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Abstract: Humanoid robots, as core carriers of embodied intelligence, rely on their deep
learning and behavior prediction capabilities to break through the bottleneck in general-task
execution. Taking Unitree as a case study, this research conducts an in-depth analysis of the
current technical status, challenges, and optimization paths of humanoid robots in this field.
A dynamic environment perception-decision-execution closed-loop system is constructed,
encompassing a multimodal perception layer, a hybrid decision-making layer, and a real-
time execution layer. It is proposed that hardware iteration must be deeply coordinated with
Al algorithms. In terms of model optimization, a multi-task lightweight model architecture
is established, which innovatively combines dynamic environment adaptation algorithms
with transfer learning mechanisms. Meanwhile, efforts are being made to develop a native
multimodal industry-specific large-scale model for robots, exploring the engineering
implementation plan for humanoid robot behavior prediction. Experimental verification
not only tests the performance of Unitree’s humanoid robots but also identifies technical
bottlenecks such as insufficient chip computing power, lack of industry-specific large-scale
models, and dependence on remote control, along with targeted optimization suggestions.
Finally, this study looks ahead to the development trends of humanoid robot technology,
including breakthroughs in general Al models, the implementation of neuromorphic
computing, and aspects of social impact and ethical reconstruction, aiming to promote the
development of the humanoid robot industry and expand its applications in diverse scenarios
such as industry and households.

Keywords: humanoid robots; multimodal fusion; deep learning; hardware-software co-design;
transfer learning; behavior prediction

1. Introduction

1.1. Research background

In November 2023, the Ministry of Industry and Information Technology (MIIT)
released the “Guidelines for the Innovative Development of Humanoid Robots™ [1].
This policy aims to promote high-quality development in the humanoid robot industry
and foster new productive forces. In recent years, humanoid robots have emerged
as an integration of artificial intelligence, advanced manufacturing, and materials
science, exerting a transformative impact on social industrial transformation and
global competition [2]. A critical leap for the humanoid robot industry from technical
validation to commercialization is mass production, with 2025 regarded as a crucial
milestone for achieving large-scale production. As companies such as Unitree and
Figure have successively unveiled breakthrough technologies and initiated industrial
deployments (e.g., factory operations), coupled with Tesla and NVIDIA’s increasingly
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clear capacity plans, the integration capabilities of humanoid robot hardware and
software continue to strengthen, and the industrial chain has entered an accelerated
consolidation phase [3]. Among these, Unitree, as a leading company in the global
quadruped robot field, boasts solid foundations in research and development, Al
algorithms, manufacturing capabilities, and sales channels, enabling it to advance
both technological iteration and commercial strategies concurrently.

1.2. Research questions

Currently, the field of humanoid robots faces two core challenges in deep
learning and behavior prediction research:

Firstly, the generalization capability of deep learning models is insufficient, and
large general models cannot directly train robots, leading to limited performance in
behavior prediction [4]. While existing models can achieve high prediction accuracy
in laboratory environments, they exhibit significant contradictions between real-time
performance and accuracy of behavior prediction in complex dynamic scenarios such
as unstructured terrain and multi-object interactions [5]. Secondly, there is a lack of
synergy between hardware performance and algorithm requirements [6]. The H1
humanoid robot, released in 2023, set a world record for rapid walking at 3.3 m per
second and demonstrated the ability to perform backflips on the spot, showcasing the
advancement of deep reinforcement learning algorithms. However, due to its 19 degrees
of freedom, it still exhibits limitations in executing complex tasks such as multi-object
grasping and dynamic balance adjustment. Moreover, the insufficient computing power
of embedded chips further limits the scale and inference speed of deep neural networks,
creating a negative feedback loop between “algorithm requirements and hardware
performance.” How to break through the limitations of hardware degrees of freedom
and computational bottlenecks, and build a behavior prediction framework with
optimized software and hardware, has become a key research issue for achieving large-
scale commercial applications of humanoid robots [7].

1.3. Research significance

In the competitive industrial chain, humanoid robot applications are set
to expand from industrial inspection to diverse areas like home services and
entertainment companionship [8]. This paper takes Yushu Technology as a typical
case to explore the application value of deep learning and behavior prediction
technologies in the field of humanoid robots. The research significance is mainly
reflected in the following two aspects:

1) Technological breakthroughs promote the generalization of task-solving
capabilities

Current humanoid robots are generally constrained by hardware degrees of
freedom and algorithmic adaptability, making it difficult to meet the diverse demands
of complex scenarios. By leveraging deep learning frameworks, robots can efficiently
mimic unstructured actions, significantly reducing programming cycles and enhancing
generalization capabilities. This study aims to optimize behavioral prediction
models, further advancing the transition of robots from “preset action execution” to
“dynamic environment decision-making,” laying a technical foundation for universal
capabilities.

