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ABSTRACT 

Currently, technological developments have been used in several health cases. One technology used for health is a 

tool to measure the strength of muscle contractions. So far, measuring muscle contractions still uses manual methods, 

namely the measurement muscle strength test method. Apart from that, health workers also measure manually by feeling 

the muscles to be measured. The need for tools to measure muscle contractions in the medical world is quite large because 

these tools can be used for various needs of doctors and nurses. There are many commercialized products on the market. 

The first aim of this article is to review four products that are available on the market. The second aim is to provide an 

overview of the use of the four products that have been carried out by previous researchers and the results. This article 

also discusses various aspects of product specifications. The research results show that each product has its own 

advantages. When we compare these products, it is better for us to return to the kind of product we are looking for. For 

example, if we want a product with high-class features that is equipped with several games, then we can choose MyoBoy. 

Myo armband and Trigno™ are used to identify several movement force conditions that are influenced by muscle strength, 

which has been equipped with an Inertial Measurement Unit (IMU) sensor. MyoWare is used to make bionic hands or 

bionic legs that can be controlled using electromyography (EMG) and has a relatively economical price. 

Keywords: muscle contraction; surface electro myograph; non-invasive measurement; medical device 

1. Introduction 
Today, many companies produce innovations in muscle contraction measurement with a wide range of 

variations in shape, function, and features at an economical price. Products that are produced will compete 
with products that are already on the market. Various efforts have been made by companies; there are 
companies that are still in the research stage until companies that already have products are ready to market 
and are already ready to compete. Muscle contraction measuring tools are much needed by the medical world 
because their function can be used for various medical needs. One of the main components used to make this 
product is the use of electromyography (EMG) sensors. Research regarding various devices for measuring 
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muscle contraction strength and their use is still rare. Therefore, this article will discuss the various types of 
muscle contraction strength measuring devices on the market and their various uses in various fields. 

EMG is an extensively utilized biological signal for predicting human motor work. EMG becomes an 
integral component of the human-robotic collaboration system[1]. EMG signals are derived from bio-electric 
signals produced by muscle cells and have numerous applications, including rehabilitation, auxiliary devices, 
ergonomics, clinical diagnosis, and sports science[2]. EMG can work at times when the muscles are in a state 
of contraction and relaxation. The muscles move every part of our body. As for lifting objects with different 
weights, the power that is removed is also different. So, the diagnosis of muscle strength is an important factor. 
Therefore, muscle contraction measurements have become an important device for researchers and doctors. 
By using this tool, doctors can know the strength of the muscle and compare it to normal and tired muscles. 

In general, there are two types of EMG that are already widely used, namely intramuscular 

electromiography (using a needle or electrode wire) and surface EMG. The electrical potential generated by 

muscle cells is either recorded using surface EMG or intramuscular EMG[3,4]. The difference between 

intramuscular EMG and sEMG is the way in which the electrical activity of the muscles is recorded. The 

working principle of intramuscular EMG is to insert an electrode needle into the muscle (invasively) to record 

the electrical activity of the muscle. Meanwhile, the working principle of sEMG is to stick electrodes over the 

muscles to record the electrical activity of the muscles. EMG sensors are primarily used for diagnosing clinical 

applications and could potentially be used for manufacturing enhancements to robots[5,6].  

Surface EMG is used to record muscle shifts and to estimate muscle strength at the time of contracting, 

as well as its impact on body comfort, and is suitable for designs that come into direct contact with humans[7]. 

As a diagnostic instrument, clinical neurophysiology utilizes EMG recordings during activity, primarily in 

patients with neuromuscular disorders. In the beginning, intramuscular EMG was used to record muscle 

signals, but because of the way it works, which injures the body, it is now rarely used and replaced with 

sEMG[8]. In this study, the type of EMG sought was a tool for muscle contraction using surface EMG. 

Currently, the development of sensor technology has made robot-human interaction more effective. Thus, 

humans and robots are able to collaborate or communicate in various ways to complete assigned duties. 

