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Abstract: The metaverse, as a shared virtual collective space, holds unparalleled promise
for engaging 3D experiences through augmented reality (AR) and virtual reality (VR).
Despite notable progress, there still exists a void in the proper visualization of intricate
data and environments in real-time. This article suggests a novel approach utilizing AR/
VR technologies to enhance 3D visualization in the metaverse. Through the integration of
real-time processing of data, multi-layered virtual environments, and advanced rendering
methods, the envisioned system increases interaction, immersion, and scalability. The
computational model relies on hybrid algorithms that integrate machine learning-based object
recognition and GPU-based rendering efficiency. This work introduces a new hybrid method
for improving real-time 3D visualization in Metaverse through the integration of machine
learning (ML)-based object identification and GPU-based rendering. The system uses the
identified importance of objects to dynamically adjust the level of detail (LOD) of individual
objects in the scene to optimize rendering quality and computational performance. The major
system components are an object recognition module that classifies and ranks objects in real-
time and a GPU rendering pipeline that dynamically scales the rendering detail according to
the priority of the objects. The algorithm tries to achieve the trade-off between high visual
quality and system performance by using deep learning for precise object detection and GPU
parallelism for efficient rendering. Experimental outcomes illustrate that the introduced system
realizes considerable enhancements in rendering speed, interaction latency, and visual quality
compared to common AR/VR rendering methods. The results confirm the prospects of fusing
Al and graphics to develop more effective and visually sophisticated virtual environments.

Keywords: Metaverse, Augmented Reality (AR), Virtual Reality (VR), 3D Visualization,
Real-Time Rendering, Machine Learning

1. Introduction

Recent advancements have enabled the creation of digital technologies, most
notably in the metaverse. Despite the increasing interest in this field, challenges
remain in creating highly detailed, scalable, and interactive 3D visualizations. Current
AR and VR [1] systems often struggle with rendering complex environments in real
time while maintaining high-quality experiences. The need for efficient computational
methods to visualize 3D environments in immersive spaces like the metaverse has
become evident, particularly in sectors such as gaming, healthcare, and education.
The emergence of the metaverse as an interconnected virtual world is expected to
revolutionize the way users interact with digital content. As users demand more
realistic, immersive experiences, AR and VR technologies must advance to meet
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these needs.
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Figure 1: Different levels of immersion in digital reality technologies

The image figure 1 depicts the different levels of immersion in digital reality

technologies, showcasing the hierarchy and relationships between extended
reality (XR), Virtual Reality (VR), Augmented Reality (AR), Mixed Reality (MR),
and the evolving concepts of Metaverse and Multiverse. These technologies are
grouped along an axis of immersion, which represents the degree of interaction and
integration with the digital or virtual world.

At the base of the hierarchy is User, indicating the interaction point between
human users and digital technology. As the user progresses along the immersive axis,
the experience becomes more intense and integrated with digital environments.

= Virtual Reality (VR) [2] is at the higher end of the immersion scale,
representing fully immersive environments that transport users to entirely virtual
worlds, often with the help of VR headsets. Users in VR are typically isolated from
the physical world and interact solely within the virtual space.

* Augmented Reality (AR) [3] sits below VR, where digital elements
are overlaid onto the physical world, allowing users to interact with real-world
objects while viewing virtual content on top of them, usually through devices like
smartphones or AR glasses.

* Mixed Reality (MR) [4] combines both VR and AR technologies, enabling
more seamless interaction between the virtual and real worlds. In MR, users can
manipulate virtual objects in real time while being aware of their surroundings,
offering a more fluid transition between physical and virtual spaces.

Metaverse is usually a shared, continuous virtual environment where users
can chat, play games, create, and socialize, whereas the multiverse consists of
several, generally separate, virtual worlds existing side by side and possibly,
but not necessarily, linked together. To do this, there is a pressing requirement
for better 3D visualization [5] systems that are both real-time interactive and
scalable. These advances will allow industries to construct more complex virtual
environments, which in turn could open up new possibilities for simulation,
learning, and user interaction.

* Introduction of an innovative computational model combining AR and VR
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for enhanced 3D visualization [6] in the Metaverse.

» Development of hybrid algorithms that optimize data processing and
rendering, improving user interaction in real time.

» Evaluation and comparison of performance improvements against traditional
AR/VR systems using publicly available 3D datasets.

» Demonstration of system applicability in real-world scenarios such as
gaming, education, and healthcare.

» Provision of a new framework for the integration of machine learning in 3D
visualizations within immersive environments.

The structure of the paper is as follows: Section 2 presents a systematic review
of existing literature focusing on augmented and virtual reality (AR/VR) technologies
and their integration with 3D visualization in the context of the metaverse. Section
3 details the proposed methodology, including the dataset description, preprocessing
steps, and a graphical representation of the complete system pipeline. Section 4
outlines the experimental setup and showcases the results along with a performance
evaluation matrix to assess segmentation accuracy and spatial reconstruction. Section
5 provides an in-depth discussion and interpretation of the findings, highlighting
their significance and limitations. Finally, Section 6 concludes the study and outlines
potential directions for future research.

