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ABSTRACT 

In order to effectively improve the accuracy of identifying the gait pattern of wearable sensing data, this paper 

proposes a new model for deep learning gait mode discrimination that integrates convolutional neural network and long 

short-term memory neural network, which makes full use of the convolutional neural network to obtain the most local 

spatial characteristics of data and the long short-term memory neural network to obtain the inherent characteristics of 

the data, and effectively excavates the hidden high-dimensional, nonlinear, time-space gait characteristics of random 

wearable sensing timing gait data that are closely related to gait pattern changes, to improve the classification perfor-

mance of gait mode. The effectiveness of the proposed model in this paper is evaluated using the HAR dataset from 

University of California UCI database. The experiment results showed that the proposed model in this paper can effec-

tively obtain the time-space gait characteristics embedded in the wearable sensor gait data, and the classification accu-

racy can reach 91.45%, the precision rate 91.54%, and the recall rate 91.53%, and the classification performance is sig-

nificantly better than that of the traditional machine learning model, which provides a new solution for accurately 

identifying the gait mode of wearable sensor data. 
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1. Introduction

In recent years, the construction of a machine 

learning gait classification model with superior 

generalization performance based on gait data ob-

tained from outdoor environment has received wide 

attention in the field of gait pattern recognition re-

search, which is of great significance for the pre-

vention of falls in the elderly, the diagnosis and 

treatment and rehabilitation evaluation of elderly 

neurological functional diseases, human identity 

identification. It now has become a new research 

hotspot in the research field related to gait pattern 

recognition[1,2]. In recent years, with the rapid de-

velopment of advanced data acquisition technology, 

some advanced data acquisition technologies (such 

as computer video, wireless radar, wearable sensors, 

etc.) have been used to collect gait pattern data in 

outdoor environments. For example, based on gait 

image data collected by computer video, some 

scholars have discussed the study of outdoor human 
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gait pattern recognition in different perspectives[3]; 

other scholars have discussed the research on gait 

pattern recognition in outdoor environment con-

taining micro-Doppler feature information based on 

the gait data obtained by wireless radar devices[4]. 

While some scholars have also discussed the study 

on gait pattern recognition in outdoor environ-

ment based on gait data of wearable sensors (accel-

erometer, gyroscope, magnetometer, etc.)[5]. The 

studies found that the gait acquisition technology of 

cheap and portable wearable sensor has the ad-

vantages of adapting to different outdoor applica-

tion scenarios and containing rich gait characteristic 

information, which can better avoid the loss of val-

uable gait characteristic information by computer 

video technology due to outdoor environment, hu-

man wearing clothing, and the loss of wireless gait 

detection signal because of the external environ-

mental interference of wireless radar devices, which 

helps to improve the gait pattern recognition effi-

ciency, and has been widely used in related research 

in recent years. 

Based on wearable sensor data, the application 

of machine learning algorithms to explore gait pat-

tern recognition models with superior generaliza-

tion performance has received continuous attention 

from relevant research, and its basic idea is that it 

can make full use of the superior data learning per-

formance of machine learning algorithms to obtain 

more representative gait characteristic information 

from wearable sensor gait data and improve the gait 

pattern recognition performance. In the early days, 

some studies explored the quantitative analysis of 

wearable sensor data based on traditional machine 

learning algorithms (such as decision trees, mul-

ti-layer perceptual neural networks, support vector 

machines, K-neighbors, etc.), and tried to construct 

gait pattern recognition performance with superior 

generalization performance[6,7]. For example, Bao et 

al.[8] discussed the gait pattern recognition model of 

ID3 decision tree based on the gait data of the tri-

axial accelerometer to identify three gait patterns 

such as normal walking, jogging, and stair climbing, 

with an average recognition rate that was only 79%. 

