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Abstract: 
Objective Acute kidney injury (AKI) is one of the most common complications and fatal factors 

in intensive care unit (ICU). Accurate prediction of AKI risk and identification of key factors related to 
AKI can provide effective guidance for clinical decision-making and intervention for patients with AKI 
risk. Methods A total of 30 020 patients in ICU (including 17 222 AKI patients and 12 798 Non-AKI 
patients) were selected from the public database MIMIC-III in this study, and basic information, 
physiological and biochemical indicators, drug use, and comorbidity during their stay in ICU were 
collected. All patients were randomly divided into training sets and independent testing sets according 
to the ratio of 4:1, and logistic regression, random forest, and lightgbm were applied to construct models 
for AKI predication in three time points including 24 h, 48 h and 72 h, respectively. The 10-fold cross 
validation was used to train and validate various models to predict the occurrence of AKI, and obtain 
important features. Furthermore, 24 h prediction models were used to predict AKI every 24 h during the 
7-day window. Results lightgbm achieved the best performance with AUC values of 0.90, 0.88, 0.87 for
24 h, 48 h, and 72 h prediction, respectively, and F1 values were 0.91, 0.88, and 0.86. In prediction of
every 24 h, the success rates of identifying AKI patients were 89%, 83%, and 80% in one day, two days
and three days in advance, respectively. It was found that the length of stay in ICU, body weight, albumin,
systolic blood pressure, bicarbonate, glucose, white blood cell count, body temperature, diastolic blood
pressure and blood urea nitrogen played vital roles in predicting AKI for ICU patients. Using only 24
important features, the models could still achieve prominent prediction performance. Conclusions
Based on basic information, physiological and biochemical indicators, drug use, and comorbidity,
machine learning methods can be adopted to effectively predict AKI risk for ICU patients at several time
points, and determine the dominant factors relative to AKI.
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0 Introduction 

Acute kidney injury (AKI) is common in 
intensive care unit (ICU) patients, with high 
incidence rate and mortality [1-2]. KDIGO 
(kidney disease: The specific criteria for AKI in 
the AKI clinical practice guidelines [3] published 
by improving global outcomes are: Increase of 
serum creatinine ≥ 26.5 within 48 h μmol/L or 
the serum creatinine increased to more than 1.5 
times of the baseline value within 7 days, or the 
urine volume was less than 0.5 ml/(kg · h) and 
the duration was not less than 6 h. Studies have 
shown that AKI leads to higher treatment costs, 
adverse clinical reactions and the development 
of chronic kidney disease in ICU patients [3], and 
is an independent influencing factor of high 
mortality in ICU patients [4-5]. 

As serum creatinine is a non-specific 
marker of AKI, the diagnosis of AKI has a 
certain lag [6], and the clinical urine volume is 
not easy to monitor and the operation error is 
large, so looking for important clinical factors 
affecting AKI and making early prediction is the 
key to timely intervention and guiding treatment 
of AKI risk patients in ICU. So far, there are 
usually two methods for early prediction of AKI: 
one is to find specific biomarkers, and the other 
is to establish risk prediction models based on 
statistics or machine learning methods. The 
clinical application of biomarkers is limited due 
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to the high cost of the method, the small number 
of samples that can be included and the large 
impact of individual differences. 

With the establishment of open source 
critical care database and the popularization of 
electronic health records (EHR) in hospitals, the 
availability of clinical data of ICU patients has 
been continuously improved [7], thus providing 
sufficient data support for AKI prediction 
research, and relevant research has gradually 
increased. For example, Haines et al. [8] 
collected the demographic information of 830 
patients in the ICU of the Royal Hospital in 
London and the hematological indicators within 
24 hours after admission, and used logistic 
regression to predict AKI. The results showed 
that the area under curve (AUC) value of the 
receiver operator characteristic curve (ROC 
curve) predicted AKI 1~3 was 0.70, and the 
AUC value predicted AKI 2~3 was 0.91. 
Malhotra et al. [9] collected the demographic 
information, complications, vital signs, 
hematological indicators and intervention 
measures of 207 patients in ICU of two 
independent hospitals, and used multivariable 
regression analysis to predict AKI. The AUC 
value of the independent test set was 0.81. Some 
scholars also use the open source critical care 
database to predict AKI. For example, Li 
Qianhui [10] extracted vital signs and 
hematological indicators of 1690 patients (840 
AKI patients) from the medical information 
mart for intensive care (mimic) critical care 
database, and used logistic regression, adaboost 
and multi-layer perceptron models to predict 
AKI early. The results showed that the multi-
layer perceptron had the best performance, with 
an f1.5 score of 0.944. 