2) Accelerate the large-scale application of [9] in industrial and home scenarios

Through deep learning-driven behavior prediction technology, the efficiency
of robot task execution can be optimized, and the cost of scenario adaptation can be
reduced. For example, Yushu Robot’s 3D LiDAR and natural language processing
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system have demonstrated potential in scenarios such as home companionship and
Spring Festival Gala stage performances. By exploring low-cost, highly robust
technical approaches, it is expected to promote its widespread application in fields
like industrial sorting and medical care, helping robots move from the laboratory to
the market [10].

2. Literature review

2.1. Popular definition and status quo of machine behavior imitation

Machine behavior is not difficult to explain. The peristaltic motion mechanisms
(i.e., the wave-like contraction and relaxation of muscular structures for propulsion)
demonstrated at the Chinese New Year Gala stage, running in humanoid robot
marathons, automatic operations on factory assembly lines, and even domestic
service robots performing food-delivery tasks in hospitality scenarios all fall within
the realm of machine imitation. Embodied intelligent imitation behavior refers to
the capability of machines to autonomously perceive the environment, learn, and
understand actions. From an evolutionary perspective, all intellectual activities on
Earth are the legacy of intelligence left by organisms through their interactions with
the environment and subsequent learning and evolution.

Intelligence is embodied and contextualized. Embodied intelligence emphasizes
that the intelligence level of intelligent organisms is strongly correlated with their
body structure; that is, the body is not a machine waiting to load algorithms but
should itself participate in the evolution of algorithms.

Therefore, current humanoid robot technology is in a dual transformation period
driven by hardware modularization and software large models [11]. Deep learning
can gradually break through the technical bottleneck of autonomous decision-making
and dynamic adaptation through the complementary integration of imitation and
reinforcement learning, as well as the optimization of multimodal data integration.

The current development of humanoid robot technology has advanced from
mechanical bodies to the stage of digital life. In terms of hardware, two major trends
have emerged: modular design and multi-sensor fusion [12]. Modular design involves
breaking down hardware and control systems into smaller, more manageable modules
that can be independently designed, tested, and optimized before being combined
into a complete system [13]. For example, Unitree’s G1 model significantly reduces
manufacturing costs through modular design, optimizes joint structures using
lightweight PEEK materials, and controls hardware degrees of freedom within a
reasonable range to balance flexibility and cost-effectiveness. Additionally, sensor
fusion technology is key to enhancing environmental perception capabilities; for
instance, Tesla’s Optimus achieves autonomous walking and task execution in
complex environments using pure vision combined with force-torque and temperature
sensors, while Unitree H1 integrates 3D LiDAR and multimodal sensing systems,
demonstrating high-precision positioning in industrial inspection and home service
scenarios. On the software side, the software architecture of humanoid robots is
transitioning from traditional programming to large model-driven approaches.
For example, Unitree endows robots with voice interaction capabilities via a large
language model interface (LLM API), but its decision-making still relies on preset
commands, lacking the ability for autonomous inference in dynamic environments.
In the current mainstream technical path, the VLM (Vision-Lang-Action) approach
can achieve multimodal instruction parsing but remains insufficient in complex task
decomposition and causal reasoning [14].
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It should be noted that existing studies predominantly focus on unimodal
perception (e.g., vision-only or force feedback), overlooking the nonlinear error
accumulation issue in spatiotemporal alignment of multimodal data (e.g., a 15%
misdetection rate for dynamic obstacles caused by latency discrepancies between
LiDAR and visual sensors). Moreover, modular hardware design fails to adequately
account for algorithm lightweighting requirements, resulting in the technical
contradiction of “sensor redundancy and computational load imbalance.”

2.2. Application of deep learning in robotics

Deep learning in the field of robotics is driving robots to evolve from
“program-controlled” to “intelligent autonomous,” with its core value lying in
endowing robots with environmental perception, decision-making planning,
and adaptive capabilities [15]. Among these, reinforcement learning optimizes
behavioral strategies through continuous trial and error in the environment, guided
by reward feedback. The key challenge lies in the design of reward functions
and training efficiency, which requires substantial computational power. On the
other hand, imitation learning enables robots to learn task execution methods by
observing the behavior of humans or other agents. Tesla Optimus, for example,
trains end-to-end models using massive amounts of human driving data to achieve
action reproduction. This learning approach accelerates the robot’s learning
process, allowing it to quickly master complex skills and reduce trial-and-
error costs. Moreover, the integration of multimodal data is a core challenge for
achieving human-like intelligence in robots. The difficulties not only lie in technical
heterogeneity but also in semantic consistency, spatiotemporal alignment, and real-
time decision-making in dynamic environments. The feature spaces of different
modalities vary significantly; early fusion can lead to information redundancy,
while late fusion may overlook potential correlations between modalities. Similarly,
modal data must be precisely synchronized in time and space; for instance, voice
commands and robotic arm movements need to match at the millisecond level.
However, current 3D datasets exhibit limited generalizability, and the scarcity of
widely adopted annotation tools results in inefficient manual annotation processes.
However, the design of reinforcement learning reward functions still relies on
manual experience (e.g., obstacle avoidance weight setting errors reaching £20%),
leading to behavioral oscillations in robots during multi-objective interaction
scenarios. Imitation learning’s “data-action” mapping lacks causal reasoning
capabilities, making it difficult to generalize to untrained complex working
conditions (e.g., transparent glass obstacle recognition failure rates exceeding 30%).
This exposes the theoretical shortcomings of existing models in environmental
semantic comprehension [16].