Tahafchi et al. discussed the application of KNN 

classification algorithm to obtain and compare data 

from wearable data of Parkinson’s subjects (includ-

ing triaxial acceleration data, gyroscope data, mag-

netometer data, and dual-channel non-invasive my-

oelectric scanner data), and the gait pattern 

recognition rate reached 91.9%, 87.1%, 80.9%, 

and 79.9% according to the participants, respec-

tively[9]. In addition, based on the acceleration gait 

data of wearable sensors, Nickel et al. discussed the 

research on the construction of gait pattern recogni-

tion model based on support vector machine, invis-

ible Markov model and KNN classification algo-

rithm, among which the Equal Error Rate (EER) of 

support vector machine and invisible Markov model 

was 10.00% and 12.63%, respectively, and the Half 

Total Error Rate (HTER) of KNN classification al-

gorithm can reach 8.24%[10,11]. The study found that 

the traditional machine learning algorithm has the 

advantages of low computational complexity in 

processing wearable sensor gait data to recognize 

the gait pattern, but because of its inherent linear 

computing model architecture, it is difficult to ob-

tain more representative gait characteristic infor-

mation hidden in the intrinsic structure of wearable 

sensor gait data, and it is difficult to support the 

construction of a gait pattern recognition model 

with superior generalization performance. In recent 

years, with the rapid development of emerging ma-

chine learning theories such as deep learning and 

the successful application of image processing, 

some scholars have tried to explore the construction 

of deep learning gait pattern recognition mod-

el based on the wearable sensor gait data, and 

its basic idea aims to make full use of the excellent 

data learning performance of deep learning algo-

rithms to obtain more representative gait feature 

information from high-dimensional wearable sens-

ing gait data and to improve the gait pattern recog-

nition performance. For example, Zou et 

al.[12] based on the acceleration data and gyroscope 

data collected by wearable smartphones, the con-

struction of convolutional neural network and re-

current neural network fused with gait pattern 

recognition model is discussed, try to obtain the 

inherent spatiotemporal correlation characteristics 
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information of wearable sensing gait data to im-

prove the performance of gait pattern recognition. 

The results showed that the accuracy of this method 

in pedestrian identification and identity authentica-

tion is found to be higher than 93.5% and 93.7% 

respectively. In addition, Ding et al.[13] proposed a 

gait pattern recognition model based on the long 

short-term memory algorithm LSTM based on 

wearable gait data (wearing an inertial measurement 

unit on the calf to collect angular velocity data), 

which aims to obtain the time-correlated gait fea-

ture information hidden in wearable gait data 

through the long short-term memory algorithm to 

detect the gait phase and use the phase marker data 

to train it. The experimental results show that the 

recognition accuracy rate can reach 91.4%. In re-

cent years, although the research on gait pattern 

recognition based on deep learning has achieved 

good results and positive progress, there is still a 

lack of a technical means to accurately obtain the 

more representative time-space correlation gait 

characteristic information implied in wearable gait 

data, which seriously restricts the gait pattern 

recognition performance. Relevant medical studies 

have shown that gait is a walking posture of the 

human body, which is closely related to physiolog-

ical factors such as human nervous system, motor 

system and psychological cognitive system, and it is 

a long-term memory process in which various 

physiological factors interact and influence each 

other, while the self-recurrent neural network model 

used in the current study only has short-term 

memory performance, and it is difficult to obtain 

long-term temporal correlation characteristic infor-

mation during gait process. New deep learning 

models that acquire more representative spatiotem-

poral correlation gait feature information implied in 

wearable gait data are urgently needed. 

Therefore, based on the wearable sensor gait 

data, this paper proposes a new model for deep 

learning discrimination of gait mode that integrates 

convolutional neural network model and long 

short-term memory neural network model, which 

aims to make full use of the convolutional neural 

network model’s superior characteristics of obtain-

ing the most representative feature information 

characteristics in local space of data and the inher-

ent long-term time correlation characteristic infor-

mation characteristics of long short-term memory 

neural network model, and accurately obtain the 

more representative spatiotemporal correlation gait 

feature information implicit in wearable gait data, 

improve gait pattern recognition performance. In 

addition, this paper selected the HAR data from the 

publicly available UCI database of the University of 

California, Irvine[14], and compared with traditional 

machine learning algorithms and deep learning al-

gorithm models to verify the effectiveness of the 

proposed model algorithms. 

