

Dynamic simulation of smoke diffusion and gas pollution

Tangyong ^{1,2,*}, zhenzhihua ^{1,2}, wangxinyu ^{1,2}, sunxudong ^{1,2}

(1. School of information science and engineering, yanshan University, qinhuangdao, hebei 066004;

2. Hebei Key Laboratory of computer virtual technology and system integration, qinhuangdao 066004,

china)

Abstract: Gas pollution is a common phenomenon in natural life. Aiming at the low efficiency of simulating smoke diffusion based on physical model and the poor effect of drawing gas pollution based on empirical model, a hybrid model method is proposed to draw the dynamic gas pollution caused by smoke diffusion. Firstly, the semi Lagrangian method is used to model the smoke, and the k-d tree is introduced to improve the computational efficiency; secondly, to solve the problem of insufficient details in smoke simulation, the fluctuating wind field based on linear filter method is introduced into the external force term to optimize the trajectory of smoke particles; the bidirectional shot function combined with the real smoke texture is selected for rendering to avoid the problem of obvious particle sense and significantly improve the smoke diffusion details; then, the optimized Gaussian plume model is introduced to establish the relationship between the physical model and the empirical model, and the pollution attenuation formula and the optimized Perlin noise are used to improve the lack of details of global gas pollution and increase the realism of gas pollution changes; by improving the time axis algorithm, the problem of fixed gas pollution color is solved, and the dynamic gradual gas pollution is obtained. Finally, several groups of analysis and comparison experiments are designed. The results show that this method can draw a realistic dynamic gas pollution scene in real-time.

Keywords: Smoke diffusion; Gas pollution; Physical model; Empirical model; Gaussian plume model

0 Introduction

Gas pollution is one of the common pollution in life, including fuel combustion, tail gas emission, industrial pollution, etc. Among them, the gas pollution caused by smoke diffusion has a great impact on daily life. Therefore, simulating gas pollution has important practical significance and broad application prospects. On the one hand, it is difficult to capture the smoke details because the smoke diffuses rapidly with time; on the other hand, it is difficult to establish a relationship between smoke diffusion and gas pollution, which is worthy of in-depth study.

In recent years, smoke simulation has been the focus of research at home and abroad. Since the method of simulating smoke motion was proposed by stam^[1] and fedkiw et al. ^[2] in 2003, smoke simulation has been more and more

Fund Project: supported by Natural Science Foundation of Hebei Province (f2018203060, f2019203494)

About the author: *Tangyong (1964-), male, born in Suining, Sichuan Province, doctor, Professor, doctoral supervisor, mainly engaged in computer graphics, virtual reality technology and application; Email: tangyong@ ysu. edu. cn.

widely used. The method of using physical models can usually truly show the details of smoke. Xie et al. ^[3] synthesized high-resolution smoke with real details through neural network training of low-resolution smoke, and applied it to different physical models, but its neural network training time is too long to achieve realtime; tang Yong et al. ^[4-5] proposed an improved spatial adaptive vortex restriction method to generate clear vortices

Smoke details; in the aspect of smoke path, the improved finite difference method is used to solve the N-S equation to speed up the solution. and the attraction and driving force are introduced to realize the large-scale smoke path simulation. The smoke and gas pollution simulation based on empirical model can quickly reach the real-time state, but it sacrifices the details of smoke and lacks realism. Lu Wei et al. [6] proposed a spherical fog rendering model, which combined with traditional Perlin noise to render hierarchical fog in real time through HDR; guo et al. [7] used Perlin noise to generate heterogeneous density distribution texture, and then used MRF model combined with atmospheric scattering perspective to evaluate rendering and draw heterogeneous fog image.

Therefore, this paper proposes a method of mixing empirical model and physical model to plot the dynamic gas pollution caused by smoke diffusion. Firstly, the smoke trajectory is optimized for the physical model, and the smoke particles are drawn based on physical rendering to improve the diffusion details; secondly, the relationship between smoke diffusion and gas pollution is established according to the air pollution theory, and the realistic and dynamic gas pollution is simulated according to the optimized empirical model.