Zhang Yuan et al. [11] extracted the 
demographic information, vital signs and 



 

 

hematological indicators of 1166 patients (884 
AKI patients) from the mimic database. They 
used logistic regression, random forest and 
lightgbm models to predict the 24 hours before 
AKI. They found that the lightgbm model was 
the best, and the AUC value was 0.92. 
Zimmerman et al. [12] extracted the demographic 
information of 23950 patients in the mimic 
database and the vital signs, hematological 
indicators and intervention measures within 24 
hours after admission. They used logistic 
regression, random forest and multi-layer 
perceptron to make early prediction of AKI. The 
average AUC value was 0.783. 

At present, the research on AKI prediction 
of ICU patients mainly has the following 
deficiencies: (1) The included sample size is 
insufficient, especially the sample size of AKI 
patients is generally small, which makes the 
model unreliable; (2) Inadequate utilization of 
clinical or database information, and possible 
omission of important influencing factors; (3) 
The prediction time is not timely, and the 
continuous early warning function is lacking, 
which leads to the clinicians do not have enough 
time to intervene. 

In view of the above shortcomings, based 
on the demographic information, admission 
information, medication use, vital signs, 
hematological indicators, critical illness score, 
complications, intervention measures and other 
8 types of clinical information of 30020 ICU 
patients, the study randomly divided the training 
set and independent test set according to 4:1, and 
separately applied three machine learning 
algorithms, namely, logistic regression, random 
forest and lightgbm, to establish AKI prediction 
models at 24 h, 48 h and 72 h, Evaluate, compare 
and analyze the performance of different models, 
and use the optimal model for continuous 24-h 
prediction to identify the important factors 
related to AKI events. 

1 Research data 

1.1 Data source 

The data used in this study are from the 
mimic-iii database [13]. Mimic-iii is a public and 
free multi parameter intensive care database 
provided by MIT, which contains the 
hospitalization records of 46520 patients 
admitted to the ICU of Beth Israel Deaconess 
Medical Center in Boston from June 1, 2001 to 
October 31, 2012. It has the characteristics of 
large sample size and rich clinical information. 

1.2 Data filtering 

Inclusion criteria: age > 18 years; ICU 
length of stay > 24 h. Patients with the following 
complications were excluded: kidney stones; 
Ureteral calculi; renal carcinoma; Carcinoma of 
renal pelvis; Urinary tract obstructive disease. 
The first measured creatinine value belongs to 
the normal range (31.8~116.0 μmol/L), with the 
first measured creatinine value as the baseline 
creatinine value; For patients whose creatinine 
value does not fall within the normal range for 
the first time, 116.0 is taken on the premise of 
excluding chronic kidney disease μmol/L as the 
baseline creatinine value; Patients who have 
been in ICU for many times, if the time interval 
between two consecutive ICU stays exceeds 48 
hours, will be included according to different 
samples. 

According to the above criteria, 30020 
patients were finally included, including 17222 
AKI patients, accounting for 57.4%. 

1.3 Variable inclusion 

(1) Demographic information: age, sex, 
body mass, height. 

(2) Admission information: admission 
mode and ICU type. 

(3) Drug use: antibiotics, diuretics, 
tacrolimus, rifampicin, amphotericin, cisplatin. 



 

 

(4) Vital signs: mean arterial pressure, heart 
rate, respiratory rate, systolic blood pressure, 
diastolic blood pressure, body temperature. 

