Survey of Microbial Contamination Status in Terminal Equipment

Direct Drinking Water Sampled Yantai City

GONG Chun-bo, ZHENG Zhong, DONG Feng-guang, WANG Zhao-xia* (Yantai Center for Disease Control and Prevention, Yantai 264003, China)

Abstract: To investigate terminal equipment direct drinking water quality and sanitation status that sampled from community, school and home, and to provide evidence for the setting of standard, department supervision and consumer consumption. 232 samples were randomly sampled from community, school and home during June to November of 2019. The aerobic plate count, coliforms and Pseudomonas aeruginosa were detected in accordance with standard operating procedure provided by manual of China national food contamination and harmful factors risk monitoring 2019. The positive detection rates of aerobic plate count. Coliforms and Pseudomonas aeruginosa in 232 samples were 84.05%, 3.02% and 7.33%, respectively, the aerobic plate count was main contamination factor of fine drinking water, while Pseudomonas aeruginosa was the main pathogenic bacteria. The overall exceeded the standard rate of terminal equipment fine drinking water was 9.48%. The exceeded the standard rate ranked in order of high was the family, schools and community, compared the sampling link, which was 12.68%, 8.97% and 7.23%, respectively, and was not statistically significant between the groups ($\chi^2=1.36$, P>0.05). There was not seasonal variation regularity of the detection rate to the aerobic plate count, coliforms and Pseudomonas aeruginosa. The was different of exceeded the standard rate for every months, which was November > June > September > October > August > July, in order from higher to low, the exceeded the standard rate was 15.00%, 13.89%, 11.76%, 6.25%, 5.88% and 5.00%, respectively. There was not statistically significant between the groups ($\chi^2=4.47$, P>0.05). There were multiple contaminations of the aerobic plate count, coliforms and Pseudomonas aeruginosa in a single sample. The terminalequipment fine drinking water was commonly contaminated by aerobic plate count, coliforms and Pseudomonas aeruginosa, the aerobic plate count was the main pollution factor.

Keywords: Fine drinking water; Microbes; Contamination; Investigation; Analysis

About the author: Gong Chunbo (1971 -), male, deputy chief technician, master, majoring in food safety and food hygiene inspection. E-mail: gongchunbo@126.com

Corresponding author: wangzhaoxia (1970 -), female, chief technician, master, research direction: food safety and nutrition. E-mail: ytcdcmb@163.com

Water is an indispensable nutrient for various life forms. When the body's water intake is insufficient or the water carries germs or toxic substances, it will lead to disease and even death [1~3]. Water quality safety and health are highly valued by the state and society, and people's requirements for drinking water also constantly quality are improving. Therefore, direct drinking purified water that has been deeply treated and purified by drinking water equipment is favored. Convenient, hygienic and safe direct drinking water is accepted by more and more communities, schools and families [4, 5]. In particular, tap water is used as raw water. Terminal direct drinking water that has been deeply treated and purified by terminal direct drinking water equipment has become the first choice for families, schools and communities. However, at present, there is no national food safety standard for direct drinking water in China, and there is no unified supervision mode for the direct drinking water industry, which leads to the fact that the quality of direct drinking water cannot be fully guaranteed. In order to understand the microbial sanitary status of terminal direct drinking water, the total number of colonies, coliform and Pseudomonas aeruginosa were monitored in the terminal direct drinking water of families, communities and schools, in order to master its pollution status and level, and provide basis for the formulation of direct drinking water standards, department supervision and residents' drinking safety.

1 Materials and methods

1.1 Sample source

According to the division of administrative regions, 12 monitoring points are set up, and each monitoring point has 3 sampling links (families, communities and

schools). From June to November 2019, the direct drinking water prepared by the terminal direct drinking water equipment is taken as the collection object. A total of 232 samples are collected every month, covering 73 schools (39 primary schools, 32 middle schools, 2 universities), 54 communities and 50 families.

1.2 Sample collection method

According to the requirements of gb/t 5750.2-2006^[6] for the collection of terminal water, random sampling shall be conducted. Before sampling, apply a 75% alcohol cotton ball to the faucet outlet for disinfection. After the faucet is turned on for 5min under normal water discharge state, aseptically collect 0.5L water sample and put it into a water sample collection bag (containing 0.4mg sodium thiosulfate), store and transport it at low temperature, submit it for inspection, and test it within 4H.