1 Smoke simulation based on physical

model

In order to simulate the real smoke diffusion, the driving force in the semi Lagrangian method is improved, the vortex calculation process is optimized, and the real smoke effect is generated by combining the physical illumination model.

1.1 N-S equation construction physical model

Using semi Lagrangian method to simulate smoke particles can more realistically calculate the smoke diffusion movement. The momentum conservation equation and mass conservation equation are

$$\frac{\P u}{\P t} = -u \rtimes \tilde{\mathsf{N}}u - \frac{1}{r}\tilde{\mathsf{N}}p + v\tilde{\mathsf{N}}^2u + \tilde{\mathsf{N}}'\frac{1}{r}f \quad (1)$$
$$\tilde{\mathsf{N}} \rtimes u = 0 \qquad (2)$$

Where u is the velocity field of incompressible fluid, ρ Is the fluid density, p is the pressure, v is the viscosity coefficient, f is the fluid resultant force term, \tilde{N} and F is the gradient operator.

In the fluid resultant force term, the smoke simulation details are increased by introducing the vortex binding force. The calculation formula of the vortex field is

$$\boldsymbol{\omega} = \nabla \times \boldsymbol{u}, \qquad (3)$$

Of which, \times Represents a convolution operation. The generated vortex field is substituted into equation (1) to obtain the vorticity conservation equation

$$\frac{\partial \omega}{\partial t} = (\nabla u) \cdot \omega + (u \cdot \nabla) \omega + u \nabla^2 \omega + \frac{1}{\rho} \nabla \times f_{\circ}$$
(4)

According to Biot Savart formula, the velocity field is updated by the vortex field to realize the physical movement of real smoke particles.

1.2 Introduce k-d tree to improve calculation efficiency

After introducing vortex, the iteration of velocity field will be affected by multiple vortices, and the amount of calculation will increase significantly. K-d tree is introduced to reduce the amount of computation. Compared with octree, k-d tree has obvious advantages in spatial division, and the simulation efficiency is significantly improved.

Set the distance threshold according to the k-d tree segmentation point. If the distance from the particle to the segmentation point is less than the threshold, calculate the impact of each vortex on the particle's velocity field within the distance threshold. The formula for calculating the impact of a single vortex on the environment is

$$u = \frac{1}{4\pi} \int \frac{\omega \times r}{r^3} \mathrm{d}v_{\circ} \tag{5}$$

In order to simplify the calculation, the vortex is regarded as a point, which is transformed from integral to summation, and the velocity field can be approximately expressed as

$$u = \frac{1}{4\pi} \sum_{i=1}^{N} \frac{\omega \times r_i}{r_i^{3}}$$
(6)

$$\boldsymbol{w} = \bigotimes_{i=1}^{N} \boldsymbol{w}_{i} \tag{7}$$

$$\boldsymbol{L} = \mathop{\boldsymbol{a}}_{i=1}^{N} \boldsymbol{L}_{i} \boldsymbol{W}_{i}$$
(8)

In the calculation process, if the distance from the particle to the vortex is greater than the threshold, the vortex is regarded as a single vortex structure, while multiple vortex clusters less than the threshold are used to calculate the vortex position L by vector sum

1.3 Improve external force items to improve

sports details

In the process of calculating the external force, the vortex force alone can not provide more details. This paper improves the smoke diffusion trajectory by improving the wind force.

The wind in the space is usually
$$V_m$$

composed of V_w downwind, cross wind V_h and

vertical wind. Using Kaimal spectrum as the wind speed spectrum expression can better show the autocorrelation characteristics of the wind field than the height independent Davenport power spectrum. Therefore, in the calculation of wind speed, the pulsating wind is solved by Gauss process, and the expression of V (T) is obtained

$$v(t) = -\sum_{k=1}^{p} \boldsymbol{\psi}_{k}(t - k\Delta t) + \boldsymbol{N}(t)$$
(9)

Where p is the order of AR model, Δ T is

the time step of simulated wind speed Y_k time history, is the autoregressive matrix coefficient of AR model, and n (T) is the independent random process vector. According to the random vibration theory, the correlation function is obtained by using Wiener sinchin formula and the expected operation. R_N The specific

calculation formula is

$$\boldsymbol{R}_{N} = \boldsymbol{R}(0) - \sum_{k=1}^{p} \boldsymbol{\psi}_{k} \boldsymbol{R}(k\Delta t) \quad (10)$$

Through \boldsymbol{R}_N Cholesky matrix

decomposition, the random wind speed vector with time interval can be obtained, which can be brought into the wind term to improve the smoke trajectory.

