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Abstract: Humanoid robots, as core carriers of embodied intelligence, rely on their deep 
learning and behavior prediction capabilities to break through the bottleneck in general-task 
execution. Taking Unitree as a case study, this research conducts an in-depth analysis of the 
current technical status, challenges, and optimization paths of humanoid robots in this field. 
A dynamic environment perception-decision-execution closed-loop system is constructed, 
encompassing a multimodal perception layer, a hybrid decision-making layer, and a real-
time execution layer. It is proposed that hardware iteration must be deeply coordinated with 
AI algorithms. In terms of model optimization, a multi-task lightweight model architecture 
is established, which innovatively combines dynamic environment adaptation algorithms 
with transfer learning mechanisms. Meanwhile, efforts are being made to develop a native 
multimodal industry-specific large-scale model for robots, exploring the engineering 
implementation plan for humanoid robot behavior prediction. Experimental verification 
not only tests the performance of Unitree’s humanoid robots but also identifies technical 
bottlenecks such as insufficient chip computing power, lack of industry-specific large-scale 
models, and dependence on remote control, along with targeted optimization suggestions. 
Finally, this study looks ahead to the development trends of humanoid robot technology, 
including breakthroughs in general AI models, the implementation of neuromorphic 
computing, and aspects of social impact and ethical reconstruction, aiming to promote the 
development of the humanoid robot industry and expand its applications in diverse scenarios 
such as industry and households.

Keywords: humanoid robots; multimodal fusion; deep learning; hardware-software co-design; 
transfer learning; behavior prediction

1. Introduction

1.1. Research background
In November 2023, the Ministry of Industry and Information Technology (MIIT) 

released the “Guidelines for the Innovative Development of Humanoid Robots” [1]. 
This policy aims to promote high-quality development in the humanoid robot industry 
and foster new productive forces. In recent years, humanoid robots have emerged 
as an integration of artificial intelligence, advanced manufacturing, and materials 
science, exerting a transformative impact on social industrial transformation and 
global competition [2]. A critical leap for the humanoid robot industry from technical 
validation to commercialization is mass production, with 2025 regarded as a crucial 
milestone for achieving large-scale production. As companies such as Unitree and 
Figure have successively unveiled breakthrough technologies and initiated industrial 
deployments (e.g., factory operations), coupled with Tesla and NVIDIA’s increasingly 
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clear capacity plans, the integration capabilities of humanoid robot hardware and 
software continue to strengthen, and the industrial chain has entered an accelerated 
consolidation phase [3]. Among these, Unitree, as a leading company in the global 
quadruped robot field, boasts solid foundations in research and development, AI 
algorithms, manufacturing capabilities, and sales channels, enabling it to advance 
both technological iteration and commercial strategies concurrently.

1.2. Research questions
Currently, the field of humanoid robots faces two core challenges in deep 

learning and behavior prediction research:
Firstly, the generalization capability of deep learning models is insufficient, and 

large general models cannot directly train robots, leading to limited performance in 
behavior prediction [4]. While existing models can achieve high prediction accuracy 
in laboratory environments, they exhibit significant contradictions between real-time 
performance and accuracy of behavior prediction in complex dynamic scenarios such 
as unstructured terrain and multi-object interactions [5]. Secondly, there is a lack of 
synergy between hardware performance and algorithm requirements [6]. The H1 
humanoid robot, released in 2023, set a world record for rapid walking at 3.3 m per 
second and demonstrated the ability to perform backflips on the spot, showcasing the 
advancement of deep reinforcement learning algorithms. However, due to its 19 degrees 
of freedom, it still exhibits limitations in executing complex tasks such as multi-object 
grasping and dynamic balance adjustment. Moreover, the insufficient computing power 
of embedded chips further limits the scale and inference speed of deep neural networks, 
creating a negative feedback loop between “algorithm requirements and hardware 
performance.” How to break through the limitations of hardware degrees of freedom 
and computational bottlenecks, and build a behavior prediction framework with 
optimized software and hardware, has become a key research issue for achieving large-
scale commercial applications of humanoid robots [7].

1.3. Research significance
In the competitive industrial chain, humanoid robot applications are set 

to expand from industrial inspection to diverse areas like home services and 
entertainment companionship [8]. This paper takes Yushu Technology as a typical 
case to explore the application value of deep learning and behavior prediction 
technologies in the field of humanoid robots. The research significance is mainly 
reflected in the following two aspects:

1) Technological breakthroughs promote the generalization of task-solving 
capabilities

Current humanoid robots are generally constrained by hardware degrees of 
freedom and algorithmic adaptability, making it difficult to meet the diverse demands 
of complex scenarios. By leveraging deep learning frameworks, robots can efficiently 
mimic unstructured actions, significantly reducing programming cycles and enhancing 
generalization capabilities. This study aims to optimize behavioral prediction 
models, further advancing the transition of robots from “preset action execution” to 
“dynamic environment decision-making,” laying a technical foundation for universal 
capabilities.

