NDUFAB1 protects against obesity and insulin resistance by enhancing mitochondrial metabolism
Vol 1, Issue 1, 2023
VIEWS - 1887 (Abstract)
Download PDF
Abstract
Mitochondria are fundamental organelles for cellular and systemic metabolism, and their dysfunction has been implicated in the development of diverse metabolic diseases. Boosted mitochondrial metabolism might be able to protect against metabolic stress and prevent metabolic disorders. Here we show that NADH: ubiquinone oxidoreductase (NDU)-FAB1, also known as mitochondrial acyl carrier protein, acts as a novel enhancer of mitochondrial metabolism and protects against obesity and insulin resistance. Mechanistically, NDUFAB1 coordinately enhances lipoylation and activation of pyruvate dehydrogenase mediated by the mitochondrial fatty acid synthesis pathway and increases the assembly of respiratory complexes and supercomplexes. Skeletal muscle–specific ablation of NDUFAB1 causes systemic disruption of glucose homeostasis and defective insulin signaling, leading to growth arrest and early death within 5 postnatal days. In contrast, NDUFAB1 overexpression effectively protects mice against obesity and insulin resistance when the animals are challenged with a high-fat diet. Our findings indicate that NDUFAB1 could be a novel mitochondrial target to prevent obesity and insulin resistance by enhancing mitochondrial metabolism.
Keywords
References
1. Boyle JP, Thompson TJ, Gregg EW, et al. Projection of the year 2050 burden of diabetes in the US adult population: Dynamic modeling of incidence, mortality, and prediabetes prevalence. Population Health Metrics 2010; 8: 29. doi: 10.1186/1478-7954-8-29
2. Johnson AMF, Olefsky JM. The origins and drivers of insulin resistance. Cell 2013; 152(4): 673–684. doi: 10.1016/j.cell.2013.01.041
3. Muoio DM. Metabolic inflexibility: When mitochondrial indecision leads to metabolic gridlock. Cell 2014; 159(6): 1253–1262. doi: 10.1016/j.cell.2014.11.034
4. Szendroedi J, Phielix E, Roden M. The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nature Reviews Endocrinology 2012; 8: 92–103. doi: 10.1038/nrendo.2011.138
5. Hesselink MKC, Schrauwen-Hinderling V, Schrauwen P. Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nature Reviews Endocrinology 2016; 12: 633–645. doi: 10.1038/nrendo.2016.104
6. Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: From molecular mechanisms to functional significance and therapeutic opportunities. Antioxidants & Redox Signaling 2010; 12(4): 537–577. doi: 10.1089/ars.2009.2531
7. Kraegen EW, Cooney GJ, Turner N. Muscle insulin resistance: A case of fat overconsumption, not mitochondrial dysfunction. Proceedings of the National Academy of Sciences 2008; 105(22): 7627–7628. doi: 10.1073/pnas.0803901105
8. Erion DM, Shulman GI. Diacylglycerol-mediated insulin resistance. Nature Medicine 2010; 16: 400–402. doi: 10.1038/nm0410-400
9. Pagel-Langenickel I, Bao J, Pang L, Sack MN. The role of mitochondria in the pathophysiology of skeletal muscle insulin resistance. Endocrine Reviews 2010; 31(1): 25–51. doi: 10.1210/er.2009-0003
10. Runswick MJ, Fearnley IM, Skehel JM, Walker JE. Presence of an acyl carrier protein in NADH: Ubiquinone oxidoreductase from bovine heart mitochondria. FEBS Letters 1991; 286(1–2): 121–124. doi: 10.1016/0014-5793(91)80955-3
11. Hiltunen JK, Chen Z, Haapalainen AM, et al. Mitochondrial fatty acid synthesis—An adopted set of enzymes making a pathway of major importance for the cellular metabolism. Progress in Lipid Research 2010; 49(1): 27–45. doi: 10.1016/j.plipres.2009.08.001