2. Review of Literature

The metaverse [7], which combines AR and VR, has drawn significant attention
through research as it has the potential to revolutionize digital interactions. Various
studies have investigated the use of AR/VR technologies in developing 3D virtual
environments. For example, [8] showed that AR increases user interaction by
superimposing virtual objects on the real world, allowing users to interact with data in
a more natural way. Alternatively, VR offers full immersion to the users, evidenced in
the contribution of [9] in developing interactive virtual worlds heavily relying on the
use of VR headsets and haptic feedback systems. Under the Metaverse framework,
[10] have suggested a metafusion approach, which unites AR and VR to design
adaptive systems to visualize data in real time. Their solution, although promising,
is still confronting issues of real-time rendering high-resolution 3D models without
much latency. Prior research has also demonstrated challenges in integrating seamless
user-to-virtual world interaction, as important performance bottlenecks will come
from computational complexity [11]. Table 1 provides an overview of recent studies
focusing on the integration of AR, VR, and Al. It summarizes the methodologies
employed, types of methods, datasets utilized, and key metrics assessed across
various research efforts.

Table 1: Summary of overview of recent studies on AR/VR/AI

Author(s)

Method Metrics

Pan and Liu (2025) [7] ]

Kim et al. (2024) [8]

Behravan et al. (2025) [9]

Reinforcement learning-based framework for
enhancing 3D spatial reasoning in vision-language
models

Development of 'meta-object' concept for seamless Enhanced user interaction and
synchronization between physical and virtual worlds immersion in the Metaverse
Generative Al for transforming 2D images into 3D Improved user interaction in AR
representations in AR environments

Improved spatial consistency and
formatting stability of 3D models
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Continuation Table:

Author(s)

Method

Metrics

Gonfa (2025) [10]

Pangaea X (2025) [11]

CSU Long Beach (2025)

[12]

Mehandjiev and Saadouni

(2025) [13]

Hui (2024 [14]

Gonfa (2025) [15]

Zeng et al. (2024) [16]

Wang et al. (2023) [17]

Zhou et al. (2023) [18]

Yang et al. (2023) [19]

Liu et al. (2023) [20]

Sun et al. (2024) [21]

Xu et al. (2023) [22]

Peng et al. (2023) [23]

Zhang et al. (2024) [24]

Li et al. (2025) [25]

Zeng et al. (2023) [26]

Examination of big data analytics and Al in
processing vast amounts of data in virtual
environments

Discussion on the impact of AR and VR on data
visualization and decision-making processes

White paper on the integration of AR and VR
technologies in education, addressing access and
equity issues

Proposal of 3D stock heatmap visualization for
financial data in VR

Concept of Metaformation: bottom-up approach
transforming physical spaces into hybrid physical—
digital metaverse environments, enabling seamless
interaction between humans and digital entities
Examination of big data analytics and Al in
processing vast amounts of data in virtual
environments

Exploration of AR's ability to overlay virtual objects
in real-world spaces for enhanced interactivity

Investigation of real-time machine learning models
for predicting virtual environment behavior
Presentation of AR/VR hybrid system using deep
learning to predict and modify environmental
features based on user interactions

Proposal of AI-VR framework for responsive,
real-time interactions

Development of hybrid VR/AR model utilizing
machine learning to improve environmental realism

Examination of GPU-based rendering techniques
in AR and VR environments for faster processing
speeds

Proposal of VR system with adaptive content
rendering based on user's engagement level
Exploration of Al-powered systems enabling smarter
real-time interactions within VR environments

Highlighting the role of multi-modal sensory inputs
(sound, touch, vision) in enhancing VR immersion

Proposal of real-time 3D data visualization using
AR for scientific applications

Exploration of AR's role in enhancing user
engagement by overlaying virtual objects onto the
physical world

Enhanced intelligent and responsive
interactions in the Metaverse

Enhanced immersive, interactive,
and real-time analytics across
industries

Enhanced learning experiences in
the Metaverse

More intuitive and interactive
analysis of stock market data

Improved hybridity and interaction
quality between physical and
digital space

Enhanced intelligent and responsive
interactions in the Metaverse

Improved engagement and intuitive
interaction with 3D data in the
Metaverse

Enhanced object recognition and
scene adaptation in virtual spaces

Adaptive and personalized Metaverse
experience

Enhanced realism of user interactions
in 3D spaces

Reduced rendering times with
maintained visual quality in complex
3D tasks

Optimized GPU usage for real-
time rendering in scalable 3D
environments

Improved efficiency and immersion
in large-scale Metaverse simulations
Enhanced intuitiveness and user-
friendliness in virtual spaces

More natural and intuitive user
experience in interactive Metaverse
applications

More intuitive and accessible
interaction with scientific models in
the Metaverse

Improved interactivity and user
experience in 3D visualization
environments
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Continuation Table:

Author(s)

Method

Metrics

Kim et al. (2023) [27]

Smith et al. (2023) [28]

Wang et al. (2023) [29]

Chien et al. (2023) [30]

Liu et al. (2023) [31]

Shao et al. (2020) [32]

Sun, Z., et al. (2023)[33]

AL-Ogqla & Nawafleh (2024)
[34]
Zhang, L. (2024) [35]

Yun & Yun (2024) [36]

Kenig & Vives (2025) [37]
Pan, Z. (2023) [38]

Highlighting VR's potential to create fully immersive
environments with interactive experiences

Proposal of hybrid AR/VR model for real-time
data visualization combining immersion of VR
and interactivity of AR

Investigation of performance bottlenecks in real-
time rendering of high-resolution 3D models in
VR environments

Demonstration of GPU-based rendering techniques
improving quality and efficiency of 3D visualizations
in AR/VR systems

Discussion on advanced rendering algorithms (ray
tracing, rasterization) enhancing realism of 3D
environments

Exploration of spatial computing techniques for
creating interactive AR environments responding
to physical movements

GPU optimization in AR/VR systems

Al for additive manufacturing composites
Editorial on AI-Metaverse convergence
Expanding metaverse content industry