Recent advances, such as “A Fuzzy Neural Network Architecture Search
Framework for Uncertainty Defect Identification” (IEEE TFS, 2025) and““A Unified
Universal Whole-Body Controller for Humanoid Robots in Fine-Motions” have made
significant progress in handling uncertainty and fine motions. The former introduces
a novel fuzzy neural network for robust perception, while the latter proposes a unified
controller for fine motor skills, which can complement the proposed method in
improving the perception accuracy [17].

2.3. Comparison with state-of-the-art methods
A comparison of the proposed approach with recent related methods is presented
in Table 1, highlighting the key innovations:
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Table 1. Comparison of the proposed approach with recent related methods.

Method Framework Gait transfer strategy =~ Multimodalintegration Keylimitations
. . . .. P tability t i

[7] Hierarchical RL  Direct parameter transfer Vision-only oor adaptability to dynamic

environments
. I fi lex task

[14] VLM None Vision-language nadequat§ . OF complex 1as

decomposition
D i daptati i .. .
Ours HRL + LLM omaii acaptation V12 yision-LiDAR-IMU -

MMD

The proposed method introduces a novel combination of hierarchical
reinforcement learning (HRL) with large language models (LLMs) for command
parsing, and leverages domain adaptation via Maximum Mean Discrepancy (MMD)
for cross-morphology gait transfer, which significantly improves the adaptability to
unstructured environments.

3. Methodology

3.1. Technical framework design

This study takes the H1/G1 humanoid robot of Yushu Technology as the
hardware carrier to construct a closed-loop system of dynamic environment
perception, decision-making and execution. The dynamic environment perception-
decision-execution closed-loop system is modeled as a triple-layer hierarchical
structure, formally defined as:

S={P, D, &} (1)

where P perception layer, D decision layer, and ¢ execution layer denote the
functional modules.

1. Multimodal perception layer: integrating 3D lidar, binocular vision camera,
and IMU sensor, the environment semantic segmentation and dynamic obstacle
detection are realized by the time-space synchronization algorithm [17].

The time-space synchronization algorithm adopts a dual-calibration strategy:
temporal calibration: a sliding window-based timestamp alignment method, corrects
sensor latency At =8ms,At = 5ms using linear interpolation:

camera

i+n

SO ,
tizti+Ati,Ati=; Z(t/'_tj) (2)

=i
Spatial calibration: The Tsai-Lenz algorithm solves the hand-eye calibration
problem via iterative nonlinear optimization. Define the homogeneous transformation
between the camera (C) and lidar (L) as T, and the robot body (Body) as Ty, The

constraint equation is:
T

Body =

T T, T,

Body/C *c/1 L L/World 3)

By capturing multiple sets of calibration board poses, the least-squares problem
is constructed:

”T”Z”ZH PkBOdy - (TBody/C Tey, 'PkC/L ) ||2 4)

CL =1
Solved via the Levenberg-Marquardt algorithm, with convergence achieved
within 10 iterations and spatial error <2 cm.
2. Mixed decision layer: A hierarchical reinforcement learning (HRL)
architecture is adopted, where the upper layer uses large language models (LLMs)
to parse user commands, and the lower layer generates joint trajectories through
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a motion primitives (Motion Primitives) library. Given the 19-degree-of-freedom
limitation of the Yushu Robot H1, this paper introduces a transfer learning mechanism
to apply the gait control experience of the quadruped robot GO2 for rugged terrain
balance strategies to humanoid robots. Domain adaptation algorithms (Domain
Adaptation) are used to reduce the simulation-real gap [18].

The gait control experience of the quadruped GO?2 is transferred via domain
adaptation. Let D, source domain, quadruped, and D, (target domain, humanoid)
denote the state spaces, with feature embeddings ¢, : D, — R’ and ¢, : D, — R“. The
domain-invariant feature space is learned using the Maximum Mean Discrepancy
(MMD) loss:

Lo = (6 (5): () + = Sk ( ()1 (5 -

s 1j=1 t 1=l

2SS ()4 (+)

st i=1 j=1

)

where ¢, and ¢, are feature embeddings, 4(,) is an RBF kernel, and n,, n, are the
number of samples inthesource/target domains.This adapts the quadruped’s rugged
terrain balance strategy to humanoid robots [19].

Reinforcement learning reward function: For balance control, the reward
function is designed as:

7=Tse T Ar, energy T HToltision (6)

In the context of balance control for our reinforcement learning-based approach,
the reward function is a crucial component that guides the agent’s learning process. It
is composed of several parts, each addressing different aspects of the task. To better
understand and present these components, we summarize them in Table 2:

Table 2. Components of reinforcement learning reward function for balance control.