1.3 Test method

According to the inspection standard operating procedures ^[7] specified in the 2019 national food pollution and hazardous factor risk monitoring manual, the total number of colonies, coliform and Pseudomonas aeruginosa (Quantitative) were detected. Total bacterial count shall be in accordance with GB 4789.2-

In 2016, the first method was plate counting method, and the detection limit of the method was 1cfu/ml^[8]; coliform group was detected by MPN counting method in accordance with GB 4789.3-2016 method 1, with detection limit of 3mpn/100ml^[9]; pseudomonas aeruginosa was detected by the filter membrane method in accordance with GB 85382016, and the detection limit of the method was 0cfu/250ml^[10]. Below the method detection limit is defined as "not detected (nd)".

1.4 Judgment criteria

According to cj94-2005, coliform bacteria shall not be detected per 100ml water sample as the judgment basis [11]. Pseudomonas aeruginosa is judged according to the limit value of 0cfu/250ml specified in GB 19298-2014 [12]. If one index of each water sample exceeds the specified limit value, it is determined as exceeding the standard sample.

1.5 Statistical analysis

Excel 2019 software is used for data entry, origin 2017 software is used for data statistical analysis, chi square test is used for rate test, and the test level is a= 0.05.

2 Results and analysis

2.1 Microbial pollution of direct drinking water

In 232 samples of terminal direct drinking water, the detection rates of total bacterial count, coliform group and Pseudomonas aeruginosa were 84.05%, 3.02% and 7.33% respectively. The total bacterial count pollution was the main microbial pollution factor, and the

difference between the control groups was statistically significant (χ^2 =447.19, P<0.01). The numerical range of total bacterial count is 0~14, 000cfu/ml, with a median of 58cfu/ml; the median of Pseudomonas aeruginosa is 0cfu/250ml, with a numerical range of 0~140cfu/250ml (Table 1 and Table 2); the maximum value of coliform group is 66mpn/100ml, with a median of 3mpn/100ml (Table 1 and Table 2).

Comparison of sampling links: the total number of colonies and the detection rate of Pseudomonas aeruginosa from large to small: family > Community > school, comparison between groups, total number of colonies(χ^2 = 0.44. p > 0.05), pseudomonas aeruginosa($\chi^2=0.24$, p>0.05). Coliform bacteria were mainly detected in family and community samples, with detection rates of 7.04% and 2.56% respectively. The value range was 0~66cfu/ml, and the median was 0cfu/ml; no coliform bacteria were detected in school samples, comparison between groups, coliform bacteria(χ^2 =6.30, p<0.05) the difference was statistically significant (Table 1).

Table 1 Detection rate of microorganisms in direct drinking water from terminals at different links

	N	Total bacterial count			Coliform group			Pseudomonas aeruginosa		
Link		Detection rate	Median / (CFU/ mL)	Max / (CF U/mL)	Detection rate	Median/ (MPN/ mL)	Maximu m/ (MPN/ mL)	Detection rate	Median/ (CFU/250 ML)	Maximum / (CFU/250 ML)
Family	71	85.92%	60	12000	7.04%	ND^*	66	8.45%	ND	140
Commu nity	83	84.34%	50	11000	0.00%	ND	13	7.23%	ND	40
School	78	82.05%	59	14000	2.56%	ND	0	6.41%	ND	50
Total	23 2	84.05%	58	14000	3.02%	ND	66	7.33%	ND	140

According to the analysis of the monitoring sample collection month, the detection rate of total bacterial count, coliform

group and Pseudomonas aeruginosa did not show regular changes, and the microbial pollution degree in the samples varied in each month. The total bacterial count and Pseudomonas aeruginosa were detected in the samples in each month, but coliform group was not detected in the samples in August. The maximum detection rate of total bacterial count was 94.12% in September, and the lowest was 76.47% in August. The detection rate of Pseudomonas aeruginosa in the samples in June, september and November was the same, 11.11%, 11.76% and 12.50% respectively, which was the main pollution period. The highly polluted samples of coliform bacteria

were in June and October, and the detection rates were 5.56% and 4.17% respectively. The results showed that the samples in June were the main pollution time period, and the total colonies, number of coliforms and Pseudomonas aeruginosa were all at a high pollution level. Compared between months, the total number of colonies($\chi^2=5.75$, p> 0.05), coliform group($\chi^2=2.14$, p>0.05), pseudomonas aeruginosa($\chi^2=26.74$, p>0.05) there was no significant difference between the groups (Table 2).

