovery of a Nitric Oxide Responsive Quorum Sensing Circuit in Vibrio harveyi. ACS Chemical Biology. 2012; 7(8): 1331-1336. doi: 10.1021/cb300215t

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Abhijit Patra, Sirisha L. Vavilala

License URL: https://creativecommons.org/licenses/by/4.0/