1.4 Realistic rendering of smoke particles

As a non-uniform medium, smoke will produce scattering and reflection when light passes through it, as shown in Figure 1. Considering the real-time problem, the real smoke texture is combined with the physical bidirectional reflection distribution function to render more realistic smoke particles.

In this model, the outgoing emissivity is $L_0(v)$ equal to the product of the emissivity integral in all incident directions, the BRDF value, and the cosine value. The formula for calculating the outgoing emissivity is

(a) Schematic diagram of surface analysis
(b) Schematic diagram of light diffusion
Incident light
Scattered light
Reflected light

Fig.1 The scattering and reflection of light

The reflection term usually consists of subsurface scattering and reflection. The calculation formula of subsurface scattering is

$$f(I,v) = \frac{C_{\text{base}}}{\pi} (1 + (F - 1) (1 - nI))^{5} \cdot (1 + (F - 1) (1 - nv)^{5}) (12)$$

Of which, $F = 0.5 + 2r(hI)^2$

Calculation of highlights using Torrance sparrow micro panel model

$$f(I,v) = \frac{F(I,h)G(I,v,h)D(h)}{4(n,I)(n,v)}$$
(13)

The F(I,h) Fresnel reflection model is used to deal with the ratio of reflected light to G(I,v,h) incident light, the shadow D(h)masking function and the normal distribution function.

2 Gas pollution dynamic simulation

Considering the real-time, the method based on empirical model is used to simulate gas pollution, establish the relationship between smoke diffusion and gas pollution, and draw the real and dynamic pollution.

2.1 Build the relationship model between smoke and gas pollution

The pollutant height consists of the smoke cloud lifting height and the particle height. The smoke cloud lifting height is assigned according to the smoke particle height. The particle height adopts a linear height field. In order to build the relationship between smoke diffusion and gas pollution, the smoke modeling is combined with the air pollution theoretical model. In this paper, gaussian plume pollution model is introduced

$$X(x, y, z, t, k, H) = \frac{\exp(k)Q}{2\pi u\sigma_y\sigma_z}\exp\left(-\frac{y^2}{2\sigma_z^2}\right) \cdot \left\{\exp\left[-\frac{(C)1994-2021 \text{ China Academic Journ}}{2\sigma_z^2}\right] + \exp\left[-\frac{(z+H)}{2\sigma_z^2}\right]\right\},$$
(14)

Where, is X(x, y, z, t, H) the concentration in the vertical wind direction of X meters, the cross wind direction of Y meters, and Z meters away from the ground at time t, q represents the intensity of the pollution source, h is the effective height of dust, u is S_{y} , S_{z} the

fluctuating wind speed, and is the horizontal and vertical diffusion coefficient of particles. Increase the pollution factor K and optimize it as an exponential function to realize the gradual change effect of pollution concentration. For different pollution changes, rendering into different degrees of gas pollution.

2.2 Optimize pollution attenuation formula and add pollution details

Considering the real-time performance, the screen technology based on empirical model is used for rendering. Firstly, the concentration change gradient is obtained according to the pollution concentration attenuation formula, and the calculation formula is

$$f = \exp\left[-\left(\int_{y_{\text{base}}}^{y} X_t \,\mathrm{d}t\right)^2\right] \tag{15}$$

Due to the irregularity of gas pollution diffusion, the rendering of equation (15) produces less details. Therefore, the classification noise optimized based on 3D Perlin noise is adopted, and the wind speed factor is introduced to generate the dynamic gas pollution effect. The specific calculation formula is

$$Y_{\text{noise}}(x, y, z) = \frac{\sum_{n=1}^{m} N(xf^{n}, yf^{n}, zf^{n} \cdot v_{p}(x, y, z, t)) p^{n}}{\sum_{n=1}^{m} p^{n}}$$
(16)

Where, m is the frequency multiplier, f is the frequency, p $v_p(x, y, z, t)$ is the amplitude, representing the fluctuating wind field at P, generating a real pollution attenuation formula.