12. Feng D, Witkowski A, Smith S. Down-regulation of mitochondrial acyl carrier protein in mammalian cells compromises protein lipoylation and respiratory complex I and results in cell death. Journal of Biological Chemistry 2009; 284(17): 11436–11445. doi: 10.1074/jbc.M806991200
13. Brody S, Oh C, Hoja U, Schweizer E. Mitochondrial acyl carrier protein is involved in lipoic acid synthesis in Saccharomyces cerevisiae. FEBS Letters 1997; 408(2): 217–220. doi: 10.1016/S0014-5793(97)00428-6
14. Vinothkumar KR, Zhu J, Hirst J. Architecture of mammalian respiratory complex I. Nature 2014; 515(7525): 80–84. doi: 10.1038/nature13686
15. Van Vranken JG, Jeong MY, Wei P, et al. The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis. Elife 2016; 5: e17828. doi: 10.7554/eLife.17828
16. Lyons GE, Ontell M, Cox R, et al. The expression of myosin genes in developing skeletal muscle in the mouse embryo. The Journal of Cell Biology 1990; 111(4): 1465–1476. doi: 10.1083/jcb.111.4.1465
17. Shulman GI, Rothman DL, Jue T, et al. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. New England Journal of Medicine 1990; 322(4): 223–228. doi: 10.1056/NEJM199001253220403
18. DeFronzo RA, Gunnarsson R, Björkman O, et al. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. The Journal of Clinical Investigation 1985; 76(1): 149–155. doi: 10.1172/JCI111938
19. DeFronzo RA, Jacot E, Jequier E, et al. The effect of insulin on the disposal of intravenous glucose: Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 1981; 30(12): 1000–1007. doi: 10.2337/diab.30.12.1000
20. Petersen KF, Dufour S, Savage DB, et al. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proceedings of the National Academy of Sciences 2007; 104(31): 12587–12594. doi: 10.1073/pnas.0705408104
21. Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiological Reviews 2018; 98(4): 2133–2223. doi: 10.1152/physrev.00063.2017
22. Nesteruk M, Hennig EE, Mikula M, et al. Mitochondrial-related proteomic changes during obesity and fasting in mice are greater in the liver than skeletal muscles. Functional & Integrative Genomics 2014; 14: 245–259. doi: 10.1007/s10142-013-0342-3
23. Zhang F, Xu X, Zhang Y, et al. Gene expression profile analysis of type 2 diabetic mouse liver. PloS One 2013; 8(3): e57766. doi: 10.1371/journal.pone.0057766
24. Wu M, Gu J, Guo R, et al. Structure of mammalian respiratory supercomplex I1III2IV1. Cell 2016; 167(6): 1598–1609. doi: 10.1016/j.cell.2016.11.012
25. Sousa JS, Mills DJ, Vonck J, Kühlbrandt W. Functional asymmetry and electron flow in the bovine respirasome. Elife 2016; 5: e21290. doi: 10.7554/eLife.21290
26. Letts JA, Fiedorczuk K, Sazanov LA. The architecture of respiratory supercomplexes. Nature 2016; 537: 644–648. doi: 10.1038/nature19774
27. Gu J, Wu M, Guo R, et al. The architecture of the mammalian respirasome. Nature 2016; 537: 639–643. doi: 10.1038/nature19359
28. Guo R, Zong S, Wu M, et al. Architecture of human mitochondrial respiratory megacomplex I2III2IV2. Cell 2017; 170: 1247–1257. doi: 10.1016/j.cell.2017.07.050
29. Wagener N, Ackermann M, Funes S, Neupert W. A pathway of protein translocation in mitochondria mediated by the AAA-ATPase Bcs1. Molecular Cell 2011; 44(2): 191–202. doi: 10.1016/j.molcel.2011.07.036
30. Maio N, Rouault TA. Iron–sulfur cluster biogenesis in mammalian cells: New insights into the molecular mechanisms of cluster delivery. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 2015; 1853(6): 1493–1512. doi: 10.1016/j.bbamcr.2014.09.009