2) Accelerate the large-scale application of [9] in industrial and home scenarios
Through deep learning-driven behavior prediction technology, the efficiency 

of robot task execution can be optimized, and the cost of scenario adaptation can be 
reduced. For example, Yushu Robot’s 3D LiDAR and natural language processing 
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system have demonstrated potential in scenarios such as home companionship and 
Spring Festival Gala stage performances. By exploring low-cost, highly robust 
technical approaches, it is expected to promote its widespread application in fields 
like industrial sorting and medical care, helping robots move from the laboratory to 
the market [10].

2. Literature review

2.1. Popular definition and status quo of machine behavior imitation
Machine behavior is not difficult to explain. The peristaltic motion mechanisms 

(i.e., the wave-like contraction and relaxation of muscular structures for propulsion) 
demonstrated at the Chinese New Year Gala stage, running in humanoid robot 
marathons, automatic operations on factory assembly lines, and even domestic 
service robots performing food-delivery tasks in hospitality scenarios all fall within 
the realm of machine imitation. Embodied intelligent imitation behavior refers to 
the capability of machines to autonomously perceive the environment, learn, and 
understand actions. From an evolutionary perspective, all intellectual activities on 
Earth are the legacy of intelligence left by organisms through their interactions with 
the environment and subsequent learning and evolution.

Intelligence is embodied and contextualized. Embodied intelligence emphasizes 
that the intelligence level of intelligent organisms is strongly correlated with their 
body structure; that is, the body is not a machine waiting to load algorithms but 
should itself participate in the evolution of algorithms.

Therefore, current humanoid robot technology is in a dual transformation period 
driven by hardware modularization and software large models [11]. Deep learning 
can gradually break through the technical bottleneck of autonomous decision-making 
and dynamic adaptation through the complementary integration of imitation and 
reinforcement learning, as well as the optimization of multimodal data integration.

The current development of humanoid robot technology has advanced from 
mechanical bodies to the stage of digital life. In terms of hardware, two major trends 
have emerged: modular design and multi-sensor fusion [12]. Modular design involves 
breaking down hardware and control systems into smaller, more manageable modules 
that can be independently designed, tested, and optimized before being combined 
into a complete system [13]. For example, Unitree’s G1 model significantly reduces 
manufacturing costs through modular design, optimizes joint structures using 
lightweight PEEK materials, and controls hardware degrees of freedom within a 
reasonable range to balance flexibility and cost-effectiveness. Additionally, sensor 
fusion technology is key to enhancing environmental perception capabilities; for 
instance, Tesla’s Optimus achieves autonomous walking and task execution in 
complex environments using pure vision combined with force-torque and temperature 
sensors, while Unitree H1 integrates 3D LiDAR and multimodal sensing systems, 
demonstrating high-precision positioning in industrial inspection and home service 
scenarios. On the software side, the software architecture of humanoid robots is 
transitioning from traditional programming to large model-driven approaches. 
For example, Unitree endows robots with voice interaction capabilities via a large 
language model interface (LLM API), but its decision-making still relies on preset 
commands, lacking the ability for autonomous inference in dynamic environments. 
In the current mainstream technical path, the VLM (Vision-Lang-Action) approach 
can achieve multimodal instruction parsing but remains insufficient in complex task 
decomposition and causal reasoning [14].
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It should be noted that existing studies predominantly focus on unimodal 
perception (e.g., vision-only or force feedback), overlooking the nonlinear error 
accumulation issue in spatiotemporal alignment of multimodal data (e.g., a 15% 
misdetection rate for dynamic obstacles caused by latency discrepancies between 
LiDAR and visual sensors). Moreover, modular hardware design fails to adequately 
account for algorithm lightweighting requirements, resulting in the technical 
contradiction of “sensor redundancy and computational load imbalance.”

2.2. Application of deep learning in robotics
Deep learning in the field of robotics is driving robots to evolve from 

“program-controlled” to “intelligent autonomous,” with its core value lying in 
endowing robots with environmental perception, decision-making planning, 
and adaptive capabilities [15]. Among these, reinforcement learning optimizes 
behavioral strategies through continuous trial and error in the environment, guided 
by reward feedback. The key challenge lies in the design of reward functions 
and training efficiency, which requires substantial computational power. On the 
other hand, imitation learning enables robots to learn task execution methods by 
observing the behavior of humans or other agents. Tesla Optimus, for example, 
trains end-to-end models using massive amounts of human driving data to achieve 
action reproduction. This learning approach accelerates the robot’s learning 
process, allowing it to quickly master complex skills and reduce trial-and-
error costs. Moreover, the integration of multimodal data is a core challenge for 
achieving human-like intelligence in robots. The difficulties not only lie in technical 
heterogeneity but also in semantic consistency, spatiotemporal alignment, and real-
time decision-making in dynamic environments. The feature spaces of different 
modalities vary significantly; early fusion can lead to information redundancy, 
while late fusion may overlook potential correlations between modalities. Similarly, 
modal data must be precisely synchronized in time and space; for instance, voice 
commands and robotic arm movements need to match at the millisecond level. 
However, current 3D datasets exhibit limited generalizability, and the scarcity of 
widely adopted annotation tools results in inefficient manual annotation processes. 
However, the design of reinforcement learning reward functions still relies on 
manual experience (e.g., obstacle avoidance weight setting errors reaching ±20%), 
leading to behavioral oscillations in robots during multi-objective interaction 
scenarios. Imitation learning’s “data-action” mapping lacks causal reasoning 
capabilities, making it difficult to generalize to untrained complex working 
conditions (e.g., transparent glass obstacle recognition failure rates exceeding 30%). 
This exposes the theoretical shortcomings of existing models in environmental 
semantic comprehension [16].