2. CNN-LSTM deep integration 

learning gait pattern discriminant 

model 

The CNN-LSTM deep learning model pro-

posed in this paper aims to make full use of the ex-

cellent characteristics of CNN and LSTM models to 

obtain the inherent spatial and temporal correlation 

characteristic information of data structures, respec-

tively, and to deeply integrate the two from weara-

ble sensing gait data (such as acceleration, gyro-

scope, etc.) to obtain more time-space correlation 

characteristic information that is closely related to 

gait changes, and improve the gait pattern recogni-

tion performance. That is, it is assumed that the gait 

pattern needs to be identified as the database 𝑣 =

{𝑣1, 𝑣2, . . . , 𝑣𝑙}, among them, l represents the num-

ber of gait patterns to be recognized. Suppose the 

wearable sensor gait time series data is: 

𝐷 = (𝑑1, … , 𝑑𝑗 , … , 𝑑𝑡) = (

𝑑1
1, … , 𝑑1

𝑡

𝑑𝑚
1 , … , 𝑑𝑚

𝑡

)            (1) 

In the series data, 𝑑𝑗 = (𝑑1
𝑗
, … , 𝑑𝑚

𝑗
)
𝑇

 is the 

wearable sensing data at time j, while m and t de-

note the number of wearable sensors and the num-

ber of gait pattern time series samples, respectively. 

In the research, each gait pattern time series data is 

selected, so that each data segment ℎ𝑖 = (𝑡𝑖−1, 𝑡𝑖) 

contains gait spatiotemporal feature information, 
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and all selected data segment are defined as dataset 

𝐻 = {ℎ1, … , ℎ𝑖, … , ℎ𝑘}, and the k is the number of

all selected data segment. 

In order to accurately identify the gait pattern, 

we need to construct a model Γ to obtain the vector 

Yi containing the gait feature information from each 

data segment hi, that is, 𝑌𝑖 = 𝛤(𝐷, ℎ𝑖). Then, the

confidence value set P corresponding to each gait 

pattern vi is calculated based on an inference meth-

od Ψ, 𝑃: 𝑃(𝑣𝑖/𝑌𝑖 , 𝛽) = 𝛹(𝑌𝑖 , 𝛽), is a training pa-

rameter set based on the model Γ. Then, by compu-

ting the following maximum score value: 𝑣𝑖
∗ =

argmax𝑃(𝑣/𝑌𝑖, 𝛽), the gait pattern 𝑣𝑖
∗can be ob-

tained accurately, and each gait pattern can be rec-

ognized. In this study, we constructed the 

CNN-LSTM deep fusion learning model as a model 

Γ, and first use the CNN deep learning model to 

obtain the local spatial feature information that is 

closely related to the gait pattern changes from each 

data segment hi. On this basis, based on the LSTM 

deep learning model, the temporal correlation of the 

local spatial features of the gait data is obtained, 

and more the time-space feature information related 

to the gait pattern changes can be obtained, the gait 

pattern 𝑣𝑖
∗ is obtained with the maximum probabil-

ity, and the gait pattern 𝑣𝑖 is accurately identified.

The framework of the gait pattern discriminant 

model based on CNN-LSTM fusion deep learning 

proposed in the paper is shown in Figure 1, which 

consists of three parts: gait data input layer, 

CNNLSTM fusion deep learning, and full connec-

tion layer. 

Figure 1. CNN-LSTM network framework. 

As shown in Figure 1, in view of the 

time-space correlation characteristics of wearable 

gait sensing data, the CNN is composed of three 

convolutional layers (CL1, CL2, CL3), a maximum 

pooling layer (MP1), and two dropout layers, which 

accurately obtain the most representative local 

spatial features inherent in the gait data. In order to 

accurately obtain the temporal correlation of the 

most representative local spatial features in the gait 

data, the LSTM model consists of 32 cells, and in 

order to accurately obtain the temporal correlation 

of the most representative local spatial features in 

the gait data, the fully connected layer is consists of 

6 cells, and the gait pattern is identified with the 

maximum probability. 

(1) Extract the most representative local spatial 

characteristics of gait data based on CNN. 