Although the terms collaboration and cooperation are frequently interchanged in the study of human-robot 

interactions, they have distinct meanings. During collaborative duties, robots and human partners interact 

without needing to be aware of one another’s actions. During the collaborative endeavor, however, both 

partners must communicate and comprehend one another, necessitating a high level of interaction[9–11]. 

EMG signals can be utilized in a variety of medicinal and robotic applications. EMG can be used for 

robotics and rehabilitation tools[12,13], ergonomics[14], diagnostic and clinical applications[15], sports science and 

motion analysis[16,17], telerobots[18], military tasks[19], etc. According to previous studies, EMG is a simple 

device but has many benefits. From this, it can be concluded that EMG is an important device for medical staff 

or doctors. 

2. Review of muscleon contracti measurements in the market 
It is important to do a review and comparison of the products available on the market. The purpose of this 

review and comparison is to know the functions of each product and to find out the advantages and 
disadvantages of each. In this review article, there are four products measuring muscle contraction strength 
that will be discussed. The products to be discussed are Myo armband, MyoWare, Trigno, and MyoBoy. Table 
1 discusses the product description comparison. Table 2 discusses the comparison of product specifications 
for a tool measuring muscle contraction strength. Table 3 discusses the comparison of the use of muscle 
contraction strength measurement products that have been carried out by previous researchers. 
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Table 1. Comparison of four products for measuring muscle contraction strength. 

Product name Product description 

Myo armband 
by Thalmic Labs, Canada 

The Myo armband is a data collection device equipped with IMU and sEMG sensors. The IMU 
sensor measures three types of signals at a sample rate of 50 Hz. A total of 8 sEMG sensors are 
attached to the skin at a sample rate of 200 Hz, which is used to measure muscle contractions. IMU 
and sEMG signals on these channels are transmitted via Bluetooth to the computer[20]. 

MyoWare 
by SparkFun Electronics, 
USA 

MyoWare is a type of muscle sensor that works based on the principle of EMG. MyoWare muscle 
sensors can be connected to Arduino boards and Bluetooth modules to send readings via analog 
signals and receive readings on a smartphone or computer[21,22]. 

MyoBoy 
by Ottobock Healthcare, 
Germany 

MyoBoy is a commercial product aimed at training upper extremity muscles in patients and 
controlling prosthetic hands[23]. MyoBoy is also equipped with several supporting components, 
namely a grounding cable, a jinjing bag, two electrodes, a USB cable, an electrode cable, a crane, 
and a short instruction guide. 

Trigno 
by Delsys Inc, US 

Trigno EMG is a wireless EMG system designed to simplify EMG signal detection. It is used for 
various studies of human movement and can be used alone or in combination with software[24,25]. 

Table 2. Comparison of product specifications. 

Comparison Product 

Myo armband MyoWare MyoBoy Trigno 

Dimension 11.9 cm × 7.4 cm × 10.4 cm 5.2 cm × 2.1 cm × 0.5 cm 15 cm × 8.3 cm × 3.5 cm 2.7 cm × 4.6 cm × 1.3 cm 

Weight 255 gr 28 gr 250 gr 14 gr 

Sensor sEMG, IMU sEMG sEMG sEMG, IMU 

Frequency sEMG 200 Hz, IMU 50 Hz 10–500 Hz 1000 Hz sEMG 20–450 Hz,  
IMU 24 Hz–360 Hz 

Supply 
voltage 

+1.7 V to +3.3 V +2.9 V to +5.7V 9 V +/– 5 V 

Connection Bluetooth Bluetooth, micro USB Software PAULA, USB Bluetooth 

Power supply Battery Battery Battery Battery 

References Tao et al.[20], Amazon[26] SparkFun[27], MyoWare[28] Ottobock[23], 
Manualzz[29], Prahm et 
al.[30] 

Delsys[31], Delsys 
Incorporated[32] 
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Table 3. Comparison of products used by previous researchers. 

Product name 
Product use 
Ref Research purposes Research result 

Myo armband 
 
 

Fu et al.[7] Identify the physical factors that affect the comfort of 
rest in the stretched position in the office chair using the 
Myo armband sensor. 