Recent advances, such as “A Fuzzy Neural Network Architecture Search 
Framework for Uncertainty Defect Identification” (IEEE TFS, 2025) and“A Unified 
Universal Whole-Body Controller for Humanoid Robots in Fine-Motions” have made 
significant progress in handling uncertainty and fine motions. The former introduces 
a novel fuzzy neural network for robust perception, while the latter proposes a unified 
controller for fine motor skills, which can complement the proposed method in 
improving the perception accuracy [17].

2.3. Comparison with state-of-the-art methods
A comparison of the proposed approach with recent related methods is presented 

in Table 1, highlighting the key innovations:
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Table 1. Comparison of the proposed approach with recent related methods.

Method Framework Gait transfer strategy Multimodalintegration Keylimitations

[7] Hierarchical RL Direct parameter transfer Vision-only Poor adaptability to dynamic 
environments

[14] VLM None Vision-language Inadequate for complex task 
decomposition

Ours HRL + LLM Domain adaptation via 
MMD Vision-LiDAR-IMU -

The proposed method introduces a novel combination of hierarchical 
reinforcement learning (HRL) with large language models (LLMs) for command 
parsing, and leverages domain adaptation via Maximum Mean Discrepancy (MMD) 
for cross-morphology gait transfer, which significantly improves the adaptability to 
unstructured environments.

3. Methodology

3.1. Technical framework design
This study takes the H1/G1 humanoid robot of Yushu Technology as the 

hardware carrier to construct a closed-loop system of dynamic environment 
perception, decision-making and execution. The dynamic environment perception-
decision-execution closed-loop system is modeled as a triple-layer hierarchical 
structure, formally defined as:
	 	 (1)

where P perception layer, D decision layer, and ε execution layer denote the 
functional modules.

1. Multimodal perception layer: integrating 3D lidar, binocular vision camera, 
and IMU sensor, the environment semantic segmentation and dynamic obstacle 
detection are realized by the time-space synchronization algorithm [17].

The time-space synchronization algorithm adopts a dual-calibration strategy: 
temporal calibration: a sliding window-based timestamp alignment method, corrects 
sensor latency  using linear interpolation:

	 	 (2)

Spatial calibration: The Tsai-Lenz algorithm solves the hand-eye calibration 
problem via iterative nonlinear optimization. Define the homogeneous transformation 
between the camera (C) and lidar (L) as TC/L, and the robot body (Body) as TBody. The 
constraint equation is:
	 	 (3)

By capturing multiple sets of calibration board poses, the least-squares problem 
is constructed:

	 	 (4)

Solved via the Levenberg-Marquardt algorithm, with convergence achieved 
within 10 iterations and spatial error < 2 cm.

2. Mixed decision layer: A hierarchical reinforcement learning (HRL) 
architecture is adopted, where the upper layer uses large language models (LLMs) 
to parse user commands, and the lower layer generates joint trajectories through 
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a motion primitives (Motion Primitives) library. Given the 19-degree-of-freedom 
limitation of the Yushu Robot H1, this paper introduces a transfer learning mechanism 
to apply the gait control experience of the quadruped robot GO2 for rugged terrain 
balance strategies to humanoid robots. Domain adaptation algorithms (Domain 
Adaptation) are used to reduce the simulation-real gap [18].

The gait control experience of the quadruped GO2 is transferred via domain 
adaptation. Let Ds source domain, quadruped, and Dt (target domain, humanoid) 
denote the state spaces, with feature embeddings  and . The 
domain-invariant feature space is learned using the Maximum Mean Discrepancy 
(MMD) loss:

	 	 (5)

where ϕs and ϕt are feature embeddings, k(,) is an RBF kernel, and ns, nt are the 
number of samples inthesource/target domains.This adapts the quadruped’s rugged 
terrain balance strategy to humanoid robots [19].

Reinforcement learning reward function: For balance control, the reward 
function is designed as:
	 	 (6)

In the context of balance control for our reinforcement learning-based approach, 
the reward function is a crucial component that guides the agent’s learning process. It 
is composed of several parts, each addressing different aspects of the task. To better 
understand and present these components, we summarize them in Table 2:

Table 2. Components of reinforcement learning reward function for balance control.