In order to effectively obtain gait feature in-

formation, the data of the wearable sensing gait 

time series at t time t is defined as: 

𝑑𝑡 = (𝑑𝐵𝐴_𝑥
𝑡 𝑑𝐵𝐴_𝑦

𝑡 𝑑𝐵𝐴_𝑧
𝑡 𝑑𝐺𝐴𝑥

𝑡 𝑑𝐺𝐴_𝑦
𝑡 , 𝑑𝐺𝐴_𝑧

𝑡 , 𝑑𝐺𝑦_𝑥
𝑡 , 𝑑𝐺𝑦_𝑦

𝑡 , 𝑑𝐺𝑦_𝑧
𝑡 )  (2) 

Among them, BA-XYZ represents the 

three-dimensional human motion acceleration data, 

GAXYZ represents three-dimensional gravitational 
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acceleration data, and Gy-XYZ represents 

three-axis gyroscope data. For ease of analysis, se-

lects𝑡 ∈ {1,… ,128}, and its sensory gait data input 

sequence is defined as: 

𝐷 = (𝑑1, … , 𝑑𝑡 , … , 𝑑128) =

(

 
 
 
 
 
 
 
 
 
 

𝑑𝐵𝐴𝑥
1 , … , 𝑑𝐵𝐴𝑥

128

𝑑𝐵𝐴𝑦
1 , … , 𝑑𝐵𝐴𝑦

128

𝑑𝐵𝐴𝑧
1 , … , 𝑑𝐵𝐴𝑧

128

𝑑𝐺𝐴𝑥
1 , … , 𝑑𝐺𝐴𝑥

128

𝑑𝐺𝐴𝑦
1 , … , 𝑑𝐺𝐴𝑦

128

𝑑𝐺𝐴𝑧
1 , … , 𝑑𝐺𝐴𝑧

128

𝑑𝐺𝑦𝑥
1 , … , 𝑑𝐺𝑦𝑥

128

𝑑𝐺𝑦𝑦
1 , … , 𝑑𝐺𝑦𝑦

128

𝑑𝐺𝑦𝑧
1 , … , 𝑑𝐺𝑦𝑧

128
)

 
 
 
 
 
 
 
 
 
 

   (3) 

Assuming that the CNN model used to obtain 

the most representative gait local spatial features 

has a convolutional layer, each layer of convolu-

tional kernels is defined as: M1 × N1, the  𝑙 ∈

{1,… , 𝐿} convolutional layer extracts the gait local 

spatial feature F(l), which is defined as: 

𝐹(𝑙) = 𝑓(𝑏(𝑙) + 〈𝑤(𝑙), 𝑑𝑖, … , 𝑑𝑖+ø−1〉), 𝑖

= 1,… , 𝑡 − ø + 1                         (4) 

Where f(‧) represents the activation function,

﹤‧﹥represents the inner product, and b(l) is the bias 

term; w(l) is a one-dimensional convolutional kernel 

vector; ø is the length of w(l). 

In view of the high-dimensionality, nonlineari-

ty, randomness and low algorithmic complexity of 

the wearable sensing gait data defined in equation 

(3), this paper constructs a three-layer 

one-dimensional convolutional layer, each of which 

has 32 convolutional kernels, the size of which is 

defined as 3 × 3, the step size is defined as 1, and 

the ReLUfunction[15,16] with good nonlinear charac-

teristics is used as the activation function. Accord-

ing to equation (3), the size of the wearable sensor 

gait input data is defined as 128 × 9, and the gait 

local characteristic data of the output by the first, 

second, and third convolutional layers can be ob-

tained, respectively: 126 × 32, 124 × 32 and 122 × 

32. To effectively maintain good learning perfor-

mance and avoid overfitting, build a Dropout layer. 

In order to effectively maintain the intrinsic charac-

teristics of the gait features obtained by the convo-

lutional layer, reduce its redundancy information, 

and use the pooling layer to reduce the characteris-

tic dimensionality and increase its spatial invari-

ance[17], the pooling layer that defines the maximum 

pooling technology obtains the local spatial charac-

teristics Pj that contains more gait change infor-

mation, which is defined as:  

𝑃𝑗 = 𝑚𝑎𝑥(𝐹(𝑗−1)𝑅+1, … , 𝐹𝑗𝑅), 𝑗 = 1,… ,
𝑡

𝑅
          (5) 

R represents the pooling window size. 

Therefore, based on equation (5), the local 

spatial characteristics with the most gait change 

information can be obtained from the wearable 

sensor gait time series data, which lays the founda-

tion for subsequent acquisition of its temporal cor-

relation features. We used this local gait feature as 

an input to LSTM to extract the dependent charac-

teristics of gait data for a long period.  