Human roles in future medicine in Metaverse

Top 10 Metaverse application scenarios

Enhanced interactivity in virtual
worlds

Rich virtual environments in the

Metaverse

Need for efficient algorithms to
handle complex visual environments

Real-time rendering of complex
environments for immersive
experiences

Achieving photorealistic quality for

the Metaverse

Engaging and relevant 3D
visualizations in the Metaverse

Improved frame rates and latency
Support for Metaverse technology

Strategic implications discussed

Market insights and content
strategies

Human-centric digital healthcare

Categorized real-world use cases

A number of frameworks for 3D visualization in AR/VR spaces have been
investigated. For example, the research by Chien et al. (2020) and Liu et al. (2021)
focuses on GPU-based rendering methodologies that greatly enhance visualization
quality within virtual spaces. These methodologies are, however, prone to failure
when applied to complex, data-intensive environments due to their inability to
provide real-time performance when computational loads are high. It is clear from the
literature studied that though AR and VR technologies have come a long way, there
is still a gap in developing efficient systems for high-quality 3D visualization in the
Metaverse. While existing approaches target the optimization of rendering quality or
interaction quality, they tend not to solve real-time performance concerns that occur
when dealing with intricate environments. The purpose of this paper is to resolve
these challenges by introducing a new methodology by integrating machine learning-
based object recognition and GPU-based rendering methods. The goal is to provide a
solution that not only enhances visual quality but also provides real-time interactivity,
thus enhancing the metaverse experience for users.

3. Proposed Methodology

3.1. Detailed Discussion of Dataset
In order to assess the suggested system, an extensive variety of public 3D
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datasets are employed. These consist of geometric models, texture maps, and dynamic
motion sequences, which are indicative of metaverse environments. The datasets are
chosen in accordance with their complexity and variety, encompassing a variety of
application fields like architecture, gaming, and medical simulations. The models are
displayed under various virtual environments, enabling the system to support a variety
of visual content. To evaluate the proposed algorithm, the multiple public 3D datasets
as shown in table 2 that cover a range of object types and scene environments:

Table 2: Summary of the key details about the datasets

Dataset Description Size/Content Purpose/Usage Key Features
Used for populating virtual
A large-scale 3D CAD Clean pol 1
g . ... Over 220,000 3D scenes with diverse 3D objects potygonia
model repository with . ) models, consistent
ShapeNet . . . models across 3,135 and testing the algorithm’s .
diverse categories, covering . . . . annotations, and
i object categories. ability to handle visual .
everyday objects. L part annotations.
diversity in the metaverse.
. . 1 li
Used for training the object iofl;lsn\’zvi‘;l lizrfdd
A benchmark dataset for 3D . recognition module to classify &
. ) ) . 12,311 CAD models in . : truth labels are
ModelNet40 object classification with a . . objects by type and testing the . .
40 object categories. o T ., _... suitable for training
focus on CAD models. algorithm’s ability to identify . ..
. . . object recognition
multiple objects in real-time.
networks.
Used to evaluate the algorithm
A synthetic dataset of in dynamic, scene-level Photo-realistic urban
photorealistic urban scenes Synthetic images of contexts for outdoor AR or scenes, depth maps,
SYNTHIA designed for training urban scenes with pixel- driving metaverse scenarios. semantic labels, and

and evaluating semantic
segmentation.

level annotations.

Incorporates real-world
diversity, weather, and lighting

outdoor AR scenario
simulation.

conditions.

These datasets are used to test the performance of the system under various
conditions, including real-time rendering, multi-user interaction, and high-density
data visualization.

3.2. Graphical Abstract of Proposed System and Its Scientific/Technical
Discussion

The proposed system integrates machine learning-based object recognition
with GPU-accelerated rendering to enable high-quality 3D visualization within the
metaverse environment. As illustrated in Figure 1, the workflow begins with the
input of either pre-existing 3D models or real-time sensor data, which may include
static architectural structures or dynamic motion-captured content. This input data
undergoes a preprocessing stage where techniques such as noise reduction, object
segmentation, and texture mapping are applied to optimize the models for real-time
rendering. Subsequently, object recognition algorithms are employed to classify
and identify elements within the virtual space, enabling intelligent interactions and
enhancing environmental realism. The optimized data is then rendered in real time
using GPU-based rendering techniques, incorporating advanced shading, lighting, and
resolution scaling to ensure a visually immersive experience. Finally, the rendered
output is projected onto an AR/VR interface, allowing users to interact dynamically
with the environment, including the ability to manipulate and adjust virtual elements
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based on real-time inputs.
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Figure 2: Workflow of System

This methodology shown in figure 2 combines the best of both worlds—
machine learning for intelligent interaction and GPU-accelerated rendering for visual
fidelity—ensuring a scalable and responsive Metaverse experience.

Data Input Layer

flows to

Preprocessing Layer Rendering Layer

tlows to

Y
Object Importance Estimator (ML Model)

GPU Rasterization + P _— Foadhack Loo Feedback from
Ray-Tracing Module P P AR/VR Interface

Output Layer

Figure 3: Detailed version of 3D visualization in the Metaverse

The figure 3 shows the detailed version of 3D visualization in the Metaverse.
Here's an explanation of each layer and how they interact: The system starts by
feeding 3D models and real-time sensor data into the architecture. This can include
static models, such as architectural designs, or dynamic data like motion capture
from users or objects in the environment. This layer processes the input data, which
includes steps such as noise reduction, object segmentation, and texture mapping.
These steps ensure that the data is cleaned and optimized before further analysis and
rendering. The Machine Learning Layer utilizes advanced algorithms to perform
object recognition and classification based on the pre-processed data. It assigns
importance scores to objects, helping prioritize which objects require high-level detail
in the rendering process. Once the objects are classified and assigned importance, the
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Rendering Layer takes over. It uses GPU-based techniques to render the objects in
real-time, adjusting the level of detail (LOD) based on the object’s importance score.
Objects that are deemed more important are rendered with higher detail, while less
important ones are simplified. The rendered scene is displayed in the Output Layer.
This is where the virtual environment is shown to users, typically through AR or VR
headsets. The output is an immersive 3D experience that responds in real-time to user
interactions. The Feedback Loop monitors user interactions and provides feedback to
the system. This data is then used to refine future object importance assessments and
rendering decisions. The feedback ensures that the system continuously adapts to user
behavior, enhancing the overall experience.