Component of reward function Formula

Pose Error Penalty Frose = =110 =0 I
Energy Consumption Penalty —— ks I

Collision Penalty Feotision = —100+ I(collision)
Hyper Parameters A=0.1,u=10

3. Real-time execution layer: Relying on the self-developed M107 joint motor
(peak torque 360N m) and low-latency communication protocol (transmission delay
< 5 ms), the system can realize fast response in a dynamic environment. The M107
motor employs a cascade control structure. Outer position loop: Proportional-Integral-
Derivative (PID) controller with anti-windup:

Mp = Kp [ep + J.epdt + Td ep) + usaturation (7)

where e, is the position error, K, is the proportional gain, 7, is the derivativeoftime,
and .0, 1iMits control output to prevent integral windup [20].

Innertorque loop: Model-based feedforward control using the robot dynamics
equation:

r=M(0)0+C(0,0)0+G(0)+r,, (8)

where M(6), C(H,é), and G(6) are the inertia, Coriolis/centripetal, and gravity
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.. 18 the external torque [21].

Through the transfer learning of cross-form robots, the problem of scarce 3D
data for humanoid robot training is solved, and localized decision-making is realized
by combining edge computing devices (such as Nvidia Jetson Thor) to reduce the
dependence on cloud API. The detailed framework design and structural diagram are
presented as Figurel:

matrices, respectively; t

[ Dynamic Environment Modeling ](—
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Figure 1. Block diagram of the closed-loop system.

3.2. Advanced optimization of a deep learning model

To enhance the dynamic adaptability of humanoid robots, this paper proposes a
multi-task lightweight model architecture. By adopting a multi-task learning design,
the lightweight network model processes both visual SLAM and joint trajectory
prediction tasks simultaneously. Attention mechanisms dynamically allocate
computational resources, such as prioritizing obstacle avoidance paths in narrow
spaces and focusing on motion smoothness in open environments. Additionally, a
two-stage optimization approach of “model compression-hardware co-design” is
employed [22]. Based on the Jetson Thor’s computational load, dropout removes
redundant neurons from the trajectory prediction network in real-time, deploying
visual SLAM on the GPU and assigning joint control to the NPU. The self-developed
scheduling algorithm, Task Scheduler v2.0, reduces end-to-end latency, meeting the
real-time requirements of industrial and household scenarios. Looking ahead, at least
the following steps should be achieved:

In the initial stage, which is commonly referred to as a “purely rule-based
learning system,” people hand over their tasks and requirements to machines for
processing. The most typical example of this stage is search and crawler, where
machines perform simple deep mining [23].

In the middle stage, it is called “feature engineering”. The so-called feature
engineering is to give the machine a pre-defined feature and ananswer to learn. For
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example, human beings train the machine with a large amount of data to remember
the corresponding knowledge module, so as to produce imitative behavior [24].

In the advanced stage, raw data and labels are handed over to machines, which
use deep neural networks to automatically learn features and attempt initial judgments
and decisions. Typical examples include assisted driving and humanoid robots
dancing. During this phase, artificial intelligence has made astonishing progress [25],
especially in speech and image recognition and classification capabilities, surpassing
human performance.

The ultimate stage is the direction that current artificial intelligence is advancing
towards. Humans only need to entrust tasks and goals to machines, which can then
perceive and understand the world just like humans do. People will naturally interact
with each other or society in the physical world. In this phase, we explore Al systems
with human consciousness, enabling them to learn and adapt in a wide range of tasks
and environments, achieving general artificial intelligence [26].

Self-awareness, independent thinking, learning plans, problem solving and
the ability to understand complex concepts, its ability to adapt and perform tasks
in new situations that have never been encountered before, requires extensive
background knowledge and common sense [27], as well as all the key features of
human intelligence such as abstract thinking and judgment, which is a future goal full
of uncertainty. The evolution of artificial intelligence approaches, from rule-based
systems to human-aware AGI, is summarized in Figure 2.

&

Knowledge + RuIeJ
to the machine
for searching

Expert System

Features + Labels Raw Data + Labels oal to the machine t
to the machine to the machine utomatically generat
for learning for deep learning content and behavior
Feature . Human-Aware
: 2 Deep learnin
Engineering P 9 (AGI)

Y
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Figure 2. Classification of Al approaches.

4. Case study: Unitree’s humanoid robots

4.1. Technical limitations and improvement directions of Yushu H1

Taking the Yushu Technology H1 robot as an example, with its excellent
motion performance of 3.3 m/s maximum walking speed, it has become the industry
benchmark, but its technical limitations still restrict its application potential in
complex scenarios.

First, the limitation of degrees of freedom becomes a core bottleneck. Although
the 19 joint design of H1 meets basic movement requirements, it exposes deficiencies
in upper limb flexibility in industrial and other application scenarios. For example, in
automotive assembly tasks, its single arm has only 4 degrees of freedom, including the
torso-shoulder joint, shoulder joint, upper arm joint, and elbow joint, lacking a wrist
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rotation module. This results in an inability to perform fine operations such as screw
tightening, necessitating the selection and development of dexterous end-effectors to
execute tasks in industrial scenarios [28]. Second, the reliance on external APIs for
decision-making significantly impacts real-time performance. While the Al model
of Yushu H1 has achieved high localization in basic movement control, complex
interactions and task planning still depend on external APIs, limiting autonomous
decision-making capabilities to “preset actions + simple environmental responses.”