(2) The temporal correlation of local features 

of gait data extracted based on LSTM layer 

A gait activity can be considered as a long se-

ries of time series, and the long-term 

time-dependent characteristics of local features 

can be effectively extracted by establishing an au-

toregressive model RNN. In this paper, in view of 

the good autoregressive network architecture char-

acteristics LSTM with intrinsic time correlation of 

dynamic learning time series data[18], the LSTM cell 

is constructed, including 1 memory cell C and 3 

gate functions (input it, forgetting ft, output ot), and 

the intrinsic long-term time-related characteristics 

of gait data is extracted in real time, the specific 

implementation is as follow.  

Assuming the gait data sample represented by 

pt is processed by the CNN model at the t moment 

as the input term of the LSTM neuron, and when 

passing through the cell of the LSTM, the useless 

extracted data information is first discarded by the 

forgetting gate, and its output is: 
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𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [𝑝
𝑡 , ℎ𝑡−1] + 𝑏𝑓)  (6) 

Where σ represents the activation function 

Sigmoid, Wf is the weight, and bf is the bias value. 

The updated data information is then determined by 

input gate it and candidate memory cell 𝐶�̃�:

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [𝑝
𝑡 , ℎ𝑡−1] + 𝑏𝑖)  (7) 

�̃� = 𝑡𝑎𝑛(𝑊𝑐 ∙ [𝑝
𝑡 , ℎ𝑡−1] + 𝑏𝑐)  (8) 

The Wi and Wc refer to weights, and bi and bc 

refer to bias values. The cell update status of the 

LSTM is then represented by the memory cell Ct: 

𝐶𝑡 = 𝑖𝑡 ∙ �̃� + 𝑓𝑡 ∙ 𝐶𝑡−1  (9) 

Finally, the output data information ht of the 

LSTM unit is determined as: 

𝑜𝑡 = 𝜎(𝑊𝑜[𝑝
𝑡 , ℎ𝑡−1] + 𝑏𝑜)  (10) 

ℎ𝑡 = 𝑜𝑡 ∗ tan(𝐶𝑡)  (11) 

The ot is the output gate; ht is the output of the 

current neuron in time. Specific derivation equa-

tions can be referred to reference[19]. By retaining 

the information that has undergone forgetting and 

input through the above memory units, the LSTM 

unit can effectively transmit historical information 

with a long-time interval to obtain the intrinsic time 

correlation characteristics of the data. The LSTM 

layer proposed in this paper consists of 32 cells to 

process the time signals which expressed as 

one-dimensional eigenvectors as shown in equation 

(12). 

𝑠 = [ℎ1, … , ℎ𝑡], 𝑡 ∈ {1,… ,32}  (12) 

The feature vectors s is processed by a fully 

connected layer composed of 6 cells, and the output 

is: 

ℎ = 𝑓[𝑊𝑠 + 𝜀]  (13) 

W is the weight matrix of the fully connected 

layer; ɛ is the bias term vector. We set the activation 

function of the fully connected layer to the Softmax 

function, and the final output is: 

𝑣𝑖
∗ =

𝑒𝑣𝑖

∑𝑒𝑣𝑖
, 𝑖 ∈ {1,… ,6}  (14) 

The gait pattern vi is identified with maximum 

probability by the equation (14). 

From the above analysis, it can be seen that the 

CNN-LSTM model proposed in this paper fully 

integrates the excellent the characteristics of both 

CNN and LSTM to obtain the most representative 

temporal and spatial gait features inherent in gait 

time series data, reduces the complexity of the 

learning network structure and the large training 

cost of the model, enhances the nonlinear fitting 

performance of the fusion deep learning algorithm, 

and helps to improve the accuracy and precise in 

the gait classification of the proposed model. 

The neural network model proposed in this 

paper uses the classification cross-entropy loss 

function to minimize the classification error rate of 

the training sample, which is defined as: 

𝐿(𝑋, 𝐷, 𝐵) = −
1

𝑁
∑〈𝑦(𝑖), log ŷ(𝑖)〉

𝑁

𝑖=1

  (15) 

D represents the training set, W represents the 

weight matrix, and B represents the bias value; N 

indicates the number of training samples, y(i) repre-

sents the label of the ith sample, and ŷ represents the 

predicted label and﹤‧﹥represents the inner prod-

uct. 