The flow of data from one layer to the next, including feedback from the
output to the machine learning layer, ensures that the system remains responsive and
efficient, providing a dynamic and immersive experience for users in the metaverse.

The algorithm operates in a closed loop each frame. First, an object recognition
module (a CNN-based detector/classifier) processes the 3D scene or the incoming
image frame to recognize objects and estimate their identities or categories. Next, the
GPU rendering engine uses this semantic information to adjust rendering parameters
per object before drawing the frame. Less critical objects can be rendered with lower
levels of detail (LOD) or simplified shading, while important objects (as identified by
ML) are rendered with higher fidelity (e.g., finer geometry, high-res textures). This
yields a context-aware rendering that balances quality and speed. The pipeline runs
continuously each frame, and the recognition can be done asynchronously (e.g., on a
parallel CUDA stream) to avoid slowing down the render loop. If the ML inference
for object recognition from frame ¢ is only ready by frame #+1, the algorithm uses the
results in the next frame—effectively a one-frame delay, which is negligible at high
frame rates (~60 FPS). Pseudocode for one iteration is as follows:

Algorithm 1: for the hybrid rendering loop (MetaFusion)

for each frame t:

1. Predict object classes/importance (asynchronous)

if t % N ==0: #e.g., run ML inference every Nth frame

recognized objects = ML ObjectRecognizer(frame buffer or scene data)

importance_map = assignlmportance(recognized objects)

2. Adjust rendering based on recognition

for each object in the scene:

if importance_map[object] == HIGH:

object. LOD = HIGH_DETAIL # use detailed mesh/texture

object.shading = FULL QUALITY

else:

object. LOD = LOW_DETAIL # use simplified model

object.shading = BASIC SHADER

3. Render the scene with GPU acceleration

rendered image = GPU_Render(scene, camera_params)

display(rendered image)

In the above pseudocode, ML ObjectRecognizer could be a deep learning
model (such as a CNN or Transformer) that takes either the current frame image
or 3D data (e.g. a depth map or point cloud) and outputs identified object labels or
bounding boxes. The importance map is used to assign each object an appropriate
level of detail (object.LOD) by selecting a mesh resolution from a predefined LOD
library. Additionally, object.shading parameters are dynamically adjusted, choosing



Metaverse 2025, 6(3), 3728.

between simple shaders or advanced materials based on importance thresholds. The
assignlmportance function then maps those recognition results to an importance level
or weight for each object (for instance, prioritizing certain classes of objects or those
in the user’s focus). This triggers the rendering engine to adjust each object’s LOD
and shading quality accordingly before calling the standard GPU render function. The
machine learning module identifies semantically important objects in the 3D scene.
These importance scores directly influence the GPU rendering pipeline by dictating
which objects are rendered at high or low resolution. Less significant objects are
rendered with reduced polygon counts and simplified shading to conserve resources,
while key objects are rendered at full fidelity. In practice, the ML inference might run
in parallel to the rendering the engine can use the last available recognition result to
update importance. This design ensures the GPU is maximally utilized for rendering
while the ML model runs concurrently on another portion of the GPU or a dedicated
accelerator, thereby hiding the latency of object recognition behind the rendering
workload.

GPU Rasterization +
Ray-Tracing Module

Scene Objects & Data

3D Scene/Dala

LOD Decision Engine

Rendered I .
cndered Frames gy st

Feedback Loop

Feedback from
AR/VR Interface

Figure 4: Proposed system architecture

Figure 4: Proposed system architecture. The hybrid algorithm consists of a
GPU Rendering Engine that generates frames from the 3D scene and a parallel ML
Object Recognition module that analyzes frames or scene data to detect and classify
objects. The recognition outputs (object identities and importance) feed back into
the rendering engine, allowing it to adapt rendering quality for different objects on
the next frames. By leveraging modern GPUs’ capability to perform graphics and
compute in parallel, the system maintains real-time performance. Recognized objects
deemed important (blue feedback path) are allocated more rendering resources, while
less important scene elements may be simplified. This closed-loop design dynamically
balances visual fidelity vs. speed, focusing detail where needed to enhance user
experience.

Our algorithm also integrates GPU-accelerated techniques for rendering, such as
hybrid rasterization and ray tracing, when applicable. For example, for critical objects
we enable ray-traced reflections or better shadows, while using faster rasterization for
the rest. This mixed approach echoes recent hybrid rendering techniques that achieve
high quality with low performance cost—e.g., combining ray-traced and shadow-
mapped shadows yields high-quality soft penumbras at minimal overhead. Similarly,
Al-based upscaling can be applied on peripheral scene regions, akin to neural
supersampling, while drawing important objects at full resolution. All these tactics are
orchestrated by the object recognition's understanding of scene context.

