Unlocking the potential of molecular self-assembly: From nanotechnology to sustainable materials

Subhendu Dhibar

Article ID: 2185
Vol 1, Issue 1, 2023

VIEWS - 107 (Abstract)

Abstract

N/A

Full Text:

PDF



References

1. Lehn JM. Supramolecular Chemistry. Science 1993; 260: 1762–1763. doi: 10.1126/science.8511582

2. Pochan D, Scherman O. Introduction: Molecular self-assembly. Chemical Reviews 2021; 121: 13699–13700. doi: 10.1021/acs.chemrev.1c00884

3. Katsuhiko A, Hill JP, Lee MV, et al. Challenges and breakthroughs in recent research on self-assembly. Science and Technology of Advanced Materials 2008; 9: 014109. doi: 10.1088/1468-6996/9/1/014109

4. Min Y, Akbulut M, Kristiansen K, et al. The role of interparticle and external forces in nanoparticle assembly. Nature Materials 2008; 7: 527–538. doi: 10.1038/nmat2206

5. MacLeod JM, Rosei F. Molecular self-assembly on graphene. Nano Micro Small 2014; 10(6): 1038–1049. doi: 10.1002/smll.201301982

6. Foster JS, Frommer JE. Imaging of liquid crystals using a tunnelling microscope. Nature 1988; 333: 542–545. doi: 10.1038/333542a0

7. Dhibar S, Dey A, Dey A, et al. Development of supramolecular semiconducting Mn (II)-metallogel based active device with substantial carrier diffusion length. ACS Applied Electronic Materials 2019; 1: 1899−1908. doi: 10.1021/acsaelm.9b00410

Refbacks

  • There are currently no refbacks.