(5) Health score of critically ill patients: 
Elixhauser comorbidity score､SAPS II､SOFA 
score､APSIII. 

(6) Complications: hypertension, diabetes, 
myocardial infarction, heart failure, sepsis, 
cancer. 

(7) Hematological indicators: creatinine, 
hemoglobin, albumin, ph, bicarbonate, alkali 
residue, lactic acid, potassium, chlorine, sodium, 
white blood cell count, glucose, blood urea 
nitrogen, bilirubin. 

(8) Interventions: mechanical ventilation 
and renal replacement therapy. 

Among them, the admission modes include 
electric (planned admission), emergency 
(emergency, not life-threatening) and 
emergency (emergency, life-threatening); ICU 
types include SICU, MICU, CCU, tsicu and 
CSRU; "0/1" for complications and intervention 
measures, 0 for none, 1 for yes; In the score of 
critical patients, Elixhauser comorbidity score is 
the score for patients' complications, SAPS II is 
the simplified acute physiology score, SOFA 
score is the score for organ failure, and APS III 
is the score for acute physiology and chronic 
health status. 

1.4 Data collection time window 

In this study, AKI was predicted 24 hours, 
48 hours and 72 hours in advance. Referring to 
the data collection methods of Peng et al. [14], for 
patients with AKI, the data collection range is 
from entering ICU to 24 hours, 48 hours and 72 
hours before AKI; For non AKI patients, the data 
collection range is 24 hours, 48 hours and 72 
hours before entering the ICU and leaving the 
ICU. The data collection window is shown in 
Figure 1. 

1.5 Feature construction 

According to the time window of data 
collection, after obtaining the characteristic 
parameters, the first test value, minimum value, 
maximum value, mean value, standard deviation, 
etc. Of vital signs and hematology indicators 
within the time window are calculated 
respectively, and the statistical characteristics 
are included in the characteristic queue to reflect 
the statistical distribution characteristics of the 
characteristics. Finally, the characteristic 
dimension is 102. 

 

Time of entering ICU 
3 days before Aki 
2 days before Aki 
1 day before Aki 
Time out of ICU 
Data collection window... H in advance 

Figure 1 data collection windows for AKI patients and 
Non-AKI patients 

2 Research methods 

2.1 Logistic regression 

Logistic regression [15] is a classical 
generalized linear analysis model. 

If x and θ､ H and Y respectively represent 
training data, model parameters, predictive 
output function and real label, so the 
classification problem is actually a Bernoulli 
distribution: 

  (1) 

  (2) 

( 1 ; ) ( )P y x h xqq= =∣
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Equations (1) and (2) can be combined into: 

  (3) 

Take the maximum likelihood of equation 
(3) as the objective function: 

  (4) 

Applying gradient descent method to L(θ) 
Find the logarithm, and then compare the model 
parameters θ to find partial derivatives. 

Different from linear regression, logistic 
regression maps the continuous value predicted 
by linear equation into two discrete values of 1 
/0 by introducing a monotonically differentiable 
sigmoid function as the output function. 

The calculation cost of logistic regression 
is not high, and it is easy to understand and 
implement. However, it is sensitive to the 
multicollinearity of independent variables in the 
model, easy to under fit, low classification 
accuracy, and difficult to deal with the problem 
of data imbalance. 

 

Original training set 
Random sampling with return 
Training set 1 
Training set 2 
Training set K 
Select m features for each training set 
Sorter 1 
Sorter 2 

Classifier K 
Voting for optimal classification 

Figure 2 Flowchart of random forest 

2.2 Random forest 

The random forest [16] takes the decision 
tree as the basic classifier, uses the bagging idea 
of ensemble learning, randomly selects data 
subsets and features from the original data set 
through random sampling with return, and 
constructs multiple decision trees for 
classification. The output category is the mode 
of the output category of a single tree. 

By combining multiple classifiers, random 
forest can often obtain better generalization 
performance than a single learner, but it is easy 
to over fit on noisy data. The algorithm flow 
chart of random forest is shown in Figure 2. 