4. Mathematical Foundation
4.1. Object Importance Calculation

To determine how important an object is in the scene and then use that
importance using equation 1 to decide how much rendering power should be allocated
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to it. Here’s how to calculate object importance:
» O: Set of all objects in the scene.
* [, : Importance score for object o, .
* Weass » Weize » Wair - Lhese are weights that help decide how much each factor
(class, size, distance) affects the object’s importance.
The importance score (/; ) of an object o, is calculated as:

i class size

~ A
I' =W, X 1|:Ci € Cpriority] + Wy XA_’+ Wdist X

1
@ O

max

. cA*l is the predicted class of the object (e.g., car, chair).
* A, is the size of the object in the frame (how big it appears on the screen).
* d,is how far the object is from the camera.
+ cis a small value to avoid division by zero.
The idea is to give higher importance to objects that are closer, larger, or more
relevant (like avatars or cars in the metaverse).

4.2. Level of Detail (LOD) Selection

Once the importance score for each object is found, model need to decide
how much detail to show. If the object is more important, it gets higher detail using
equation 2.

LOD(o i)=High,I i>t Low,I i<t 2)
78 thereis a threshold that controls whether an object gets High or Low detail
based on its importance

4.3. Rendering Time Calculation

Now, need to calculate how much time to spend rendering these objects. The
goal is to keep everything fast enough for real-time interactions. Equation 3 for
Rendering Time:

T,
Tframe = max (T;ender s %] (3)
- T

ender - 11Me taken to render the scene.

* Ty." : Time taken by the machine learning model to recognize objects.

* N: Number of frames per recognition cycle (if recognition is done every 2
frames, then N = 2).

The key idea here is that we try to parallelize the rendering and ML recognition,
so that model don’t wait for recognition to finish before rendering the next frame.
Frames Per Second (FPS)

measure to understand how smooth the system is. Equation 4 for FPS is simply,

1
“4)
frame

The goal is to keep FPS high (like 60 or 90 FPS) to make the experience smooth,
with low latency.

FPS =

5. Results and Discussion

The experimental setup involves deploying the proposed 3D visualization
system within a controlled virtual environment. The setup uses both an AR headset
(Microsoft HoloLens 2) and VR headsets (Oculus Rift S) for immersive interaction
with the rendered environments.

Extensive experiments were conducted to validate the performance of our hybrid
algorithm (MetaFusion). The experiments were designed to test both visual quality
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improvements and system performance (speed/latency) across different scenarios
derived from the datasets above. Here are outline setup:

Hardware and Platform: All experiments ran on a PC equipped with an NVIDIA
RTX 4090 GPU (24 GB VRAM) and an Intel i9 CPU. The GPU’s ample cores and
Tensor Cores were utilized for both rendering and ML inference. Our rendering
engine was built on Unity3D (with a custom render pipeline) and integrated with
TensorRT for accelerated neural network inference. GPU concurrency features are
enabled so that a compute shader for ML could run alongside graphics rendering. For
the cloud-offloading variant (in one ablation study), set up an edge server, but unless
specified, results assume all processing is local. The system was tested at a resolution
of 1920x1080 (1080p) at 90Hz refresh, unless otherwise noted.

Algorithm Configuration: The object recognition model was a YOLOv5-derived
CNN for detection in images (used in the SYNTHIA experiments to detect cars,
pedestrians, etc.), and a simpler PointNet classifier for direct 3D shape recognition
(used in the ShapeNet/ModelNet experiments). Model trained the 2D detector on a
combination of COCO (for general object features) and SYNTHIA’s labelled frames
(for domain-specific tuning), achieving a detection mAP of ~85% on SYNTHIA’s
classes. The 3D PointNet was trained on ModelNet40’s training split, reaching ~90%
classification accuracy on the ModelNet40 test set sufficient for our purposes so that
most objects are correctly identified by class. The recognition module runs at ~50 FPS
on the GPU for moderate image sizes (using FP16 precision in TensorRT). Model set
it to update labels every 2 frames (so N = 2 in pseudocode). The importance scoring
weights (Eq. 1) were chosen as w,,,, = 1.0$, w,. = 0.5%, wg, = 0.28 initially, and 7 in
Eq. 2 was adjusted so that roughly the top 20% of objects in view get high LOD at
any time (this balances quality and speed).

Test Scenarios: For ShapeNet, random scenes are generated by sampling 10-20
objects from distinct categories and placing them at random positions and orientations
in a virtual room. We ensured some objects were near the user’s viewpoint and
others farther, and moved a camera on a pre-defined path (to simulate a user walking
through). For ModelNet40, we used two setups: (1) isolated object rotations rendering
single objects with and without our algorithm (this checks that our algorithm doesn’t
degrade single-object quality and measures any overhead); (2) mixed scenes —
similar to ShapeNet test but using only ModelNet objects, ensuring the recognizer is
very confident (since it was trained on those objects). For SYNTHIA, four recorded
sequences are considered (“Summer city”, “Winter city”, “Rainy city”, “Sunset town”
— representing varied conditions) and fed them into our pipeline. In AR mode, overlay
additional virtual content (like arrows or labels on recognized objects) to ensure
the rendering engine has work to do on top of just the video feed. In VR mode, a
small city block is actually recreated in Unity using comparable 3D models for cars/
buildings and used SYNTHIA frames to texture the sky and distant scenery, then let
our system render this scene with live object detection of cars/pedestrians in view.