There are ten body regions that significantly influence comfort, with 
the right and left sides of the neck having the greatest impact. 

Tao et 
al.[20] 

Develop a CNN model for the identification of worker 
activity using IMU and sEMG signals obtained from the 
Myo armband. 

The study involved eight subjects that contained six common 
activities in assembly tasks. The CNN model developed was 
evaluated with a recognition accuracy of 98%. 

Bangaru 
et al.[33] 

Identification of the activity of ANN-based automated 
construction workers who can recognize complex 
construction activities 

The proposed model can recognize fifteen scaffold-building 
activities with an accuracy of 94%. 

Tepe and 
Erdim[34] 

Determine the effect of character selection and 
classification scheme on the accuracy of figure gesture 
classification with the Myo armband. 

Using the ANN method, the optimal performance of the sEMG data 
was 94.40%. The highest performance of sEMG and gyroscopic 
data with the ANN method is 96.30%. 

Tepe and 
Demir[35] 

Determine the effect of the number of channels and the 
selection of features on the classification accuracy of the 
8-channel EMG Myo armband signal. 

Using all EMG channels, the maximum accuracy is 98.38%. When 
the number of channels is reduced to three, accuracy surpasses 90%. 

Tepe and 
Demir[36] 

Identify SVM performance to classify EMG signals in 
non-real time and real time. 

The highest accuracy for non-real-time and real-time classifications 
on one subject was 96.38% and 99.05%. 

MyoWare 
 

Ali 
Hashim 
et al.[21] 

Design a fall detection system, or WFDS, that can be 
used for Parkinson’s disease patients based on WSN 
MyoWare. 

The results of experiments indicate that WFDS achieves 100% 
accuracy, sensitivity, and specificity in detecting fall patients. 

Heywood 
et al.[37] 

During muscle contractions, compare the validity of a 
low-cost EMG (MyoWare) to that of a commercial 
system (TeleMyo). 

For evaluating muscle activation, low-cost EMG systems are 
comparable to commercial systems, and the use of TKEO improves 
the reliability of time-related variables. 

Widhiada 
et al.[38] 

Create bionic foot innovation products equipped with 
MyoWare sensors. 

MyoWare can be used to read the movement of the DC motor angle 
between 0–60° and vice versa, following the concept of the gate 
cycle. 

Martins 
et al.[39] 

Design of a MyoWare-based robot hand orthosis 
prototype to help people with neuromuscular disorders. 

In real-time testing with three commonplace objects, system 
accuracy reached 90%. The prototype includes an orthosis that 
meets the requirements. 

Hassan et 
al.[40] 

Monitor epileptic behavioral signals and prevent them in 
the early stages of the disease using ECG, MyoWare, 
accelerometers, and Dallas sensors. 

The accuracy of the prototype epilepsy monitoring system is 
98.90%, 95.49%, 83%, and 87.21% for monitoring body 
temperature, pulse rate, muscle seizures, and fall detection, 
respectively. 

Chaparro-
Cárdenas 
et al.[41] 

Utilize walking fatigue detection, an instrumented 
orthosis using MyoWare, and a treadmill to detect 
muscle fatigue. 

A decrease in the amplitude and frequency of the sEMG signal, as 
well as the position of the corner of the lower extremities, are 
indicative of muscle fatigue. 
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Table 3. (Continued). 

Product name 
Product use 
Ref Research purposes Research result 

MyoBoy 
 

Prahm et 
al.[30] 

MyoBoy was used to assess the impact of game-based 
rehabilitation in the short term. 

Game-based interventions are advantageous for training and can 
improve clinical outcome measurements. 

Prahm et 
al.[42] 

Analyze the effect and benefit of video games on 
patients’ effort, performance, and motivation. The EMG 
control used is MyoBoy. 

This control can be effectively trained through the incorporation of 
engaging video games into the rehabilitation process. The patient 
tries harder while doing it. 

de Boer et 
al.[43] 

Determining the effect of intermanual transfer with a 
prosthesis in a patient a below-elbow amputation. 

There was no intermanual transfer effect on force control, and there 
was no laterality effect. 