Table 2 The positive rate of the microbe in terminal equipment fine drinking water from different month

		Tota	ıl bacterial	count	C	Coliform gro	oup	Pseudomonas aeruginosa		
Mont h	N	Detectio n rate /%	Median/	Maximum /	Detectio n rate /%	Median/	Maximum/	Detectio	Median/	Maximum/
	11		(CFU/mL			(MPN/mL	(MPN/mL		(CFU/250mL	(CFU/250mL
)	(CFU/mL)))))
6	36	83.33	102	10000	5.56	ND	66	11.11	ND	140
7	40	77.50	59	14000	2.50	ND	16	2.50	ND	16
8	34	76.47	54	12000	0.00	ND	0	5.88	ND	46
9	34	94.12	50	11000	2.94	ND	22	11.76	ND	10
10	48	85.42	121	660	4.17	ND	22	2.08	ND	10
11	40	87.50	33	12000	2.50	ND	13	12.50	ND	50
Total	23 2	84.05	58	14000	3.02	ND	66	7.33	ND	140

2.2 Microorganism exceeding standard in direct drinking water

According to the judgment standard, the overall over standard rate of 232 terminal direct drinking water was 9.48%, and the over standard rates of Pseudomonas aeruginosa and coliform were 7.33% and 3.02% respectively (Fig. 1). Comparison between groups($\chi^2=4.39$, difference p < 0.05), the was statistically significant, indicating that Pseudomonas aeruginosa was the main pathogenic microorganism hazard factor.

Considering the sample collection process, the over standard rate of terminal direct drinking water is family > School > community, 12.68%, 8.97% which are and 7.23% respectively. There is no significant difference between the groups($\chi^2=1.36$, p>0.05), which may be related to the maintenance and repair of terminal direct drinking water equipment (Table 3). There is no consistency in the over standard rate of Pseudomonas aeruginosa and coliform in the sample collection process. Pseudomonas aeruginosa is the most over standard in the family sample, and the school is the least over standard. The over standard rate of coliform is family > School > Community (Table 3).

CAN ENTITY TO SEE TO THE
Coliform group
Pseudomonas aeruginosa
Population

Fig. 1 The rate of the microbe above the maximum limit in terminal equipment fine drinking water

Table 3 The rate of the microbe above the maximum limit in terminal equipment fine drinking water from various sources

		V 4110 415 50	41005	
Total number		Excess rate of coliform group /%	Exceeding standard rate of Pseudomonas aeruginosa /%	Total
Family	71	7.04	8.45	12.68
School	78	2.56	6.41	8.97
Community	83	0.00	7.23	7.23

Comparing the sample exceedance rate of each month, the exceedance rate from large to small is

November >june >september >october >august >july, and there is no significant difference between the groups($\chi^2=4.47$, P>0.05). The exceedance rates of coliform and Pseudomonas aeruginosa in the samples varied from month to month. The largest exceedance rate of coliform was in June, which was 5.56%; the maximum exceeding standard rate of Pseudomonas aeruginosa was 12.50% in November (Table 4). group($\chi^2=2.14$, Coliform p > 0.05), aeruginosa($\chi^2=6.74$, pseudomonas p > 0.05) there was no significant difference between the groups in the month comparison of the over standard rate.