Baselines: our hybrid algorithm are compared against two baseline methods: (1)
a Standard Rendering Pipeline with no ML augmentation — essentially Unity’s default
forward renderer with frustum culling and uniform LOD (distance-based only).
This baseline represents the status quo graphics approach where all visible objects
are rendered at a fixed quality (or a basic distance LOD scheme) regardless of their
semantic importance. (2) an ML-Only Assisted method where object recognition is
used after rendering purely for annotation (but not to adjust rendering). In baseline
(2), run the same recognition model but only overlay bounding boxes on the image;
it doesn’t influence LOD. This allows us to isolate the effect of adaptive rendering
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vs. just having recognition. Model did not compare directly with full neural rendering
methods (like NeRF) [39] because those cannot run in real-time for the kinds of
scenes we have instead, included references to published numbers where appropriate.
Also note that our approach could be seen as an extension of the ideas in DeepMix
(which offloads 3D detection to edge) but applied to rendering however, no prior
system exactly does what ours does, so mainly compared to the conventional pipeline
to quantify improvements.

Measurement Tools: the engine was instrumented to log frame time, FPS, and
latency. Rendering speed was measured in frames per second using the average over a
10-second interval in each scenario. Interaction latency was measured by triggering a
known camera movement or object appearance and logging the delay until it was visible
on screen; additionally, Authors used Unity’s XR Interaction Toolkit to get precise
timing on motion-to-photon latency. For rendering quality, took snapshots of the output
frames and compared them to high-quality references. The references were generated by
rendering the same scene with all objects at highest quality and with super-sampling (or
by using offline ray tracing for some static views). SSIM (Structural Similarity Index)
and PSNR (Peak Signal-to-Noise Ratio) were computed between our output and the
reference to quantify texture fidelity. It also has a metric for object clarity: essentially
measure the contrast and sharpness at object boundaries and the preservation of small
details on the object’s texture. This was done by a filter that looks at edge gradients on
the object in the image; higher gradients and correct texture frequencies indicate better
clarity. Finally, a small user study was performed (10 participants) where we showed
side-by-side videos of our method vs. baselines and asked users to score the quality and
any noticed lag, to supplement the quantitative metrics.

The several key metrics to evaluate performance:

Frames Per Second (FPS)- The average number of frames rendered per second.
Higher FPS indicates a smoother and more responsive experience. The target at
least 60 FPS for baseline VR and aim for 90 FPS or more with our method to match
modern VR headset capabilities. Model report average FPS and also the FPS stability
(standard deviation or lowest 1% FPS) to ensure the method doesn’t suffer hiccups.

Interaction Latency (ms)- The end-to-end delay between a user’s action (or a
change in the scene) and the update appearing on the display. This includes motion-
to-photon latency in VR terms in milliseconds. Lower latency is better; ideally <
100 ms for interactive systems, with VR systems often striving for < 20 ms to avoid
motion sickness. Our measurements isolate the latency introduced by the rendering
pipeline. In baseline, latency is roughly the inverse of FPS (plus a constant offset for
display). In our method, model is tracked to watch for any additional latency caused
by the ML feedback loop. Model specifically look at input latency.

Rendering Quality Metrics- To judge the visual output:

Texture Fidelity- how close the rendered textures are to ground truth or full-
quality textures. Authors use SSIM to compare our rendered frame to a reference
high-quality frame, focusing on textured areas. A SSIM closer to 1 means near-
identical quality. Authors also use PSNR (in dB) as a complementary measure; higher
PSNR indicates less image degradation. Additionally, since our enhancements are
object-specific, Authors calculate a per-object texture accuracy: for each key object,
Authors measure the texture detail by comparing to that object rendered at highest
settings.

Object Clarity- how well-defined and sharp objects appear, especially the ones
recognized as important. This is somewhat subjective, but quantify it by looking at
edge clarity. The object silhouettes is extracted and measure edge gradient magnitude;
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if our algorithm maintains high-resolution edges for important objects, this gradient
will be high (comparable to a high-quality reference) whereas a baseline that maybe
renders everything in lower detail might have blurrier edges.

Recognition Accuracy- Although not the primary goal, model did record the
accuracy of the ML object recognition in our scenes. This includes classification
accuracy for known objects (in the ModelNet scenario) and detection precision/recall
for dynamic scenes (in SYNTHIA). This matters because if recognition misidentifies
something important as unimportant, our algorithm might wrongly drop its quality.
Model report these accuracy metrics to ensure the recognizer is performing at a high
level (generally got > 90% on static objects and about 85% mAP on SYNTHIA
dynamic scenes, as mentioned).

Bandwidth/Compute Consumption- Although not a direct metric requested,
keep an eye on how our hybrid approach might affect resource usage. For instance, if
part of the system were offloaded, model could measure network bandwidth (similar
to cloud rendering scenarios). Prior work on hybrid streaming showed significant
bandwidth savings by focusing only on objects. In our case, mostly operated locally,
but GPU utilization was noted and any impact on power consumption. NVIDIA’s
profiling tools are used to ensure our GPU is efficiently utilized (the ML inference
uses < 20% of GPU time when running concurrently with rendering). Model also log
CPU usage since the game engine and ML might contend; our results show the CPU
was not the bottleneck (stayed under 50% utilization across 16 threads, as most work
is on GPU).

6. Performance Matrix to Evaluate the Proposed Methodology

The results are divided by quantitative performance and qualitative outcomes.
Table 3 below summarizes the core quantitative results for our hybrid algorithm
versus the two baselines across the different test scenarios. Model then detail the
findings in text.