2.3 Dynamic computing ambient light

The optimized pollution concentration attenuation formula can improve the details, but the color cannot change dynamically with time. To solve this problem, the optimized time axis algorithm is introduced to generate dynamically variable smoke. The calculation formula of ambient light at different times is

$$C_{T_{\text{current}}} = \frac{1}{2} \left[1 - \cos \left(\frac{T_{\text{current}} - T_0}{T_{\text{total}} - T_0} \right) \pi \right] C_{\text{inc}} (17)$$

Where, $C_{\rm inc}$ represents the "value color" of

the ambient T_0 light, represents the initial time (i.e. The early morning $T_{current}$ initial time), represents the T_{total} current time, and represents the overall time. According to the smooth transition of negative cosine function, the ambient light at different times is $C_{T_{current}}$ calculated.

In addition, transparency coefficient is introduced λ , the pollution color is dot multiplied with the illumination color to obtain the final real illumination, as shown in formula (18), and then the real dynamic gas pollution scene is rendered.

$$C = f(C_{T_{\text{current}}} + C_{\text{light}}) + \lambda (1 - f) C_f$$
(18)

Start

Smoke gas model construction

Introducing K-D tree to improve computing efficiency

Establish the wind field model and introduce it into the external force term to optimize the diffusion details

Optimize rendered particles with lighting model End

Fig. 2 Overall program flow chart

3 Realization of smoke diffusion and gas pollution simulation

3.1 Overall program framework

The overall program flow chart of this paper is shown in Figure 2.

3.2 Experimental results and analysis

The dynamic gas pollution simulation system based on Windows system and unity3d platform is used in this experiment. The hardware environment is: Intel Core i7-4790 CPU 3.60 ghz, 16 g ram, and NVIDIA geforce GTX 750ti graphics card.

Figures 3 (a) and 3 (b) show the comparison of smoke diffusion between document ^[3] and this method. Figure 3 (a) shows the experimental effect of using the timedependent generation model to solve the fluid flow problem in reference ^[3], with a mesh resolution of 256 \times one hundred and eighty \times 180, although only a single time step is used, the frame rate is only 0.000 8 FPS, and real-time rendering is not possible. This method can generate a large number of diffusion details on a real-time basis. Fig. 3 (c) and Fig. 3 (d) show the comparison between the method in literature ^[4] and that in this paper. Figure 3 (c) shows the improved spatial adaptive vortex restriction method used in reference ^[4] to simulate smoke, with a grid resolution of $64 \times \text{eighty-six} \times 64$. The details of smoke diffusion are not obvious enough. In this paper, the method of texture and physical rendering model is used to simulate the smoke color and lighting more realistic. Figure 3 (E) and Figure 3 (f) show the comparison between the real picture and the large-scale scene in which the method in this paper is applied to ensure that the simulated smoke is real and natural in the real-time state.

(b) Scenario 1 Method in this paper

(c) Scenario 2 Literature ^[4] method

(d) Scenario 2 Method in this paper
Fig. 3 Comparison with literature ^[3] , ^[4] and real smoke

Figure 4 shows the comparison experiment of missile smoke wake diffusion. Among them, Figure 4 (a) is a real picture, figure 4 (b) is the method of literature ^[5], and Figure 4 (c) is the method applied to the smoke path direction by this method. Through comparison, it can be seen that the optimized physical model method in this paper is more natural and flexible than that in literature ^[5], and the wake diffusion effect is more obvious, which is closer to the real picture effect.