Table 4 Excessive microbial pollution in direct

		different months	

	Total	Excess	Exceeding	
Month	number	rate of	standard rate of	Total
Monu	of	coliform	Pseudomonas	/%
	samples	group /%	aeruginosa /%	
June	36	5.56	11.11	13.89
July	40	2.50	2.50	5.00
August	34	0.00	5.88	5.88
September	34	2.94	11.76	11.76
October	48	4.17	2.08	6.25
November	40	2.50	12.50	15.00

2.3 Multiple pollution of direct drinking water

In 232 samples, there were multiple pollution exceeding the standard for 2 or more microbial indicators, and the total number of colonies, coliform group and Pseudomonas aeruginosa exceeded the standard at the same time by 0.86% (2/232); all of them come from family samples; the samples are from June and September respectively, which may be related to the replacement frequency of equipment accessories. The simultaneous pollution rate of total bacterial count and coliform group was 1.72% (4/232), and two samples were taken from home and school, respectively, in July, october and November. The total number of colonies and the simultaneous pollution rate of Pseudomonas aeruginosa were 6.47% (15/232), and the community > School > family were 2.59% (6/232), 2.16% (5/232) and 1.72% (4/232) respectively, which were found in all months.

3 Discussion

At present, direct drinking water is mainly divided into pipeline direct drinking water and terminal direct drinking water. Pipeline direct drinking water has certain installation limitations, while terminal direct drinking water is to connect the direct drinking machine

directly with the tap water pipe and complete water treatment through the reverse osmosis membrane system in the drinking machine, which is more applicable and universal. It has become the mainstream drinking water method of direct drinking water for families, schools and communities [4, 5, 7], but its health quality is worrying. The average qualified rate of microbiological indicators of direct drinking water in Baotou City from 2009 to 2014 was 89.1%, mainly due to the excessive total number of colonies and coliform pollution [13]; the qualified rate of direct drinking water in Kaifeng area is 80.32%, and the total bacterial count is the main pollution exceeding standard factor [14]; the total qualified rate of water quality test results of piped direct drinking water in Haidian District of Beijing from 2014 to 2017 was 84.48%, and the unqualified items of microbial indicators were the total number of colonies and total coliform [15].

Among 232 samples monitored, the detection rate of total bacterial count was 84.05%, which was much higher than that of coliform and Pseudomonas aeruginosa. The total bacterial count was the main microbial pollution factor of direct drinking water, which was consistent with the relevant literature [13-15]. In view of the lack of sanitary standards for direct drinking water, the total number of colonies belongs to sanitary indicator bacteria, which will not affect public health in general, and excessive control of sanitary indicator bacteria and sterilization may lead to other health risks of direct drinking water [16], it is questionable to judge the quality of direct drinking water by the total number of colonies. Considering that GB 19298-2014 cancels the total number of colonies, it is determined that the quality of direct drinking water does not include the total number of colonies. The direct drinking water of families, communities and

schools is polluted by the total number of colonies and Pseudomonas aeruginosa, while the coliform group is mainly detected in the samples of families and communities, while the samples of schools are not detected, indicating that the management and maintenance of school direct drinking water equipment are better than those of families and communities. According to the judgment standard, the overall over standard rate of 232 terminal direct drinking water was 9.48%, and the qualified rate was the same as that reported in relevant reports [13-15], mainly due to the over standard of coliform and Pseudomonas aeruginosa, which were 3.02% and 7.33% respectively. In the comparison of sample links, the highest rate of exceeding the standard of household direct drinking water is 12.68%, which is higher than 7.23% in the community and 8.97% in the school, which may be related to the untimely maintenance and repair of terminal direct drinking water equipment. Compared with the sampling months, the exceeding standard rate is 15.00%, 13.89%, 11.76%, 6.25%, 5.88% and 5.00% from November >june >september >october >august >july, respectively. There is no seasonal regular change trend, which is contrary to the reports of Chen Lei [9]. The monitoring results showed that the direct drinking water samples in each month and link were contaminated Pseudomonas aeruginosa, with an overall pollution rate of 7.33%, and the highest pollution rate in November was 12.50%. The pollution rate of household samples was higher than that of communities and schools. Pseudomonas aeruginosa is a common environmental microorganism, which is widely distributed. It is also a food borne opportunistic pathogen. It has strong resistance to adverse environment and can lead to acute enteritis, meningitis, sepsis, skin inflammation and other

The pollution of Pseudomonas diseases. aeruginosa mainly comes from the production links [16, 17]. The high pollution rate of Pseudomonas aeruginosa in terminal direct drinking water may be related to the failure to disinfect the activated carbon filter element of the equipment in time. There are multiple pollution samples of the total number of colonies, coliform bacteria and Pseudomonas aeruginosa in the family samples, and the rate of exceeding the standard is 0.86%, which are all collected in the family link. It is possible that the maintenance of the household terminal direct drinking water equipment is not carried out in accordance with the specifications.