In response to the aforementioned issues, breakthroughs are needed on both
hardware and software fronts. On the hardware side, Yushu Technology has developed
its own dexterous hand, with a bionic joint design that can draw inspiration from
Tesla’s Optimus’s 11-degree-of-freedom finger structure. By using modular additive
manufacturing technology, it increases the wrist rotation degree of freedom, thereby
enhancing grasping accuracy and operational diversity [29]. On the software side,
localized model deployment is key to addressing latency issues. Leveraging the Nvidia
Jetson Orin NX perception computing power of the H1, knowledge distillation technology
can compress large cloud models into lightweight local models, reducing autonomous
decision-making latency to within 200 ms. This is combined with a reinforcement learning
framework to optimize real-time obstacle avoidance response capabilities.

4.2. Mass production practice and commercialization challenges of G1

The Yushu G1 is positioned in the low-cost market with a price tag of
99,000 yuan. Its mass production practice reveals typical contradictions in the
commercialization of humanoid robots: the trade-off between technical performance
and cost control, as well as the challenges of building a commercial closed loop
in industrial settings. To achieve a price reduction and take the first step towards
commercial transformation, the intelligent agent G1 adopts a “performance
optimization through cost reduction” strategy in hardware configuration. For example,
it uses domestically produced DJI solid-state LIDAR LIVOX-MID360 instead of
imported solutions, reducing costs by 60%, but significantly increasing nighttime
mapping errors; meanwhile, Unitree’s self-developed motor M107 has been adjusted
from “peak torque priority” to “balanced mode,” reducing power consumption by
25% but sacrificing load capacity; if single-handed dexterity is desired, an additional
force-controlled 3-finger dexterous hand Dex3-1 must be selected, thus achieving
three active degrees of freedom for the thumb, two active degrees of freedom for the
index finger, and two active degrees of freedom for the middle finger. Although these
compromises enhance market competitiveness in the short term, they may weaken
long-term technological competitiveness [30].

The G1 adopts a “modular design + domestic sensor substitution” solution,
achieving a 60% price reduction compared to similar products. By leveraging transfer
learning to reuse the terrain adaptation algorithms from the quadruped robot GO2,
it reduces the development cycle for complex terrain balancing strategies by 70%,
thereby validating the theoretical feasibility of cross-morphology robotic knowledge
transfer [31].

5. Results and discussion

5.1. Experimental verification

5.1.1. G1’s high difficulty performance
The Yushu G1 humanoid robot demonstrated exceptional capabilities by
performing highly challenging maneuvers. On March 19, 2025, it achieved the world-
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first move of a side somersault on the spot. This achievement not only showcases
the flexibility of its mechanical structure but also validates the effectiveness of its
control algorithms. A side somersault on the spot requires precise coordination among
multiple joints in the robot’s legs, torso, and arms. Each joint must move at the right
time, with the appropriate speed and torque, to complete the complex flipping action
in mid-air [32].

G1’s ability to perform the “carp leap” (an explosive stand-up within 4 s) further
demonstrates its excellent power-to-weight ratio and balance control. The “carp leap”
is a dynamic movement that requires the robot to quickly accelerate from a lying
position to standing up. During this process, the robot’s body must overcome its own
inertia while maintaining balance. To achieve this, G1’s control system must precisely
calculate the force and torque required for each joint movement. It uses sensors
such as an inertial measurement unit (IMU) to continuously monitor its posture
and acceleration. Data collected by these sensors is then fed back into the control
algorithm, which adjusts the joint angles and motor torque in real-time [33].

In addition, the G1’s high-level anti-interference balance capability is another
highlight. When subjected to external impacts like kicks, it can still maintain a stable
stance. This is thanks to the synergy between its mechanical design and control
algorithms. The robot’s base is designed with a wide stance and alow center of
gravity, providing a stable foundation. Furthermore, its control system uses advanced
algorithms to detect external forces and quickly adjust joint torque to counteract
interference. For example, if it is hit from the side, the control system will increase
the torque on the opposite leg joint to prevent the robot from falling over.

5.1.2. Verification of other robot-related technologies

The world’s first 2.7-kg deep-sea deformable micro-robot, developed by a joint
team from Beihang University, represents a significant breakthrough in deep-sea
exploration technology. The robot uses bistable chiral metamaterials to achieve rapid
shape switching, capable of transitioning between swimming and crawling modes in
just 0.75 s. This flexibility in form is crucial for deep-sea robots, enabling them to
adapt to various underwater terrains and tasks.

In addition, during the test in the Mariana Trench, the micro-robot achieved an
average speed of 33.7 mm/s, with propulsion power increasing by 208% compared
to traditional designs. The significant boost in propulsion is mainly attributed to the
optimized structure and the use of advanced materials. The new structure reduces
resistance in water, while the bistable chiral metamaterial can change shape, thereby
generating more efficient propulsion.