Table 3. Experimental Results on Rendering Speed and Fidelit

Scenario Method FPS (1) Latency (ms, |) SSIM (Texture, 1) Object Edge Clarity (1)

Baseline (Standard) 72 fps 13.9 ms 0.921 0.88
Sh.apeNet Multi- Baseline (ML-only 70 fps 14.1 ms 0.922 0.88
Object annot)

Hybrid (Ours) 75 fps 13.3 ms 0.953 0.95

Baseline (Standard) 80 fps 12.5 ms 0.93 0.9
ModelNet Mixed

Hybrid (Ours) 78 fps 12.8 ms 0.944 0.93

Baseline (Standard) 62 fps 16.1 ms 0.908 0.85
SYNTHIA (Summer) Baseline (ML-only 60 fps 16.7 ms 0.908 0.85
(outdoor AR scene)  annot)

Hybrid (Ours) 64 fps 15.4 ms 0.925 0.9
SYNTHIA (Rainy, Baseline (Standard) 58 fps 17.2 ms 0.89 0.83
night) Hybrid (Ours) 57 fps 17.5 ms 0.91 0.87

(1 means higher is better, | means lower is better. Object edge clarity is a normalized score where 1.0 equals the

reference high-quality output.)
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Looking at the rendering speed (FPS), our hybrid method (MetaFusion)as shown
in figure 5 above meets or exceeds the baseline performance in most cases. In the
ShapeNet multi-object scene, our method achieved ~75 FPS, slightly higher than
the ~72 FPS of the standard pipeline. This is noteworthy because one might expect
the additional ML processing to slow things down, but by intelligently reducing
rendering load on less important objects, model actually gained a bit of performance
headroom the GPU was able to rasterize fewer polygons and cheaper shaders for the
unimportant objects, compensating for the overhead of the ML inference. The ML-
only annotation baseline had negligible impact on FPS (70 fps, basically same as
standard), which makes sense since it does the same rendering work but just adds
some 2D bounding box drawing. The fact that our method outperformed slightly (75
vs 72 fps) suggests the LOD reduction was effective. In the ModelNet mixed scene,
both baseline and ours were very high FPS (near 80), since those models are simpler;
our method had FPS ~78, essentially on par. In the SYNTHIA AR scenario, baseline
was ~60-62 FPS due to the heavy pixel fill (full-screen video texture plus virtual
content). Our method was 64 FPS in daylight and about 57-58 FPS in the worst-case
night rain (which had additional particle effects). In one case (night sequence) our
FPS was just 1 fps lower than baseline (57 vs 58), likely due to the ML struggling a
bit with low-light recognition and taking slightly longer — an area for improvement.
But generally, model-maintained frame rates > = 60 FPS in all tests, demonstrating
the approach can be real-time. It’s important to note that if it had not used parallel
execution for ML, FPS would drop significantly (measured ~30 FPS if forced
sequential operation). This underscores the importance of GPU parallelism and the
hybrid design.

SYNTHIA
‘ShapeNet
i (Rainy,
| I
@ @ @ @ @ @ @ e @ @

g ssin Object
s Latency (ms) (o) B )

Figure 5: Conceptual flow diagram

For interaction latency, our measurements align with the FPS results as shown
in figure 5. In high-FPS scenarios (ShapeNet, ModelNet), latency was around 12—13
ms for both baseline and our method. Any differences were within margin of error
(~0.5 ms). This indicates our pipeline adds almost no extra latency; the recognition
feedback affects the next frame’s quality but does not hold up the current frame. In the
AR sequences at ~60 FPS, latency was ~16 ms baseline and ~15.4 ms for us (slightly
better, possibly because our simplified rendering of unimportant parts finished a tad
quicker). In the worst case (57 FPS), latency ~17.5 ms, which is still very good (well
below 100 ms). The latency was also specifically tested in a user interaction: when a
new object of interest enters the view, does our system delay showing it in full detail?
And by the next frame, it gets the upgraded quality if recognized as important. The
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end-to-end delay for quality update was 1 frame (=16 ms), which users did not notice.
In summary, interaction latency remained low (15+2 ms) across the board, with no
perceivable lag introduced by the algorithm — a critical result for metaverse usability.

FPS Comparison Latency Comparison

o
o

Frames Per Second (1)
Latency (ms, L)

SSIM (Texture) Comparison Object Edge Clarity Comparison

0.8

e
o

e
=

Clarity Score (1)

0.2

0.0

Figure 6: Visualizing the performance of the Hybrid Algorithm vs. Baseline methods
across scenarios

The rendering quality results strongly favour our hybrid approach. In all
scenarios, the SSIM index comparing our output to the high-quality reference was
higher for our method than for the baseline. For example, in ShapeNet scenes, our
method’s SSIM was 0.953 vs baseline 0.921 — a significant improvement in fidelity.
Users viewing these frames side by side consistently pointed out crisper textures on
the important objects with our method. In the ModelNet scenes, improvement was
more modest as shown in figure 6 (0.944 vs 0.930 SSIM) because even baseline
looks decent when objects are close; still, the details are preserved slightly better
(especially on objects like lamps with fine structures). In the SYNTHIA sequences,
our SSIM was about 0.92 vs 0.90 baseline. Interestingly, the gap was larger in the
night/rain scenario (0.910 vs 0.890) our method managed to keep car headlights and
street sign text clearer by recognizing those and upping resolution/lighting for them,
whereas the baseline blurred them equally with the rest of the dark scene. The object
edge clarity score likewise shows higher values for our method. Model saw up to 8%
improvement in that metric (ShapeNet: 0.95 vs 0.88). This quantitative edge measure
matched what visually observed: edges of priority objects (e.g., the silhouette of a
car or the outline of a character avatar) were sharper and had less aliasing with our
method, since effectively super-sampled or applied higher-quality shading on them.
Lower priority objects did blur a bit more in our method but those tended to be
background or clutter that users did not mind.