Sturma et 
al.[44] 

Presented a structured rehabilitation protocol for two 
different groups of patients with upper limb nerve 
injuries. 

Using MyoBoy makes patients feel more competent in controlling 
EMG signals. 

Prahm et 
al.[45] 

Examine the usability of MyoBoy-based game systems, 
their functionality, and their subjective qualities. 

Significant improvement in all parameters assessed. Game-based 
applications can train EMG signals on prosthetic controls. 

Bouwsema 
et al.[46] 

Described changes in the performance of upper limb 
myoelectric prostheses during exercise. 

Control of grip force is more difficult to master than positioning the 
prosthesis. 

Trigno 
 

Pauk et 
al.[24] 

Bicluster algorithm method for grouping steps showing 
homogeneous EMG activation intervals. 

Bicluster depicts the actual difference between the subject’s stride 
parameters, namely stride length, stride time, and walking speed. 

Reeves et 
al.[47] 

Determines PL sEMG reliability in running. EMG was 
recorded with Trigno electrodes at 2000 Hz. 

The peak amplitude SEMs were 4% and 3% for barefoot and shoes. 
Low SEM indicates good PL EMG reliability during running. 

Lee et 
al.[25] 

Utilizes machine learning techniques to recognize IMU 
data indicative of a physically fatigued or sluggish gait. 

Normal gait, physical fatigue, or simulated cadence without muscle 
fatigue can be recognized using LSTM machine learning techniques 
with one or more IMUs. 

Lynch et 
al.[48] 

Determine the influence of the general TMS waveform 
on RMT, AMT, and MEP amplitudes in the biceps and 
FDI. 

The effect of TMS waveforms on motor thresholds in the proximal 
and distal upper limb muscles is identical. The effect of the 
waveform is sensitive to the target muscle. 

Zaluski et 
al.[49] 

Know the magnitude and peak activation times for the 
supraspinatus and infraspinatus during general 
rehabilitation exercises. 

Supraspinatus posterior and infraspinatus superior activation levels 
were comparable between elastic band exercises, but their maximal 
activation times were specific to each exercise. 

George et 
al.[50] Determine the optimal cut-off frequency for low-

frequency noise attenuation on the sEMG signal from 
TB and BF from 20 horses during trot and canter. 

The HPF cut-off frequency between 30 Hz and 40 Hz is the optimal 
setting for the equine sEMG signals collected from TB and BF 
during trot and canter. 

Notes: AMT = Active Motor Threshold, ANN = Artificial Neural Network, ARM = Augmented Reality Myoelectric, BF = Biceps Femoris, CNN = Convolutional Neural Network, FDI = First Dorsal 
Interosseous, HPF = High-Pass Filtering, IMU = Inertial Measurement Unit, MEP = Motor Evoked Potential, PL = Peroneus Longus, RMT = Resting Motor Threshold, SEM = Standard Error of 
Measurement, sEMG = Surface Electromyography, SVM = Support Vector Machine, TB = Triceps Brachii, TKEO = Teager-Kaiser Energy Operator, TMS = Transcranial Magnetic Stimulation, WFDS 
= Wearable Fall-Detection System, WSN = Wireless Sensor Network. 
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Table 1 presents the name of the product, the manufacturing company, the place of production, and a 
short description of the products. Thalmic Labs currently does not manufacture Myo armband, so it is rather 
difficult to find Myo armband products on the market. However, the MyoWare, MyoBoy, and Trigno products 
are still mass-produced, so they are easily obtained on the market. 

Table 2 presents a comparison of the four products, ranging from price to size, weight, sensors used, 
working frequency, supply voltage, connections, and power supply used. MyoBoy has the highest selling price 
of $2716.56, and Trigno has the lowest selling value of $40.00. In terms of size, Myo armband has the largest 
size of 11.9 cm × 7.4 cm × 10.4 cm, and MyoWare has the smallest size of 5.2 cm × 2.1 cm × 0.5 cm. In terms 
of weight, the Myo armband has the largest weight of 255 g, and the Trigno has the lightest weight of 14 g. In 
terms of the sensors used, Myo armband and Trigno have two main sensors, namely surface EMG and IMU, 
while MyoWare and MyoBoy products only have a sEMG sensor. In terms of frequency, each product has a 
variation in frequency. The frequency can be adjusted according to the measurement. In terms of voltage, Myo 
armband and Trigno have a small working voltage compared to the other two products. MyoBoy has a different 
connection with three other products, namely using PAULA and USB software. All four products use batteries 
as a working power supply. 