2.3 Lightgbm 

Lightgbm (light gradient boosting machine) 
is an optimization of gradient boosting decision 
tree (gbdt) [17], which mainly includes two 
algorithms: gradient based one side sampling 
(Goss) and exclusive feature bundling (EFB). 

Goss algorithm distinguishes the training 
data of different gradients, and randomly 
samples the smaller gradient data while 
retaining the larger gradient data, so as to reduce 
the amount of calculation and improve the 
operation efficiency. Define o to represent the 
training set of a fixed node. The training set 

instance is , the feature dimension 

is s, the segmentation feature is j, and the 
information gain is V[17]. At each gradient 
iteration, the negative gradient direction of the 
loss function of the model data variable is 

expressed as , then the information 

gain of the segmentation feature j at the 
segmentation point d is: 

( ) ( )1( ) 1 ( )y yP h x h xq q
-¢ = -

( )( ) ( )( )1
1

( ) 1
i in y yi iL h x h xq qq
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  (5) 

In Goss algorithm, the training data are first 
sorted in descending order according to the 
gradient of the data. The data of the first a% with 
the largest gradient is reserved as data subset a, 
and then the data subset B is obtained by random 
sampling from the remaining data. 

EFB reduces feature dimensions through 
feature bundling to improve computing 
efficiency. The number of original features is 
feature, and the number of combined features is 
bundle. The feature complexity of this method 
ranges from O1 (data × Feature) to O2 (data × 
Bundle), because the bundle is much smaller 
than the feature, the model can greatly accelerate 
the training process of gbdt without affecting the 
final accuracy. 

In addition, lightgbm discretizes the 
continuous floating-point eigenvalues into k 
integers to construct a histogram with a width of 
K. After traversing the data once, the histogram 
accumulates the statistics required for 
discretization, and then when splitting the nodes, 
it can find the best segmentation point according 
to the discrete values on the histogram to reduce 
the consumption of memory. Lightgbm also 
discards the level wise decision tree growth 
strategy used by most gbdts, and uses the leaf 
wise strategy with depth constraints, which can 
reduce more errors and obtain better accuracy 
under the same splitting times. 

2.4 Performance evaluation index 

Accuracy, sensitivity, F1 value and AUC 
were used as evaluation indicators. 
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  (7) 

  (8) 

Where: True negative (TN), called true 
negative rate, indicates the actual number of 
negative samples predicted to be negative 
samples; False positive (FP), called false 
positive rate, indicates the number of samples 
that are actually negative samples and predicted 
to be positive samples; False negative (FN), 
called false negative rate, indicates the number 
of samples that are actually positive samples and 
predicted to be negative samples; True positive 
(TP), called true positive rate, indicates the 
number of samples predicted to be positive 
samples. 

3 Experimental results 

3.1 Prediction results 

30020 patients were randomly divided into 
training set and independent test set according to 
4:1. The number of training set and independent 
test set were 24016 (including 13778 AKI 
patients and 10238 non AKI patients) and 6004 
(including 3444 AKI patients and 2560 non AKI 
patients) respectively. In the model training 
phase, ten fold cross validation is used. After the 
training, the performance of the trained model is 
evaluated by using independent test sets. 

The results of ten fold cross validation and 
independent test set of each model are shown in 
Table 1 and Table 2. When different models 
predict the same time point, except that the 
logistic regression model has the highest AKI 
sensitivity after 24 hours, the performance of 
logistic regression, random forest and lightgbm 
models increases in turn; As the prediction time 
point increases from 24 h, 48 h to 72 h, the 
prediction difficulty increases, and the 
prediction performance of the same model 
decreases gradually. Lightgbm has high 
accuracy and sensitivity, and the difference is 
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Table 1 Results of 10-fold cross-validation of different time points 

Forecast time Model Accuracy (95%ci) Recall rate (95%ci) F1 value (95%ci) AUC (95%CI) 