3. Experiment and result analysis

3.1. Experimental data acquisition 

This paper uses the HAR dataset from UCI 

database for machine learning proposed by the 

University of California Irvine. The dataset collect-

ed 6 gait patterns from 30 volunteers aged 19 to 48: 

standing, sitting, lying down, walking, going up-

stairs and downstairs. Each subject performs two 

experiments. 

Scheme: In the first experiment, the 

smartphone (with built-in accelerometer and gyro-

scope) was worn on the left side of the waist; in the 
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second experiment, the subjects placed their 

smartphones randomly.  

3.2. Data preprocessing 

In order to effectively eliminate noise inter-

ference and obtain more useful gait data, we used a 

median filter and a third-order low-pass But-

ter-worth filter (cutoff frequency set to 0.3 Hz) to 

cancel the noise processing of human acceleration 

signals and gravitational acceleration signals. Set 

the window width to 2.56s for sliding window data, 

window overlap is set to 50%, that each window 

has: 2.56 s × 50 Hz = 128 cycles, and fast Fourier 

transform was used to obtain the 17 gait data 

time-domain and frequency-domain gait features. 

Therefore, 17 metrics were used to evaluate the ei-

genvectors in the time and frequency domains, a 

total of 561 features were extracted to describe each 

active window (sample point), each sample point is 

regarded as a gait mode, the metrics are shown in 

Table 1 below. 

Table 1. Metric table for computing eigenvectors 

No. Function Introduce 

1 Mean Average value 

2 Std Standard deviation 

3 Mad Absolute median 

4 Max Maximum value 

5 Min Minimum value 

6 Sma Signal Amplitude Region 

7 Energy Square and mean 

8 Iqr Interquartile range 

9 Entropy Signal entropy 

10 arCoeff Autoregressive coefficient 

11 Correlation Correlation coefficient 

12 maxFreqInd Maximum frequency component 

13 meanFreq Frequency signal weighted average 

14 skewness Frequency signal skewness 

15 kurtosis Frequency signal kurtosis 

16 energyBand Frequency interval energy 

17 Angle Angle between two vectors 

3.3. Selection of evaluation criteria for gait 

classification performance 

In order to objectively and accurately evaluate 

the generalization performance of the gait classifi-

cation model proposed in this paper, the classifica-

tion accuracy, gait precision, and recall rate com-

monly used in gait classification related studies 

were selected as the objective evaluation indicators 

of gait classification performance. 

(1) Accuracy: Used to objectively evaluate the 

accuracy of the gait deep learning classification 

model proposed in this paper, which is defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (16) 

TP represents the number of samples that cor-

rectly identify gait patterns; FP represents the 

number of samples that incorrectly identify gait 

patterns; TN represents the number of samples in 

which the correct gait pattern was incorrectly rec-

ognized as another gait pattern; The FN represents 

the number of samples of which the gait pattern was 

incorrectly recognized as the correct gait pattern. 

(2) Precision: It is used to objectively evaluate 

the performance of the gait deep learning classifica-

tion model proposed in this paper to “truly” identify 

gait patterns, which is defined as 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (17) 

(3) Recall: It is used to objectively evaluate the 

performance of gait deep learning classification 

models proposed in this paper for correct recogni-

tion of gait patterns, which is defined as 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (18) 

3.4. Experiment results 

The experiments in this paper are based on 

Google’s open source deep learning framework 

Tensorflow, the specific experimental platforms are 

CPU(i5), Python3.7, Keras2.3, and Tensorflow2.1. 

The number of samples was 10 299, 70% was ran-

domly selected as the training set, while 30% was 

the test set, and the experimental data is sent to the 
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model training in batches, and the batch size is 32 

data samples. The number of training rounds of the 

model is set to 30 and the adaptive learning rate 

optimization algorithm Adam is used and the learn-

ing rate is set to 0.001. 