Table 3 presents an overview of the products of previous researchers, research objectives, and research 
results. The Myo armband is used to identify muscles based on surface EMG signals and types of muscle 
movement based on IMU signals. The Myo armband is mostly used for construction work and sports because 
there are additional features that can be used to identify the type of movement[7,20,33–36]. MyoWare is used to 
identify muscles based on the recordings from the sEMG sensor. MyoWare has been used in the health sector 
for such purposes as detecting Parkinson’s patients, making bionic legs, monitoring epilepsy symptoms, and 
identifying muscle fatigue[21,37–41]. MyoBoy is used to identify muscles based on the recordings from the surface 
EMG sensor. MyoBoy has been used in the health sector, especially in the upper extremities. For example, 
game-based rehabilitation, the influence of games on rehabilitation motivation, and the use of prosthetics on 
the upper limb[30,42–46]. Using the Trigno is almost the same as using the Myo armband because it has a surface 
EMG and IMU sensor. However, Trigno has also been carried out in health research, namely rehabilitation 
and recognition of gait[24,25,47–50]. 

3. Discussion 
In Indonesia, there also a development of surface electromyograph (EMG) device to measure the muscle 

contraction, developed by CBIOM3S, a Centre of Excellent on Medical Device and Health Technology in 
Diponegoro University, Semarang Indonesia. Ismail[51] reported his research on the device of muscle 
contraction strength measurement by analysing electrical signal from voltage potential in micro-volt units. 
This device (EMG) could be used to measure and record the muscle acquisition data when patient conduct the 
rehabilitation program in some period. The surface EMG was designed to produce amplification level to 
maintain the readability of signal data and filter it to minimize noise. The surface EMG has been used to record 
data development of muscle power at a certain time. The EMG device was called as MyoMES.  

The MyoMES was also used to measure muscle contraction on a foot during walking gait cycle[52]. The 
machine learning method was applied to multiclassification of human walking gait based on the signal measure 
in the muscle contraction using EMG signals. The EMG sensor was set to the bicep femoris longus and 
gastrocnemius lateral head to measure the micro voltage using EMG signal. The experiment was conducted by 
volunteers during normal walking activity at various speeds and the movements. The initiated as initial contact, 
was labelled as initial gait; loading response to the terminal stance, which was labelled as mid-gait; and pre-
swing to terminal swing, which was labelled as final gait. The machine learning, as reported in the paper show 
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a good classification for the three classes of human walking gait with an overall accuracy (training, testing, 
and validation). 

The expansion of the use of measuring instruments for measuring the strength of muscle contractions still 
needs to be developed because there are quite a lot of market needs regarding cases of muscle diagnosis. Future 
research is expected to measure the strength of muscle contractions to be used to identify or diagnose the 
growth of stunted children. It is hoped that a measuring instrument for the strength of muscle contractions can 
be used to diagnose the time of delivery for women giving birth. 

4. Conclusion 
Myo armband, MyoWare, MyoBoy, and Trigno are muscle contraction measurement tools that have been 

commercialized in the market. We can get these products by visiting the official store, either offline or online. 
Each product certainly has advantages and disadvantages, and each product also has superior features. When 
we compare these products, it is better for us to come back to the kind of product we are looking for. For 
example, if we want a product that has high-class features and is equipped with several games, we can choose 
MyoBoy. If we want to identify several movement style conditions that are affected by muscle strength, then 
we can choose Myo armband or Trigno products, which are equipped with IMU sensors. If we want to make 
bionic arms or bionic legs that can be controlled using EMG, then we can choose MyoWare products at 
relatively economical prices. Choosing which product is the best depends on the specifications we need. 
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