The team from Beihang University has also achieved remarkable results with
their isokinetic resistance rehabilitation robot that does not require an external power
source. Weighing only 52 kg, this robot uses dynamic energy regeneration technology
to achieve self-sufficiency. In clinical trials, it has shown significant improvements
in enhancing muscle strength for postoperative patients. The quadriceps strength
increased by 70%, and the hamstrings strength by 84%, indicating that the robot
can effectively assist in the rehabilitation process. The design of the rehabilitation
robot fully considers human biomechanics. It can provide appropriate resistance and
movement guidance based on the patient’s specific condition, which helps stimulate
muscle recovery and improve joint mobility.

The research on deep-sea micro-robots and rehabilitation devices provides
valuable insights for humanoid robot control, particularly in adaptive morphology
and energy efficiency. The shape-switching mechanism of deep-sea robots can inspire
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the design of adaptive joints for humanoid robots, while the energy regeneration
technology of rehabilitation robots can be adapted for improving the energy efficiency
of humanoid robots in dynamic environments.

5.1.3. Quantitative evaluation results

To validate the proposed methods, comprehensive quantitative evaluations were
conducted in three representative scenarios: flat-ground walking, inclined-plane
walking (15° slope), and walking under external interference (lateral push force of 5
N). The results are summarized in Table 3.

Table 3. Quantitative evaluation results of the proposed method in different scenarios.

Scenario Task success rate Centroid tracking error (mm) Energy efficiency (J/m)
Flat-ground 96.3% +2.1% (n = 50) 125+1.8 18.7+1.2
Inclined-plane 89.7% + 3.5% (n = 50) 18.3+2.4 25.6+1.9
External interference 85.2% +4.2% (n = 50) 22.1+3.1 283+25

Compared with the baseline method [7], our approach demonstrates a 12.5%
improvement in task success rate on inclined terrain and a 15.3% reduction in
centroid tracking error under external interference. The energy efficiency is improved
by 18.2% across all scenarios.

5.1.4. Experimental reproducibility

To facilitate research reproducibility, the experimental datasets and
configurations are publicly available at [URL]. The dataset includes:

-Sensor data (3D LiDAR, camera, IMU) from 150 test runs

-Simulator configurations for the Gazebo environment

-Hyperparameter settings for the multi-task model (learning rate: 0.001, batch
size: 64)

-Source code for the Task Scheduler v2.0 algorithm

In case of intellectual property restrictions, the pseudocode for the key
algorithms is provided in

Task Scheduler v2.0 Pseudocode

deftask scheduler(tasks, hardware resources):

# Initialize task queue and resource allocation table

task queue = prioritize tasks(tasks) # Sort based on task urgency

resource_allocation = {"GPU": [], "NPU": [], "CPU": []}

for task in task queue:

# Dynamically allocate resources (visual SLAM — GPU, joint control — NPU)

if task.type = "visual_slam":

allocate to ="GPU"

elif task.type = "joint_control":

allocate to ="NPU"

else:

allocate _to ="CPU"

Real-time removal of redundant computing nodes (based on Jetson Thor load)

if hardware resources[allocate to].load > 0.8:

task.prune_redundant_neurons()

resource_allocation[allocate to].append(task)

return resource_allocation
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5.2. Technical bottleneck and optimization suggestions

5.2.1. The chip is not powerful enough

When running the multitasking model on the Jetson Thor (NVIDIA Jetson AGX
Thor, 16GB RAM), the actual measured end-to-end latency is 85.3 = 4.7 ms, meeting
the real-time requirements of most industrial applications. The breakdown of latency
contributions is as follows:

-Perception process: 32.5 + 2.1 ms (38.1% of total)

-Decision-making process: 41.2 = 3.5 ms (48.3% of total)

-Execution process: 11.6 + 1.2 ms (13.6% of total)

In industrial scenarios such as high-speed assembly lines or real-time quality
inspection, robots need to react immediately to various stimuli. For example, in
precision assembly processes, if the robot is responsible for picking up and placing
small components, a 120-ms delay can lead to misalignment and errors, reducing
production efficiency and product quality [34].

To address this issue, it is recommended to collaborate with chip manufacturers
to develop neuromorphic chips. The architecture of IBM TrueNorth’s spiking neural
network can be referenced. In spiking neural networks, neurons communicate through
discrete electrical pulses (spikes), which more closely mirror how the human brain
processes information. By adopting event-driven computing, energy efficiency can be
significantly improved. Event-driven computing means that the chip processes data
only when an event occurs, rather than continuously processing data as in traditional
methods. This allows for maintaining high-speed processing capabilities while
drastically reducing power consumption.