24 h 
Logistic 

regression  
0.69 (0.68-0.70) 0.93 (0.92-0.94) 0.79 (0.78-0.80) 0.82 (0.81-0.83) 

 Random forest 0.88 (0.87-0.89) 0.88 (0.87-0.89) 0.88 (0.87-0.89) 0.94 (0.93-0.95) 
 Lightgbm 0.92 (0.91-0.93) 0.89 (0.88-0.90) 0.90 (0.89-0.91) 0.96 (0.95-0.97) 

48 h 
Logistic 

regression  
0.71 (0.70-0.72) 0.82 (0.81-0.83) 0.76 (0.75-0.77) 0.80 (0.79-0.81) 

 Random forest 0.88 (0.87-0.89) 0.85 (0.84-0.86) 0.86 (0.85-0.87) 0.93 (0.92-0.94) 
 Lightgbm 0.90 (0.89-0.91) 0.86 (0.75-0.87) 0.88 (0.87-0.89) 0.94 (0.93-0.95) 

72 h 
Logistic 

regression  
0.82 (0.81-0.83) 0.40 (0.39-0.41) 0.54 (0.53-0.55) 0.80 (0.79-0.81) 

 Random forest 0.86 (0.85-0.87) 0.81 (0.79-0.83) 0.83 (0.82-0.84) 0.92 (0.90-0.94) 
 Lightgbm 0.86 (0.78-0.94) 0.84 (0.79-0.89) 0.84 (0.80-0.88) 0.94 (0.93-0.95) 

 
Table 2 Results of independent test sets at different time points 

Forecast time Model Accuracy rate Recall  F1 value AUC 
24 h Logistic regression  0.67 0.94 0.79 0.66 

 Random forest 0.88 0.89 0.89 0.86 
 Lightgbm 0.92 0.89 0.91 0.90 

48 h Logistic regression  0.71 0.84 0.77 0.72 
 Random forest 0.89 0.85 0.87 0.86 
 Lightgbm 0.91 0.86 0.88 0.88 

72 h Logistic regression  0.82 0.35 0.50 0.65 
 Random forest 0.87 0.81 0.84 0.86 
 Lightgbm 0.87 0.84 0.86 0.87 

 
 

small. The random forest is also similar. 
Therefore, the F1 value and AUC value of the 
two are also high, but the accuracy and 
sensitivity of the logistic regression are quite 
different, that is, the logistic regression can not 
effectively balance the precision and recall, and 
its F1 value and AUC value are low. Through 
comprehensive comparison, lightgbm's 
prediction performance formula at three time 
points: True negative (TN), called true negative 
rate, indicates the actual number of negative 
samples predicted to be negative samples; False 
positive (FP), which is called false positive rate, 
indicates that in fact, it is the best to predict 

positive samples from negative samples. On the 
independent test set, the AUC values of AKI 
predicted at 24 h, 48 h and 72 h are 0.90, 0.88 
and 0.87 respectively. The ROC curves 
predicted by different models at different time 
points are shown in Figure 3. 
Lightgbm with the best performance is used to 
predict AKI patients for 24 hours continuously, 
that is, from the first day of admission to ICU, 
the risk of AKI after 24 hours is predicted, and 
on the second day, according to the data of the 
same day and before that day, the risk of AKI is 
predicted for 24 hours until being transferred out 
of ICU. Take the time of clinical diagnosis of 



 

 

AKI minus the time when the model first 
predicts the success of AKI as the lead time 
(days), and count the days and proportion of 
successful prediction (Table 3). Table 3 shows 
that the success rate of lightgbm prediction for 
24 consecutive hours is high, and the success 
rate of AKI risk patients predicted 1, 2 and 3 
days in advance is 89%, 83% and 80% 
respectively. When 1587 AKI patients were 
diagnosed according to KDIGO standard, the 
model could know that 1272 of them had AKI 
risk 3 days in advance. At this time, clinicians 
were given 3 days to intervene. 