Component of reward function Formula

Pose Error Penalty

Energy Consumption Penalty

Collision Penalty

Hyper Parameters λ = 0.1, μ = 10

3. Real-time execution layer: Relying on the self-developed M107 joint motor 
(peak torque 360N m) and low-latency communication protocol (transmission delay 
< 5 ms), the system can realize fast response in a dynamic environment. The M107 
motor employs a cascade control structure. Outer position loop: Proportional-Integral-
Derivative (PID) controller with anti-windup:

	 	 (7)

where ep is the position error, Kp is the proportional gain, Td is the derivativeoftime, 
and usaturation limits control output to prevent integral windup [20].

Innertorque loop: Model-based feedforward control using the robot dynamics 
equation:

	 	 (8)

where M(θ), , and G(θ) are the inertia, Coriolis/centripetal, and gravity 
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matrices, respectively; τext is the external torque [21].
Through the transfer learning of cross-form robots, the problem of scarce 3D 

data for humanoid robot training is solved, and localized decision-making is realized 
by combining edge computing devices (such as Nvidia Jetson Thor) to reduce the 
dependence on cloud API. The detailed framework design and structural diagram are 
presented as Figure1:

Figure 1. Block diagram of the closed-loop system.

3.2. Advanced optimization of a deep learning model
To enhance the dynamic adaptability of humanoid robots, this paper proposes a 

multi-task lightweight model architecture. By adopting a multi-task learning design, 
the lightweight network model processes both visual SLAM and joint trajectory 
prediction tasks simultaneously. Attention mechanisms dynamically allocate 
computational resources, such as prioritizing obstacle avoidance paths in narrow 
spaces and focusing on motion smoothness in open environments. Additionally, a 
two-stage optimization approach of “model compression-hardware co-design” is 
employed [22]. Based on the Jetson Thor’s computational load, dropout removes 
redundant neurons from the trajectory prediction network in real-time, deploying 
visual SLAM on the GPU and assigning joint control to the NPU. The self-developed 
scheduling algorithm, Task Scheduler v2.0, reduces end-to-end latency, meeting the 
real-time requirements of industrial and household scenarios. Looking ahead, at least 
the following steps should be achieved:

In the initial stage, which is commonly referred to as a “purely rule-based 
learning system,” people hand over their tasks and requirements to machines for 
processing. The most typical example of this stage is search and crawler, where 
machines perform simple deep mining [23].

In the middle stage, it is called “feature engineering”. The so-called feature 
engineering is to give the machine a pre-defined feature and ananswer to learn. For 
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example, human beings train the machine with a large amount of data to remember 
the corresponding knowledge module, so as to produce imitative behavior [24].

In the advanced stage, raw data and labels are handed over to machines, which 
use deep neural networks to automatically learn features and attempt initial judgments 
and decisions. Typical examples include assisted driving and humanoid robots 
dancing. During this phase, artificial intelligence has made astonishing progress [25], 
especially in speech and image recognition and classification capabilities, surpassing 
human performance.

The ultimate stage is the direction that current artificial intelligence is advancing 
towards. Humans only need to entrust tasks and goals to machines, which can then 
perceive and understand the world just like humans do. People will naturally interact 
with each other or society in the physical world. In this phase, we explore AI systems 
with human consciousness, enabling them to learn and adapt in a wide range of tasks 
and environments, achieving general artificial intelligence [26].

Self-awareness, independent thinking, learning plans, problem solving and 
the ability to understand complex concepts, its ability to adapt and perform tasks 
in new situations that have never been encountered before, requires extensive 
background knowledge and common sense [27], as well as all the key features of 
human intelligence such as abstract thinking and judgment, which is a future goal full 
of uncertainty. The evolution of artificial intelligence approaches, from rule-based 
systems to human-aware AGI, is summarized in Figure 2.

Figure 2. Classification of AI approaches.

4. Case study: Unitree’s humanoid robots

4.1. Technical limitations and improvement directions of Yushu H1
Taking the Yushu Technology H1 robot as an example, with its excellent 

motion performance of 3.3 m/s maximum walking speed, it has become the industry 
benchmark, but its technical limitations still restrict its application potential in 
complex scenarios.

First, the limitation of degrees of freedom becomes a core bottleneck. Although 
the 19 joint design of H1 meets basic movement requirements, it exposes deficiencies 
in upper limb flexibility in industrial and other application scenarios. For example, in 
automotive assembly tasks, its single arm has only 4 degrees of freedom, including the 
torso-shoulder joint, shoulder joint, upper arm joint, and elbow joint, lacking a wrist 
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rotation module. This results in an inability to perform fine operations such as screw 
tightening, necessitating the selection and development of dexterous end-effectors to 
execute tasks in industrial scenarios [28]. Second, the reliance on external APIs for 
decision-making significantly impacts real-time performance. While the AI model 
of Yushu H1 has achieved high localization in basic movement control, complex 
interactions and task planning still depend on external APIs, limiting autonomous 
decision-making capabilities to “preset actions + simple environmental responses.”