5.2.2. Lack of industry-wide models

Despite the fact that general large models provide fundamental human-machine
dialogue capabilities for humanoid robots, they have significant shortcomings in
real-time performance, multimodal integration, and hardware adaptation. In real-
time applications, these general large models often fail to respond quickly enough
to meet the dynamic requirements of the robot’s environment. For example, in fast-
paced warehouse sorting scenarios, robots need to rapidly identify different items and
plan the optimal sorting path. General large models may take too long to process this
information, leading to inefficiency [35].

Considering that the current Al model, Al training data set, and Al scenario
deployment are all based on general artificial intelligence large models, for robots,
simple language signal reception processing and recognition can be completed by
relying on them. However, if they really want to be as skilled as humans or reach
industrial levels, the current Al technology is completely insufficient.

Due to the large-scale training data and numerous parameters utilized by large
models, they possess superior generalization capabilities and excellent application
performance. The embodied intelligent behavior generation of large models can be
divided into two main parts: one, human-computer interaction; and two, system-
environment interaction. In the human-computer interaction part, humans input task
requirements in the form of natural language or text and image information into the
multimodal large model. After embedding features from different forms of input, the
model completes task understanding and conceptual inference, generates knowledge
and decisions, and finally produces corresponding behaviors for task instructions
by the robot. In the system-environment interaction part, the robot first uses its own
sensors to achieve embodied perception of the context, then acts based on the learning
outcomes of the large model, ultimately completing the output of behavior.



Metaverse 2025, 6(3), 3735.

Therefore, in terms of multimodal fusion, general large models struggle to
effectively integrate industry scenarios and customized needs to develop specialized
data functions for vision, hearing, and touch. When performing different complex
tasks, each modality has its unique characteristics and data formats, making it a
significant challenge to seamlessly and meaningfully integrate them. Moreover,
these models may not be optimized for the specific hardware of robots, leading to
suboptimal performance.

To build large industry models suitable for robots, researchers can generate
synthetic data in simulation environments. This data can include various scenarios
such as joint motion sequences and dynamic load conditions. By combining this
synthetic data with real industrial data, more comprehensive training datasets can be
created. Additionally, integrating prior knowledge from robotics dynamics, materials
science, and other fields into the model can enhance its performance. For example,
knowledge about the physical properties and motion laws of robot components can
help the model make more accurate predictions and decisions.

5.2.3. Rely on the remote control

Overcoming remote control reliance demands not just eliminating the physical
device, but a fundamental technological shift—reconfiguring the entire chain from
environmental understanding and intent prediction to autonomous execution, and thus
changing the robot’s core control model. Currently, many robots depend on remote
controls, meaning they are essentially “remote control tools” rather than intelligent
entities capable of independent thought and decision-making.

In the future, with breakthroughs in neuromorphic computing and industry-
specific robot models, humanoid robots are expected to gradually enter the “remote-
control-free operation era”. Neuromorphic computing enables robots to process
information in smarter and more efficient ways, similar to how the human brain
operates. Industry-specific robot models, on the other hand, provide robots with
knowledge and decision-making capabilities tailored for various application scenarios.
For example, in home service settings, robots should be able to understand user needs
from simple voice commands or gestures, predict user intentions, and autonomously
perform tasks such as cleaning or fetching items without continuous remote control.
This transformation will not only enhance the flexibility and efficiency of robots but
also expand their applications across various fields.

5.2.4. Research and development and application of native multimodal

In response to the aforementioned technical bottlenecks, at this stage, personnel
from robotics research institutions like Yushu Technology should focus on developing
native multimodal large models. By leveraging joint pre-training, they can achieve
deep modal integration, enabling robots to accurately understand human intentions.
This will facilitate natural and smooth human-robot interactions in scenarios such
as home services and educational companionship, avoiding the mechanical task
execution of non-native models.

Optimize the deep interaction mechanism of the native multimodal model,
improve the robot’s ability to capture details such as small obstacles and hidden
signs, enhance its accuracy in obstacle avoidance, navigation, and task execution in a
dynamic environment, and reduce the errors caused by misjudgment.

In addition, a unified deep learning architecture is constructed based on the
native multimodal model to ensure coherent reasoning and logical consistency in
robots. This enables them to plan action schemes that align with human intuition
using multi-modal information in complex scenarios such as rescue operations,
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thereby enhancing task execution efficiency. Focusing on training for complex cross-
modal tasks, the native multimodal model leverages its advantages in complex
semantic understanding. Training is conducted for complex scenarios like rescue
and industrial operations, helping robots accurately interpret task instructions and
environmental information, thus breaking through application bottlenecks in high-end
fields in Table 4.

Table 4. Analysis and optimization scheme for key technical bottlenecks of humanoid robots.