T 
able 3 Success rates of AKI prediction of 1-3 days in 

advance using lightgbm 

Forecast 
days in 
advance 

Number of 
AKI 

patients 

Number of 
successful 
forecasts 

Success 
rate 

1 3 444 3 079 0. 89 
2 2 695 2 240 0. 83 
3 1 587 1 272 0. 80 

3.2 Important features 

Feature importance can reflect the 
contribution of each feature to the prediction 
ability of the model. According to the number of 
times the features are used in the model training 
process, all feature weight lists of lightgbm at 
the three time points of 24 h, 48 h and 72 h are 
obtained, and the top 35 features are selected, as 
shown in Figure 4. 

Most of the leading features of the three 
time point prediction models are the same, 
Including length of stay, body mass, minimum 
body temperature, maximum/minimum 
leukocyte count, maximum bicarbonate, 
minimum glucose, maximum diastolic blood 
pressure, minimum/maximum blood urea 
nitrogen, APS III score, maximum body 
temperature/first measured value, first measured 
value of hemoglobin, first measured value of 

heart rate, minimum/maximum serum creatinine, 
maximum systolic blood pressure, first 
measured value of heart rate, 
maximum/maximum heart rate, 
maximum/maximum glucose/first measured 
value The first measured value of shrinkage 
pressure and the maximum value of chlorine. It 
is worth noting that in the three time point 
prediction models, the length of hospitalization 
and body mass are among the top 2, suggesting 
that these two indicators should be observed first 
in the early prediction of AKI; the maximum 
value of leukocyte count, the maximum value of 
bicarbonate and the minimum value of body 
temperature all rank in the top 10, which should 
be paid special attention; However, the 
importance of serum creatinine was not included 
in the top 10, indicating that the role of serum 
creatinine in the model was not ideal. Only 
creatinine as the diagnostic standard of AKI was 
not sensitive enough and had a certain lag. 

In order to further verify the role of 
important features and reduce the dimension of 
features, the lightgbm prediction model at 
different time points is trained and tested when 
only 24 important features are used. The results 
of the independent test set are shown in Table 4. 

 
Table 4 Prediction results of lightgbm using only 24 

important features 

Forecast 
time /h 

Accuracy 
rate 

Recall  Value AUC 

24 0. 89 0. 87 0. 89 0. 88 
48 0. 89 0. 85 0. 87 0. 86 
72 0. 86 0. 81 0. 85 0. 85 

According to the results in Table 4, when 
only 24 important features are used, the AUC 
values of lightgbm prediction model at 24h, 48h 
and 72h are 0.88, 0.86 and 0.85 respectively. 
Compared with the use of all features, the AUC 
value is reduced by no more than 2 percentage 
points. It shows that among all the 102 



 

 

dimensional features, 24 important features 
contribute most to the prediction performance of 
lightgbm model, and only the important features 

can be used to continuously and effectively 
predict AKI.

 

True positive rate 
False positive rate 

 Random forest 
logistic regression  

Figure 3 Comparison of the ROC obtained by three prediction models 
 

4 Discussion 

The experimental results show that among 
the three machine learning models, lightgbm 
model has the best performance, followed by 
random forest, and the logistic regression is poor. 
Lightgbm with the best performance can be used 
to continuously predict AKI risk patients, and it 
still has good performance when only important 
features are used. 

Compared with previous AKI prediction 
studies [8-12], the main advantages of this study 
are: (1) Include a large sample size. The total 
sample size and the number of AKI patients are 

larger than the relevant studies mentioned above. 
The sample balance is better and the results are 
more reliable. (2) Eight categories of clinical 
information are used to construct features, 
which reduces the possibility of missing key 
factors, reduces the dimension of features, and 
uses important features to predict, which further 
verifies the role of the important features 
obtained in this paper. (3) Three time point 
prediction models of 24 h, 48 h and 72 h have 
been established, and the continuous prediction 
of AKI risk patients can not only continuously 
monitor the patient's condition, but also reserve 
more time for clinicians to intervene and treat. 