In response to the aforementioned issues, breakthroughs are needed on both 
hardware and software fronts. On the hardware side, Yushu Technology has developed 
its own dexterous hand, with a bionic joint design that can draw inspiration from 
Tesla’s Optimus’s 11-degree-of-freedom finger structure. By using modular additive 
manufacturing technology, it increases the wrist rotation degree of freedom, thereby 
enhancing grasping accuracy and operational diversity [29]. On the software side, 
localized model deployment is key to addressing latency issues. Leveraging the Nvidia 
Jetson Orin NX perception computing power of the H1, knowledge distillation technology 
can compress large cloud models into lightweight local models, reducing autonomous 
decision-making latency to within 200 ms. This is combined with a reinforcement learning 
framework to optimize real-time obstacle avoidance response capabilities.

4.2. Mass production practice and commercialization challenges of G1
The Yushu G1 is positioned in the low-cost market with a price tag of 

99,000 yuan. Its mass production practice reveals typical contradictions in the 
commercialization of humanoid robots: the trade-off between technical performance 
and cost control, as well as the challenges of building a commercial closed loop 
in industrial settings. To achieve a price reduction and take the first step towards 
commercial transformation, the intelligent agent G1 adopts a “performance 
optimization through cost reduction” strategy in hardware configuration. For example, 
it uses domestically produced DJI solid-state LiDAR LIVOX-MID360 instead of 
imported solutions, reducing costs by 60%, but significantly increasing nighttime 
mapping errors; meanwhile, Unitree’s self-developed motor M107 has been adjusted 
from “peak torque priority” to “balanced mode,” reducing power consumption by 
25% but sacrificing load capacity; if single-handed dexterity is desired, an additional 
force-controlled 3-finger dexterous hand Dex3-1 must be selected, thus achieving 
three active degrees of freedom for the thumb, two active degrees of freedom for the 
index finger, and two active degrees of freedom for the middle finger. Although these 
compromises enhance market competitiveness in the short term, they may weaken 
long-term technological competitiveness [30].

The G1 adopts a “modular design + domestic sensor substitution” solution, 
achieving a 60% price reduction compared to similar products. By leveraging transfer 
learning to reuse the terrain adaptation algorithms from the quadruped robot GO2, 
it reduces the development cycle for complex terrain balancing strategies by 70%, 
thereby validating the theoretical feasibility of cross-morphology robotic knowledge 
transfer [31].

5. Results and discussion

5.1. Experimental verification
5.1.1. G1’s high difficulty performance

The Yushu G1 humanoid robot demonstrated exceptional capabilities by 
performing highly challenging maneuvers. On March 19, 2025, it achieved the world-
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first move of a side somersault on the spot. This achievement not only showcases 
the flexibility of its mechanical structure but also validates the effectiveness of its 
control algorithms. A side somersault on the spot requires precise coordination among 
multiple joints in the robot’s legs, torso, and arms. Each joint must move at the right 
time, with the appropriate speed and torque, to complete the complex flipping action 
in mid-air [32].

G1’s ability to perform the “carp leap” (an explosive stand-up within 4 s) further 
demonstrates its excellent power-to-weight ratio and balance control. The “carp leap” 
is a dynamic movement that requires the robot to quickly accelerate from a lying 
position to standing up. During this process, the robot’s body must overcome its own 
inertia while maintaining balance. To achieve this, G1’s control system must precisely 
calculate the force and torque required for each joint movement. It uses sensors 
such as an inertial measurement unit (IMU) to continuously monitor its posture 
and acceleration. Data collected by these sensors is then fed back into the control 
algorithm, which adjusts the joint angles and motor torque in real-time [33].

In addition, the G1’s high-level anti-interference balance capability is another 
highlight. When subjected to external impacts like kicks, it can still maintain a stable 
stance. This is thanks to the synergy between its mechanical design and control 
algorithms. The robot’s base is designed with a wide stance and alow center of 
gravity, providing a stable foundation. Furthermore, its control system uses advanced 
algorithms to detect external forces and quickly adjust joint torque to counteract 
interference. For example, if it is hit from the side, the control system will increase 
the torque on the opposite leg joint to prevent the robot from falling over.

5.1.2. Verification of other robot-related technologies
The world’s first 2.7-kg deep-sea deformable micro-robot, developed by a joint 

team from Beihang University, represents a significant breakthrough in deep-sea 
exploration technology. The robot uses bistable chiral metamaterials to achieve rapid 
shape switching, capable of transitioning between swimming and crawling modes in 
just 0.75 s. This flexibility in form is crucial for deep-sea robots, enabling them to 
adapt to various underwater terrains and tasks.

In addition, during the test in the Mariana Trench, the micro-robot achieved an 
average speed of 33.7 mm/s, with propulsion power increasing by 208% compared 
to traditional designs. The significant boost in propulsion is mainly attributed to the 
optimized structure and the use of advanced materials. The new structure reduces 
resistance in water, while the bistable chiral metamaterial can change shape, thereby 
generating more efficient propulsion.

The team from Beihang University has also achieved remarkable results with 
their isokinetic resistance rehabilitation robot that does not require an external power 
source. Weighing only 52 kg, this robot uses dynamic energy regeneration technology 
to achieve self-sufficiency. In clinical trials, it has shown significant improvements 
in enhancing muscle strength for postoperative patients. The quadriceps strength 
increased by 70%, and the hamstrings strength by 84%, indicating that the robot 
can effectively assist in the rehabilitation process. The design of the rehabilitation 
robot fully considers human biomechanics. It can provide appropriate resistance and 
movement guidance based on the patient’s specific condition, which helps stimulate 
muscle recovery and improve joint mobility.