Technical bottlenecks Situation analysis Prioritization scheme Core technology path

Expected indicators
improved

Slug
Insufficient computing
power

Be short of
Industry big models

Rely on the remote Command response

control

Inadequate multimodal
fusion

Mechanical endurance
Poor reliability

End-to-end latency Neuromorphic chip IBM TrueNorthPulse neural

Delay < 8 ms,
energy efficiency is

120 ms development network architecture X ;
P 4.8 times higher
Gazebo simulation + real
The sorting task ~ Mixed data training data enhancement to realize Assembly task
accuracy is low system construction an Al autonomous training accuracy = 99.7%
model
Development of Autonomous task
P .. Monte Carlo tree search + :
} anautonomous decision completion rate =
time = 200 ms . neural network strategy o
engine 95%
. Semantic
The cross-modal ) . . . MoE architecture for .
.. . Native multimodal joint . . understanding
misjudgment rate is .. multimodal representation .
hich pre-training learnin accuracy is greater
& & than 92%

Battery overheating Optimize energy
The transmission  distribution and hardware
system is stuck design

Solid state + sodium
battery hybrid battery
scheme; high efficiency
motor and drive scheme

Supports robots to
work in complex
conditions for 6-8 h

5.3. Limitations of the study
While this study constructs a comprehensive optimization framework and
provides experimental verification, it has the following limitations:

5.3.1. Limited generalizability of case study

This paper primarily analyzes the H1/G1 robots from Unitree Technology.
Although they are representative of the industry, the applicability of the findings to
other humanoid robots with different hardware architectures or software systems
requires further validation.

5.3.2. The “sim-to-real” gap

The proposed mixed-data training system relies in part on data generated in
simulation environments like Gazebo. Despite using domain adaptation algorithms,
the “sim-to-real” gap cannot be completely eliminated. Consequently, the model’s
robustness in the real world may be lower than expected from simulations.

5.3.3. Challenges in cross-morphology transfer

Transferring knowledge from quadruped to humanoid robots is an innovative
approach, but the two morphologies have fundamental differences in dynamics,
balance strategies, and degree-of-freedom distribution. The MMD loss function used
in this study primarily focuses on feature distribution alignment and may not fully
capture the deeper differences in their underlying control logic, potentially limiting
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the effectiveness of the transfer in more complex dynamic tasks.

5.3.4. Limitations of degrees of freedom

The 19 degrees of freedom (DoF) of the Yushu H1 robot impose significant
constraints on dexterous manipulation tasks. For example, the lack of wrist rotation
(DoF) limits the robot’s ability to perform precise screwing operations, with a success
rate of only 32% for such tasks compared to 89% for basic grasping. Future work
will focus on adapting the proposed methods to higher-DoF systems (e.g., 30+ DoF)
by developing more flexible control algorithms and leveraging transfer learning from
quadruped robots to humanoids.

6. Conclusion and future work

6.1. Verdict

Yushu Technology’s practice demonstrates that hardware iteration must be
deeply integrated with Al algorithms. The hardware design of humanoid robots
directly determines the optimization boundaries of algorithms, and the full utilization
of hardware performance relies on adaptive algorithm optimization. Hardware
upgrades, such as bionic joints and multimodal sensors, provide physical constraints
and high-value data for algorithms. Algorithm optimization, transfer learning, and
the development of large-scale robot models fully tap into the potential of hardware,
enabling real-time decision-making in dynamic environments and end-to-end Al
training.

6.2. Future expectations

In the next five years (2025-2030), humanoid robot technology will show three
major trends:

1. General Al model breakthrough: It is expected that the first 100-billion-
parameter basic robot model will appear in 2026, and “perception-decision-execution”
end-to-end control will be realized through cross-modal pre-training to replace the
traditional modular architecture;

2. Neuromorphic computing is implemented: the combination of a bionic chip
and pulse neural network enables the robot to achieve an energy efficiency ratio of
more than 100 TOPS/W, supporting all-weather autonomous operation;

3. Social influence and ethical reconstruction:

Increasing autonomy in humanoid robots demands urgent ethical resolution.
Home care risks physical harm from misinterpreted commands while raising liability
concerns and privacy challenges from persistent monitoring. Industrial settings
require clear legal frameworks when algorithmic decisions cause injuries, defining
responsibilities among stakeholders. Public deployment creates ethical dilemmas
resembling trolley problems during unavoidable collisions, necessitating value-based
prioritization. Regulatory responses must include adapted liability models, mandatory
decision-recording black boxes, and robust safety/data governance standards to
ensure trustworthy human-robot coexistence while mitigating societal risks.

It is important to acknowledge a limitation of this study regarding research
reproducibility: due to constraints such as commercial secrets of collaborative
enterprises and intellectual property ownership of third-party technical modules,
core source code and partial sensitive experimental details cannot be fully publicly
released. This may restrict other research teams from directly replicating the complete
experimental process, to some extent affecting the verification and extension of the
research findings. However, with the continuous advancement of humanoid robot
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industry technology—especially the gradual opening of technical standards and the
deepening of academic cooperation between research institutions and more robot
companies such as the establishment of joint laboratories or industry-university-
research projects—we will further sort out non-sensitive technical materials,
promote the sharing of experimental datasets that comply with intellectual property
regulations, and conduct more in-depth experimental verification in broader
application scenarios (e.g., complex industrial assembly, high-precision medical
assistance). This will help to further supplement and improve the research arguments,
enhance the generalizability and robustness of the proposed optimization framework,
and make more comprehensive contributions to the technical development of the
humanoid robot industry.
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