(1) Optimal structural parameter selection of 

gait deep learning classification model 

In order to accurately optimize and design the 

structure of the gait deep learning classification 

model proposed in this paper and improve its per-

formance, this paper first quantitatively evaluates 

the number of convolutional layers and the number 

of neurons in the long short-term memory network 

selected by the proposed model optimization. The 

selection result of the convolutional neural network 

convolutional layer is shown in Figure 2. From 

Figure 2, when the number of convolutional layers 

increases from 1 to 3, the accuracy of the model 

gradually increases. When the number of convolu-

tional layers is 3, the classification accuracy is the 

largest which up to 92.1%. But when the number of 

convolutional layers increase to 4 and 5, the classi-

fication accuracy decreases significantly. The re-

sults show that when the number of convolutional 

layers is 3, the gait fusion deep learning classifica-

tion model proposed in this paper can obtain more 

gait characteristic information closely related to gait 

pattern changes through the wearable sensing ac-

celeration and gyroscope gait data, which effec-

tively improves the classification performance of 

the model. However, when the number of convolu-

tional layers increases to 4 and 5, it is difficult to 

obtain some representative feature information from 

wearable sensing gait data, which may lose some 

useful gait feature information and reduce the clas-

sification performance of the model. 

The results of selecting the number of neurons 

in the optimal LSTM model are shown in Figure 3, 

and it can be seen from Figure 3 that when the 

number of neurons increases from 16 to 256, the 

selection of different neurons affects the classifica-

tion performance of the gait pattern of the mod-

el.When the number of neurons is 32, the classifica-

tion accuracy is the largest, reaching 92.3 %.When 

the number of neurons increases from 32 to 256, the 

classification accuracy decreases significantly.The 

results show that when the number of neurons is 32. 

The proposed model can obtain more time-related 

feature information closely related to gait changes 

from the local features of wearable sensor gait data 

space, which significantly improves the classifica-

tion performance of the proposed model. 

Figure 2. The effect of the number of convolutional layers on 

classification accuracy. 

Figure 3. The effect of LSTM neuron number on classification 

accuracy. 

(2) Gait classification performance evaluation 

results of CNN-LSTM model 

The classification performance evaluation re-

sults of the CNN-LSTM gait deep integration 

learning model based on the optimal parameters 

taken in this paper are shown in Table 2. It can be 

seen from Table 2 that the proposed model can 

identify 6 different gait modes with good classifica-

tion performance, with an average accuracy of 

91.45% and an average recall rate of 91.53%. In 

comparison, the “lying” gait mode has the highest 
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accuracy rate of up to 99%, which shows that the 

deep-depth learning model proposed in this paper 

can effectively obtain the time-space gait character-

istic information closely related to the “lying” gait 

mode from the wearable sensing acceleration and 

gyroscope gait data, can effectively improve its 

mode identification performance. However, the ac-

curacy of the “standing” gait mode is the lowest, 

only 80.94%, and the recall rate of the “sitting” gait 

mode is the lowest, only 81.06%, and these results 

show that it is difficult for the model proposed in 

this paper to obtain time-space gait related charac-

teristic information closely related to the “sitting” 

and “standing” gait mode from the wearable sens-

ing acceleration and gyroscope gait data, which 

may be due to the gait data acquisition process of 

wearable single sensor gait collector is difficult to 

capture the relevant information of the “sitting, 

standing” gait mode. 

Table 2. 6 gait patterns classification results

Gait pattern 

Prediction sample 

Recall rate 

(%) 
Lying Sitting Standing Walking 

Going down-

stairs 

Going up-

stairs 

Real sam-

ple 

Lying 510 0 24 3 0 0 94.97 

Sitting 3 398 82 1 0 7 81.06 

Standing 0 82 450 0 0 0 84.59 

Walking 0 0 0 472 24 0 95.16 

Going down-

stairs 
0 0 0 1 418 1 99.52 

Going upstairs 0 0 0 0 24 447 94.90 

Accuracy rate (%) 99.42 82.92 80.94 98.95 89.70 98.24  

 

In addition, based on the same gait data, this 

paper selected a gait classification model based on 

traditional machine learning algorithms (such as 

decision tree, KNN, support vector machine, etc.) to 

further evaluates the superior performance of the 

proposed model, and its comparative classification 

performance is shown in Table 3. From Table 3, 

the accuracy, precision, and recall rate of the gait 

deep integration learning model proposed in this 

paper were the highest, which can reach 91.5%; 

Secondly, the accuracy, precision, and recall rate of 

the KNN gait classification model were about 90%, 

while the accuracy, precise, and recall rate of the 

support vector machine were all less than 90%, and 

the accuracy, precise, and recall rate of the decision 

tree gait classification model were the lowest, 

which was only 86%. 