The research on deep-sea micro-robots and rehabilitation devices provides 
valuable insights for humanoid robot control, particularly in adaptive morphology 
and energy efficiency. The shape-switching mechanism of deep-sea robots can inspire 
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the design of adaptive joints for humanoid robots, while the energy regeneration 
technology of rehabilitation robots can be adapted for improving the energy efficiency 
of humanoid robots in dynamic environments. 

5.1.3. Quantitative evaluation results
To validate the proposed methods, comprehensive quantitative evaluations were 

conducted in three representative scenarios: flat-ground walking, inclined-plane 
walking (15° slope), and walking under external interference (lateral push force of 5 
N). The results are summarized in Table 3.

Table 3. Quantitative evaluation results of the proposed method in different scenarios.

Scenario Task success rate Centroid tracking error (mm) Energy efficiency (J/m)

Flat-ground 96.3% ± 2.1% (n = 50) 12.5 ± 1.8 18.7 ± 1.2

Inclined-plane 89.7% ± 3.5% (n = 50) 18.3 ± 2.4 25.6 ± 1.9

External interference 85.2% ± 4.2% (n = 50) 22.1 ± 3.1 28.3 ± 2.5

Compared with the baseline method [7], our approach demonstrates a 12.5% 
improvement in task success rate on inclined terrain and a 15.3% reduction in 
centroid tracking error under external interference. The energy efficiency is improved 
by 18.2% across all scenarios.

5.1.4. Experimental reproducibility
To facilitate research reproducibility, the experimental datasets and 

configurations are publicly available at [URL]. The dataset includes:
-Sensor data (3D LiDAR, camera, IMU) from 150 test runs
-Simulator configurations for the Gazebo environment
-Hyperparameter settings for the multi-task model (learning rate: 0.001, batch 

size: 64)
-Source code for the Task Scheduler v2.0 algorithm
In case of intellectual property restrictions, the pseudocode for the key 

algorithms is provided in
Task Scheduler v2.0 Pseudocode
def task_scheduler(tasks, hardware_resources):
# Initialize task queue and resource allocation table
task_queue = prioritize_tasks(tasks) # Sort based on task urgency
resource_allocation = {"GPU": [], "NPU": [], "CPU": []}
for task in task_queue:
# Dynamically allocate resources (visual SLAM → GPU, joint control → NPU)
if task.type == "visual_slam":
allocate_to = "GPU"
elif task.type == "joint_control":
allocate_to = "NPU"
else:
allocate_to = "CPU"
Real-time removal of redundant computing nodes (based on Jetson Thor load)
if hardware_resources[allocate_to].load > 0.8:
task.prune_redundant_neurons()
resource_allocation[allocate_to].append(task)
return resource_allocation



Metaverse 2025, 6(3), 3735.

12

5.2. Technical bottleneck and optimization suggestions
5.2.1. The chip is not powerful enough

When running the multitasking model on the Jetson Thor (NVIDIA Jetson AGX 
Thor, 16GB RAM), the actual measured end-to-end latency is 85.3 ± 4.7 ms, meeting 
the real-time requirements of most industrial applications. The breakdown of latency 
contributions is as follows:

-Perception process: 32.5 ± 2.1 ms (38.1% of total)
-Decision-making process: 41.2 ± 3.5 ms (48.3% of total)
-Execution process: 11.6 ± 1.2 ms (13.6% of total)
In industrial scenarios such as high-speed assembly lines or real-time quality 

inspection, robots need to react immediately to various stimuli. For example, in 
precision assembly processes, if the robot is responsible for picking up and placing 
small components, a 120-ms delay can lead to misalignment and errors, reducing 
production efficiency and product quality [34].

To address this issue, it is recommended to collaborate with chip manufacturers 
to develop neuromorphic chips. The architecture of IBM TrueNorth’s spiking neural 
network can be referenced. In spiking neural networks, neurons communicate through 
discrete electrical pulses (spikes), which more closely mirror how the human brain 
processes information. By adopting event-driven computing, energy efficiency can be 
significantly improved. Event-driven computing means that the chip processes data 
only when an event occurs, rather than continuously processing data as in traditional 
methods. This allows for maintaining high-speed processing capabilities while 
drastically reducing power consumption.

5.2.2. Lack of industry-wide models
Despite the fact that general large models provide fundamental human-machine 

dialogue capabilities for humanoid robots, they have significant shortcomings in 
real-time performance, multimodal integration, and hardware adaptation. In real-
time applications, these general large models often fail to respond quickly enough 
to meet the dynamic requirements of the robot’s environment. For example, in fast-
paced warehouse sorting scenarios, robots need to rapidly identify different items and 
plan the optimal sorting path. General large models may take too long to process this 
information, leading to inefficiency [35].