 

 

 

Length of hospitalization 
Body mass 
Albumin_ First measured value 
Leukocyte count_ Maximum 
Systolic blood pressure_ minimum value 
Ammonia carbonate_ Maximum 
Glucose_ minimum value 
Leukocyte count_ minimum value 
Body temperature_ minimum value 
Diastolic blood pressure_ Maximum 
White urea ammonia_ minimum value 
Heart rate_ minimum value 
Albumin_ minimum value 
Apsiii score 
Body temperature_ Maximum 
Leucoglobin_ First measured value 
Blood urea ammonia_ First measured value 
Serum myometrium_ minimum value 
Systolic blood pressure_ Maximum 
Heart rate_ First measured value 
Serum creatinine_ Maximum 
Ammonia_ minimum value 
Blood urea ammonia_ Maximum 
Body temperature_ First measured value 



 

 

Heart rate_ Maximum 
Glucose_ Maximum 
Age 
Grape precision_ First measured value 
Systolic blood pressure_ First measured value 
Hemoglobin_ Maximum 
Bilirubin_ minimum value 
Alkali residue_ First measured value 
Potassium_ Maximum 
Mean arterial pressure_ Maximum 
Oxygen_ Maximum 
Features 

Figure 4 Top 35 important features obtained by lightgbm at three time points 
 
In the lightgbm 24-h prediction model, the 

top 10 features include length of stay in hospital, 
body mass, first measured value of albumin, 
maximum white blood cell count, minimum 
systolic blood pressure, maximum bicarbonate, 
minimum glucose, minimum white blood cell 
count, maximum body temperature and 
minimum blood urea nitrogen. Most of the top 
30 features in the three time point prediction 
models are the same. 

In ICU ward, the patients have been 
hospitalized for a long time, which indicates that 
the patients' health condition is severe and the 
disease is more complex, resulting in an increase 
in the potential risk of AKI. Body mass is the 
most common and easily available index. In the 
experimental data, the incidence of AKI 
increased by 3.74% for every 5 kg increase in 
body mass. 

Hypothermia can lead to decreased renal 
blood flow, impaired renal tubular function, and 
acidosis and alkalosis [18-19]. In ICU, more than 
40% of patients with hypothermia will have 
aki[18]. 

Leukocytes play an important role in 
inflammatory response, host defense and repair, 
and are one of the key immunological factors in 
the process of most organ injury. There is a U-

shaped relationship between leukocyte count 
and AKI risk. The high AKI risk caused by the 
decrease of leukocyte count may be attributed to 
the decrease of lymphocytes and monocytes, 
and the high AKI risk caused by the increase of 
leukocyte count may be attributed to the 
increase of neutrophils [20]. 

Bicarbonate in serum can help to increase 
the oxygen delivery to the kidney, and neutralize 
the acidosis in the kidney. Low bicarbonate 
levels will increase the risk of renal ischemic 
injury, especially in critical cases [21]. 

This study still has the following 
deficiencies: (1) The samples are from single 
center database, and the robustness of the model 
needs to be further verified by multi center data; 
(2) Only AKI and non AKI were predicted, and 
AKI was not predicted according to the kidgo 
diagnostic standard (level I-III). 

5 Conclusion 

Based on the mimic-iii database, this study 
extracted 8 types of clinical information of 
30020 patients, including demographic 
information, admission information, vital signs, 
critical illness score, complications, 
hematological indicators, medication and 
intervention measures. Three machine learning 



 

 

algorithms, namely, logistic regression, random 
forest and lightgbm, were used to establish AKI 
prediction models at three time points of 24 h, 
48 h and 72 h, and to compare the prediction 
performance of different models and obtain 
important features. The results show that 
lightgbm has the best prediction performance, 
and has a recognition rate of up to 80% when 
continuously predicting AKI risk patients. It still 
has high performance when only using 
important features for prediction. The research 
results can provide continuous and effective 
prediction for the risk of AKI in ICU patients, 
clarify the important influencing factors, and 
provide important guidance for medical staff to 
carry out timely and reasonable intervention. 
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