The monitoring shows that the total bacterial count in the terminal direct drinking water is the main pollution factor, and the pollution of coliform and Pseudomonas aeruginosa exceeds the standard. It is suggested to carry out water quality monitoring of terminal direct drinking water, obtain basic data and promote the formulation of relevant standards. Government departments straighten out the main body of supervision and implement supervision and management; the operating enterprise shall strengthen the self-discipline of the industry, maintain the equipment and replace the components in strict accordance with the requirements, so as to ensure the good operation of the equipment.

References:

- [1] GRANDJEAN A C, BARTRAM J K. Essential nature of water for health: Water as part of the dietary intake for nutrients and the role of water in hygiene[G]. Encyclopedia of Environmental Health. Amsterdam:Elsevier B.V, 2011.594-604.
- [2] Ingrid Ingegerd Rosborg Mineral substances in drinking water and their balance importance, health significance,

- safety measures [M]. Translated by duanliping, yanghaibo, he Tian, lipei Beijing: Science and Technology Literature Press, 2017:2
- [3] Nutrition in World Health Organization drinking water [M]. Maguansheng, zhang Na, translator Beijing: People's Health Publishing House, 2017:22
- [4] Liuzongyue, zhou Quan, lizongxin Thoughts and suggestions on the development of pipeline direct drinking water projects in China [J]. China water resources, 2019, 50 (15): 50-51
- [5] Pangxiaoyan, su Chengyuan, huangxiaoling, et al Investigation on health and safety of terminal direct drinking water produced by reverse osmosis membrane [J]. Environmental Science and management, 2011, 36 (9): 79-82
- [6] Jin Yinlong, e Xueli, chenyayan, et al Gb/t 5750.2-2006 Standard Test methods for drinking water collection and preservation of water samples [S]. Beijing: China Standards Press, 2006
- [7] National food safety risk assessment center 2019 national work manual on risk monitoring of food pollutants and harmful factors [M]. Beijing: national food safety risk assessment center, 2019: 24-27, 31-34, 230-236.
- [8] State health and Family Planning Commission of the people's Republic of China, state Food and drug administration GB 4789.2-2016 national food safety standard microbiological examination of food Determination of total bacterial count [S]. Beijing: China Standards Press, 2016
- [9] State health and Family Planning Commission of the people's Republic of China, state Food and drug administration

- GB 4789.3-2016 national food safety standard microbiological examination of food coliform count [S]. Beijing: China Standards Press, 2016
- [10] State health and Family Planning Commission of the people's Republic of China, state Food and drug administration GB 8538-2016. National food safety standard test method for drinking natural mineral water [S]. Beijing: China Standards Press, 2016
- [11] Wangzhansheng, fu Wenhua, lihaibo, et al CJ 94-2005. Drinking water quality standard [S]. Beijing: China Standards Press, 2005
- [12] The state health and Family Planning Commission of the people's Republic of China GB 19298-2014. National food safety standard packaged drinking water [S]. Beijing: China Standards Press, 2014
- [13] Duanxiangyang, gao Wei, liu Jun Analysis of microbial detection results of direct drinking water in Baotou City from 2009

- to 2014 [J]. Disease monitoring and control, 2016, 10 (3): 218-218
- [14] Chen Lei, ren Lijun, liu Jie, et al Analysis of microbial detection results of direct drinking water in Kaifeng, henan [J]. Public health and preventive medicine, 2017, 28 (5): 105-106
- [15] Liuxueying, chenhaiping, hu Ying Analysis of water quality test results of piped direct drinking water in Haidian District, beijing from 2014 to 2017 [J]. Applied preventive medicine, 2018, 24 (6): 69-70, 74
- [16] Wuqingping Application of food microbial safety risk database in packaged drinking water industry [J]. Beverage industry, 2015, 18 (2): 78-81
- [17] Zhangchunpeng, wang Bo Investigation on Pseudomonas aeruginosa contamination in packaging drinking water in Xuzhou [J]. Journal of food safety and quality inspection, 2019, 10 (8): 353-356