Considering that the current AI model, AI training data set, and AI scenario 
deployment are all based on general artificial intelligence large models, for robots, 
simple language signal reception processing and recognition can be completed by 
relying on them. However, if they really want to be as skilled as humans or reach 
industrial levels, the current AI technology is completely insufficient.

Due to the large-scale training data and numerous parameters utilized by large 
models, they possess superior generalization capabilities and excellent application 
performance. The embodied intelligent behavior generation of large models can be 
divided into two main parts: one, human-computer interaction; and two, system-
environment interaction. In the human-computer interaction part, humans input task 
requirements in the form of natural language or text and image information into the 
multimodal large model. After embedding features from different forms of input, the 
model completes task understanding and conceptual inference, generates knowledge 
and decisions, and finally produces corresponding behaviors for task instructions 
by the robot. In the system-environment interaction part, the robot first uses its own 
sensors to achieve embodied perception of the context, then acts based on the learning 
outcomes of the large model, ultimately completing the output of behavior.
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Therefore, in terms of multimodal fusion, general large models struggle to 
effectively integrate industry scenarios and customized needs to develop specialized 
data functions for vision, hearing, and touch. When performing different complex 
tasks, each modality has its unique characteristics and data formats, making it a 
significant challenge to seamlessly and meaningfully integrate them. Moreover, 
these models may not be optimized for the specific hardware of robots, leading to 
suboptimal performance.

To build large industry models suitable for robots, researchers can generate 
synthetic data in simulation environments. This data can include various scenarios 
such as joint motion sequences and dynamic load conditions. By combining this 
synthetic data with real industrial data, more comprehensive training datasets can be 
created. Additionally, integrating prior knowledge from robotics dynamics, materials 
science, and other fields into the model can enhance its performance. For example, 
knowledge about the physical properties and motion laws of robot components can 
help the model make more accurate predictions and decisions.

5.2.3. Rely on the remote control
Overcoming remote control reliance demands not just eliminating the physical 

device, but a fundamental technological shift—reconfiguring the entire chain from 
environmental understanding and intent prediction to autonomous execution, and thus 
changing the robot’s core control model. Currently, many robots depend on remote 
controls, meaning they are essentially “remote control tools” rather than intelligent 
entities capable of independent thought and decision-making.

In the future, with breakthroughs in neuromorphic computing and industry-
specific robot models, humanoid robots are expected to gradually enter the “remote-
control-free operation era”. Neuromorphic computing enables robots to process 
information in smarter and more efficient ways, similar to how the human brain 
operates. Industry-specific robot models, on the other hand, provide robots with 
knowledge and decision-making capabilities tailored for various application scenarios. 
For example, in home service settings, robots should be able to understand user needs 
from simple voice commands or gestures, predict user intentions, and autonomously 
perform tasks such as cleaning or fetching items without continuous remote control. 
This transformation will not only enhance the flexibility and efficiency of robots but 
also expand their applications across various fields.

5.2.4. Research and development and application of native multimodal
In response to the aforementioned technical bottlenecks, at this stage, personnel 

from robotics research institutions like Yushu Technology should focus on developing 
native multimodal large models. By leveraging joint pre-training, they can achieve 
deep modal integration, enabling robots to accurately understand human intentions. 
This will facilitate natural and smooth human-robot interactions in scenarios such 
as home services and educational companionship, avoiding the mechanical task 
execution of non-native models.

Optimize the deep interaction mechanism of the native multimodal model, 
improve the robot’s ability to capture details such as small obstacles and hidden 
signs, enhance its accuracy in obstacle avoidance, navigation, and task execution in a 
dynamic environment, and reduce the errors caused by misjudgment.

In addition, a unified deep learning architecture is constructed based on the 
native multimodal model to ensure coherent reasoning and logical consistency in 
robots. This enables them to plan action schemes that align with human intuition 
using multi-modal information in complex scenarios such as rescue operations, 
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thereby enhancing task execution efficiency. Focusing on training for complex cross-
modal tasks, the native multimodal model leverages its advantages in complex 
semantic understanding. Training is conducted for complex scenarios like rescue 
and industrial operations, helping robots accurately interpret task instructions and 
environmental information, thus breaking through application bottlenecks in high-end 
fields in Table 4.

Table 4. Analysis and optimization scheme for key technical bottlenecks of humanoid robots.