Table 3. Comparison result of gait classification with 

traditional machine learning algorithms (%) 

Method Accuracy Precision Recall 

Decision tree 

algorithm 
86.36 86.31 86.01 

Support vector 

machine 
86.09 88.11 85.48 

KNN algorithm 90.46 91.06 89.96 

CNN-LSTM 

model 
91.45 91.54 91.53 

The above results show that the classification 

performance of the CNN-LSTM gait deep fusion 

learning model proposed in this paper is signifi-

cantly better than that of the traditional machine 

learning gait classification model, and the funda-

mental reason is that the model proposed in this 



Tan and Wu 

39 

paper can make full use of the excellent characteris-

tics of the most presentative data obtained by the 

CNN and LSTM deep-integration learning algo-

rithms, effectively obtain the most representative 

time-space correlation gait characteristics from 

wearable sensing acceleration and gyroscope gait 

data, and significantly improve the gait classifica-

tion performance. However, the traditional machine 

learning gait classification model can only obtain 

local spatial and temporal gait characteristics based 

on the linear model, and it is difficult to obtain the 

most representative time-space correlation gait 

characteristics from wearable sensing acceleration 

and gyroscope timing gait data, which affects its 

classification performance. 

In addition, in order to further evaluate the ef-

fectiveness of the proposed model, based on the 

above-mentioned same gait data, the proposed 

model is compared with other traditional deep 

learning models (such as CNN, RNN[20], LSTM, 

GRU[21] and other models), and the comparison re-

sults are shown in Table 4. From Table 4, it can be 

seen that the gait classification performance of the 

CNN-LSTM model proposed in this paper is sig-

nificantly better than other traditional deep learning 

gait classifications performance. In comparison, the 

gait classification performance of the RNN network 

model is poor, and the accuracy, precision, and re-

call rate are only about 70%, which is due to the 

fact that the RNN network learning model is diffi-

cult to obtain the most spatial and time-related gait 

characteristic information in the gait time series; 

The accuracy, precision, and recall rate of CNN, 

GRU and LSTM learning models are about 88%, 

and although their gait classification performance 

is better than the RNN network learning model gait 

classification performance, it is significantly lower 

than the gait classification performance of the 

CNN-LSTM fusion learning model mentioned in 

this paper, and the fundamental reason is that: the 

gait classification model based on traditional CNN 

deep learning can only obtain the most representa-

tive local spatial gait characteristic information in-

herent in gait time series data; The gait classifica-

tion model based on traditional LSTM and GRU 

deep learning can only obtain the most representa-

tive time-correlated gait characteristic information 

inherent in wearable gait time series data. The limi-

tation of the above two traditional deep learning 

gait classification models is that difficult to obtain 

the most representative time-space correlation gait 

feature information in the wearable gait time series 

data. However, the CNN-LSTM fusion deep learn-

ing gait classification model proposed in this paper 

can fully integrate CNN and LSTM with excellent 

characteristics to obtain the inherent spatial and 

temporal correlation characteristic information of 

gait time series, effectively obtain the most repre-

sentative time-space correlation gait feature infor-

mation of wearable gait time series data, and make 

up for the limitations of traditional CNN and LSTM 

deep learning models in obtaining the most repre-

sentative gait feature information of gait time series 

data which can effectively improve gait classifica-

tion performance based on wearable gait sensing 

data. 

Table 4. Comparison results of gait classification with similar 

deep learning algorithms (%) 

Method Accuracy Precision Recall 

RNN model 73.94 75.81 67.14 

CNN model 88.73 88.84 88.81 

GRU model 89.28 89.40 89.35 

LSTM model 89.82 90.14 89.72 

CNN-LSTM model 91.45 91.54 91.53 

4. Conclusions

In this paper, a new model for gait  pattern 

deep learning fusion discriminant based on weara-

ble sensing data is proposed, which can fully inte-

grate the excellent characteristics of the most rep-

resentative spatiotemporal characteristics of the 

data obtained by the convolutional neural network 

and the long short-term memory neural network 

deep learning model, and effectively obtain the 

most representative spatiotemporal correlation gait 

characteristics from the wearable sensor accelera-

tion and gyroscope gait data, significantly improve 

the classification performance of wearable gait 

mode. It provides a reliable reference for further 

research of wearable multi-sensor gait mode deep 

learning classification. 
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