31. Roche B, Aussel L, Ezraty B, et al. Reprint of: Iron/sulfur proteins biogenesis in prokaryotes: Formation, regulation and diversity. Biochimica et Biophysica Acta (BBA)-Bioenergetics 2013; 1827(8–9): 923–937. doi: 10.1016/j.bbabio.2013.05.001
32. Brody S, Mikolajczyk S. Neurospora mitochondria contain an acyl‐carrier protein. European Journal of Biochemistry 1988; 173(2): 353–359. doi: 10.1111/j.1432-1033.1988.tb14005.x
33. Park S, Jeon JH, Min BK, et al. Role of the pyruvate dehydrogenase complex in metabolic remodeling: Differential pyruvate dehydrogenase complex functions in metabolism. Diabetes & Metabolism Journal 2018; 42: 270–281. doi: 10.4093/dmj.2018.0101
34. Fiedorczuk K, Letts JA, Degliesposti G, et al. Atomic structure of the entire mammalian mitochondrial complex I. Nature 2016; 538: 406–410. doi: 10.1038/nature19794
35. Porras CA, Bai Y. Respiratory supercomplexes: Plasticity and implications. Frontiers in Bioscience (Landmark Edition) 2015; 20: 621–634. doi: 10.2741/4327
36. Milenkovic D, Blaza JN, Larsson NG, Hirst J. The enigma of the respiratory chain supercomplex. Cell Metabolism 2017; 25(4): 765–776. doi: 10.1016/j.cmet.2017.03.009
37. Maranzana E, Barbero G, Falasca AI, et al. Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxidants & Redox Signaling 2013; 19: 1469–1480. doi: 10.1089/ars.2012.4845
38. Lopez-Fabuel I, Le Douce J, Logan A, et al. Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. Proceedings of the National Academy of Sciences 2016; 113(46): 13063–13068. doi: 10.1073/pnas.1613701113
39. Schägger H, de Coo R, Bauer MF, et al. Significance of respirasomes for the assembly/stability of human respiratory chain complex I. Journal of Biological Chemistry 2004; 279(35): 36349–36353. doi: 10.1074/jbc.M404033200
40. Acı́n-Pérez R, Bayona-Bafaluy MP, Fernández-Silva P, et al. Respiratory complex III is required to maintain complex I in mammalian mitochondria. Molecular Cell 2004; 13(6): 805–815. doi: 10.1016/S1097-2765(04)00124-8
41. Diaz F, Fukui H, Garcia S, Moraes CT. Cytochrome c oxidase is required for the assembly/stability of respiratory complex I in mouse fibroblasts. Molecular and Cellular Biology 2006; 26(13): 4872–4881. doi: 10.1128/MCB.01767-05
42. Lapuente-Brun E, Moreno-Loshuertos R, Acín-Pérez R, et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 2013; 340(6140): 1567–1570. doi: 10.1126/science.123038
43. Guaras A, Perales-Clemente E, Calvo E, et al. The CoQH2/CoQ ratio serves as a sensor of respiratory chain efficiency. Cell Reports 2016; 15: 197–209. doi: 10.1016/j.celrep.2016.03.009
44. Acin-Perez R, Enriquez JA. The function of the respiratory supercomplexes: The plasticity model. Biochimica et Biophysica Acta (BBA)-Bioenergetics 2014; 1837(4): 444–450. doi: 10.1016/j.bbabio.2013.12.009
45. Greggio C, Jha P, Kulkarni SS, et al. Enhanced respiratory chain supercomplex formation in response to exercise in human skeletal muscle. Cell Metabolism 2017; 25: 301–311. doi: 10.1016/j.cmet.2016.11.004
46. Antoun G, McMurray F, Thrush AB, et al. Impaired mitochondrial oxidative phosphorylation and supercomplex assembly in rectus abdominis muscle of diabetic obese individuals. Diabetologia 2015; 58: 2861–2866. doi: 10.1007/s00125-015-3772-8
47. Barrientos T, Laothamatas I, Koves TR, et al. Metabolic catastrophe in mice lacking transferrin receptor in muscle. EBioMedicine 2015; 2(11): 1705–1717. doi: 10.1016/j.ebiom.2015.09.041
Refbacks
- There are currently no refbacks.