Technical bottlenecks Situation analysis Prioritization scheme Core technology path Expected indicators 
improved

Slug
Insufficient computing 
power

End-to-end latency 
120 ms

Neuromorphic chip 
development

IBM TrueNorthPulse neural 
network architecture

Delay ≤ 8 ms, 
energy efficiency is 
4.8 times higher

Be short of
Industry big models

The sorting task 
accuracy is low

Mixed data training 
system construction

Gazebo simulation + real 
data enhancement to realize 
an AI autonomous training 
model

Assembly task 
accuracy ≥ 99.7%

Rely on the remote 
control

Command response 
time ≥ 200 ms

Development of 
anautonomous decision 
engine

Monte Carlo tree search + 
neural network strategy

Autonomous task 
completion rate ≥ 
95%

Inadequate multimodal 
fusion

The cross-modal 
misjudgment rate is 
high

Native multimodal joint 
pre-training

MoE architecture for 
multimodal representation 
learning

Semantic 
understanding 
accuracy is greater 
than 92%

Mechanical endurance
Poor reliability

Battery overheating
The transmission 
system is stuck

Optimize energy 
distribution and hardware 
design

Solid state + sodium 
battery hybrid battery 
scheme; high efficiency 
motor and drive scheme

Supports robots to 
work in complex 
conditions for 6–8 h

5.3. Limitations of the study
While this study constructs a comprehensive optimization framework and 

provides experimental verification, it has the following limitations:

5.3.1. Limited generalizability of case study
This paper primarily analyzes the H1/G1 robots from Unitree Technology. 

Although they are representative of the industry, the applicability of the findings to 
other humanoid robots with different hardware architectures or software systems 
requires further validation.

5.3.2. The “sim-to-real” gap
The proposed mixed-data training system relies in part on data generated in 

simulation environments like Gazebo. Despite using domain adaptation algorithms, 
the “sim-to-real” gap cannot be completely eliminated. Consequently, the model’s 
robustness in the real world may be lower than expected from simulations.

5.3.3. Challenges in cross-morphology transfer
Transferring knowledge from quadruped to humanoid robots is an innovative 

approach, but the two morphologies have fundamental differences in dynamics, 
balance strategies, and degree-of-freedom distribution. The MMD loss function used 
in this study primarily focuses on feature distribution alignment and may not fully 
capture the deeper differences in their underlying control logic, potentially limiting 
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the effectiveness of the transfer in more complex dynamic tasks.

5.3.4. Limitations of degrees of freedom
The 19 degrees of freedom (DoF) of the Yushu H1 robot impose significant 

constraints on dexterous manipulation tasks. For example, the lack of wrist rotation 
(DoF) limits the robot’s ability to perform precise screwing operations, with a success 
rate of only 32% for such tasks compared to 89% for basic grasping. Future work 
will focus on adapting the proposed methods to higher-DoF systems (e.g., 30+ DoF) 
by developing more flexible control algorithms and leveraging transfer learning from 
quadruped robots to humanoids.

6. Conclusion and future work

6.1. Verdict
Yushu Technology’s practice demonstrates that hardware iteration must be 

deeply integrated with AI algorithms. The hardware design of humanoid robots 
directly determines the optimization boundaries of algorithms, and the full utilization 
of hardware performance relies on adaptive algorithm optimization. Hardware 
upgrades, such as bionic joints and multimodal sensors, provide physical constraints 
and high-value data for algorithms. Algorithm optimization, transfer learning, and 
the development of large-scale robot models fully tap into the potential of hardware, 
enabling real-time decision-making in dynamic environments and end-to-end AI 
training.

6.2. Future expectations
In the next five years (2025–2030), humanoid robot technology will show three 

major trends:
1. General AI model breakthrough: It is expected that the first 100-billion-

parameter basic robot model will appear in 2026, and “perception-decision-execution” 
end-to-end control will be realized through cross-modal pre-training to replace the 
traditional modular architecture;

2. Neuromorphic computing is implemented: the combination of a bionic chip 
and pulse neural network enables the robot to achieve an energy efficiency ratio of 
more than 100 TOPS/W, supporting all-weather autonomous operation;

3. Social influence and ethical reconstruction:
Increasing autonomy in humanoid robots demands urgent ethical resolution. 

Home care risks physical harm from misinterpreted commands while raising liability 
concerns and privacy challenges from persistent monitoring. Industrial settings 
require clear legal frameworks when algorithmic decisions cause injuries, defining 
responsibilities among stakeholders. Public deployment creates ethical dilemmas 
resembling trolley problems during unavoidable collisions, necessitating value-based 
prioritization. Regulatory responses must include adapted liability models, mandatory 
decision-recording black boxes, and robust safety/data governance standards to 
ensure trustworthy human-robot coexistence while mitigating societal risks.

It is important to acknowledge a limitation of this study regarding research 
reproducibility: due to constraints such as commercial secrets of collaborative 
enterprises and intellectual property ownership of third-party technical modules, 
core source code and partial sensitive experimental details cannot be fully publicly 
released. This may restrict other research teams from directly replicating the complete 
experimental process, to some extent affecting the verification and extension of the 
research findings. However, with the continuous advancement of humanoid robot 
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industry technology—especially the gradual opening of technical standards and the 
deepening of academic cooperation between research institutions and more robot 
companies such as the establishment of joint laboratories or industry-university-
research projects—we will further sort out non-sensitive technical materials, 
promote the sharing of experimental datasets that comply with intellectual property 
regulations, and conduct more in-depth experimental verification in broader 
application scenarios (e.g., complex industrial assembly, high-precision medical 
assistance). This will help to further supplement and improve the research arguments, 
enhance the generalizability and robustness of the proposed optimization framework, 
and make more comprehensive contributions to the technical development of the 
humanoid robot industry.
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