Figure 5 shows the gas pollution simulated the optimized empirical model. by The simulation results are compared by substituting different pollution factors into the gas pollution simulation. The figure shows the gas pollution simulation under the pollution factor k = 0, 0.4and 1 respectively, which can obviously compare the gas pollution with different gradients produced by different pollution factors, and the effect is obvious.

(a) 真实图片

Fig. 4 Missile smoke wake comparison experiment

Fig. 5 Experiment on the influence of pollution factors on smoke pollution

Fig. 6 Optimized timeline algorithm experiment

Figure 6 shows the dynamic changes of smoke diffusion and gas pollution with the time axis at the time of T = 6 in the morning, t = 13 at noon and T = 20 at night. The light interpolation calculation color at different times shows the

light and dark effects of gas pollution.

In order to test the efficiency of dynamic pollution simulation, Table 1 lists the comparison of experiments in this paper and some literature data. The particles and meshes in the table refer to the number of particles or mesh size used in the literature to simulate the smoke effect. Among them, it is obvious that this algorithm can significantly improve the simulation details and ensure the real-time performance.

scenes				
Experimental diagram Particles / mesh Frame rate /fps				
Fig. 3 (a) ^[3]	256x180x180	0.000 8		
Fig. 3 (b)	30 000	72.6		
Fig. 3 (c) ^[4]	64x86x64	27.6		
Fig. 3 (d)	30 000	72.6		
Fig. 3 (f)	90 000	55.2		
Fig. 4 (b) ^[5]		45.2		
Fig. 4 (c)	30 000	86.2		
Fig. 5	60 000	40.3		
Fig. 6	90 000	36.2		

Table 1 Frame rate statistics for different experimental

4 Conclusion

In this paper, a method for dynamic pollution simulation of smoke diffusion is proposed. Firstly, the semi Lagrangian method is used to calculate the particle trajectory, and the k-d tree is used to improve the calculation efficiency. The fluctuating wind model based on Kaimal spectrum is introduced and combined with the real physical illumination to avoid the particle sense and improve the smoke diffusion details at the same time; in addition, the smoke diffusion is combined with the optimized Gaussian plume model, and the improved empirical model and Perlin classification noise are used to generate more real gas pollution; the optimized time axis algorithm is adopted to solve the problem that the pollution color cannot change dynamically, and greatly improve the pollution realism. The experimental data show that this method can realize the real-time

simulation of gas pollution under smoke diffusion. In the future work, it is necessary to further study the interaction between gas pollution and environment.

References

- STAM J. Stable fluids [C].// Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques,Los Angeles,1999: 121-128.
- [2] FEDKIW R,STAM J,JENSEN H. Visual simulation of smoke[C].// Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques,Los Angeles,2001: 15-22.
- [3] XIE Y,FRANZ E,CHU M,et al. Tempogan: A temporally coherent,volumetric gan for super-resolution fluid flow [J]. ACM Transactions on Graphics,2018,37(4) : 1-15.
- [4] TANG Y,WU Y,LÜM Y,et al. Real-time smoke simulation using the improved adaptive vorticity confinement [J]. Journal of Chinese Computer Systems,2012,33(12) : 2676-2679.
- [5] TANG Y,SUN J,LÜM Y,et al. Real-time simulation algorithm of smoke movement based on arbitrary interactive path [J]. Journal of Chinese Computer Systems, 2016, 37 (10) : 2334-2337.
- [6] LU W,YANG H Y,WAN Y. Rendering realistic fog using GPU[J]. Journal of Sichuan University (Natural Science Edition),2015,52(1):63-68.
- [7] GUO F,TANG J,XIAO X. Foggy scene rendering based on transmission map estimation [J]. International Journal of Computer Games Technology,2014,2014(6): 1-15.
- [8] Z ELINSKI J, KALETA D, TELENGA-KOPYCZYNSKA J. Inclusion of increased

air turbulence caused by coke production into atmospheric propagation modelling[J]. International Journal of Environmental Research,2018,12(6) : 803-813.

[9] TANG Y,MAO J Z,LÜM Y,et al.

Visualization modeling and real-time rendering for fusion process of different property multismoke[J]. Journal of Yanshan University,2015,39(5) : 448-452.