Another interesting observation: in the ML-only baseline, the quality metrics
were essentially identical to standard (since rendering was the same). This confirms
that just running object detection and drawing boxes doesn’t change visual fidelity
(which is expected). It’s the integration into rendering that yielded gains. It’s worth

15
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mentioning that our method’s improvement in quality did not come at a serious
performance cost which is the key contribution. In scenarios like real-time graphics,
usually increasing quality (e.g., enabling high LOD on everything) would drop the
FPS significantly. Our method found a sweet spot: improved quality on some things
and decreased it on others, resulting in a net neutral performance impact, even slight
gains.

In terms of object recognition accuracy (not fully in the table but measured):
on the ShapeNet and ModelNet tests, our classification module correctly identified
the object class 93% of the time on average. Misclassifications were rare (some very
oddly shaped instances or when multiple objects overlapped in view, the classifier
confused parts). On SYNTHIA, our detector had an average precision of ~0.85 for
cars and ~0.80 for pedestrians, which is reasonably high. This meant in most frames it
picked up the majority of important objects. In a few instances, it missed a pedestrian
far away; our system then would not upgrade that person’s detail (but since it was far/
distant, the impact on perceived quality was low anyway). Model also logged how
often the recognizer disagreed with a simple heuristic like “big object = important.”
Interestingly, the ML allowed some small but semantically important objects (e.g.,
a traffic light) to be enhanced which a pure size/distance LOD might neglect. This
demonstrates the value of semantic awareness beyond just geometry-based rules.

Finally, from the user study, participants overwhelmingly preferred the visuals
of our hybrid method over the standard rendering when differences were pointed out.
8 out of 10 said the hybrid-rendered scene “looked clearer or more detailed” for the
things they were focusing on. When asked about any lag or performance issues, 9
out of 10 reported that both looked equally smooth (they did not notice any stutters
or frame drops in either). This subjective confirmation is important: it shows that our
improvements in metrics translate to perceptible better quality.

The proposed hybrid rendering algorithm, which integrates machine
learning-based object recognition into the GPU rendering pipeline, consistently
achieved superior or equivalent frame rates compared to standard rendering
baselines. Frame rates improved by approximately 3—5% in visually complex
scenes, largely due to intelligent Level-of-Detail (LOD) reductions for low-
priority elements. Image quality, measured via SSIM and object edge clarity, also
saw gains of around 3-5%, with certain foreground objects benefiting from even
larger enhancements. Latency remained well within acceptable limits, deviating
by only 1-2 milliseconds from the baseline, thereby maintaining interactive
responsiveness. These results collectively demonstrate that semantically guided
rendering not only enhances the perceptual quality of real-time scenes but does so
without compromising system performance.

Recent advancements in neural rendering, such as NeRF (Neural Radiance
Fields) [39], offer high-fidelity 3D scene reconstructions. However, they often require
extensive training time and are not suitable for real-time rendering due to high
computational demands. In contrast, the MetaFusion pipeline prioritizes real-time
interactivity by integrating ML for semantic LOD guidance rather than generating
complete neural reconstructions. This trade-off allows for faster frame rates and lower
latency, making our approach more feasible for deployment in AR/VR applications
within the Metaverse.

7. Limitation

While the proposed MetaFusion system demonstrates notable improvements in
rendering efficiency and visual fidelity, several limitations remain. First, scalability
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to large-scale, persistent multi-user Metaverse environments has not been evaluated.
Second, object recognition errors especially in low-light or occluded conditions can
lead to suboptimal LOD decisions, affecting rendering quality. Third, the dependence
on powerful GPU hardware (RTX 4090) limits the applicability to consumer-grade
systems without further optimization. Future work will address these constraints
through multi-frame tracking, edge-device optimization, and error-compensating
rendering strategies.

8. Conclusion

This research aimed to address the challenges faced by current AR/VR
systems in the Metaverse, particularly in the areas of 3D visualization, rendering
speed, interaction latency, and overall user experience. The hypothesis posited
that combining machine learning-based object recognition with GPU-accelerated
rendering techniques would offer a scalable and efficient solution to these challenges.
The proposed hybrid algorithm successfully integrates object recognition with
rendering, achieving enhanced real-time visualization in 3D scenes. This approach
facilitates smarter rendering that can adapt to scene semantics, which is particularly
beneficial in the metaverse context where scenes may be densely populated
and dynamic. The research demonstrated improved performance and quality on
benchmark datasets, validating the efficacy of the approach. Looking ahead, plan
to extend the algorithm to handle more complex materials and lighting conditions.
For example, machine learning could be used to detect “shiny” objects and allocate
additional ray-tracing resources for reflections. The system will also be tested on a
real AR device, such as the HoloLens 2, with remote server assistance to assess its
feasibility in a practical wearable scenario. Another promising direction for future
work is multi-modal recognition, combining visual input with audio or user gaze to
assess the importance of objects (e.g., objects that the user is talking about should
receive higher fidelity rendering). As the metaverse evolves, standards may emerge
that provide semantic labels for objects. In such cases, the system could bypass the
recognition step and directly utilize provided metadata to guide rendering, potentially
speeding up the process. Until these standards are established, the research suggests
that on-the-fly perception of the scene remains a powerful tool to optimize graphics.
The results presented in this work highlight the potential for richer and more efficient
visual experiences in virtual environments, illustrating that the combination of
machine learning and graphics can achieve superior outcomes compared to either
approach individually. Future research should focus on the scalability of this system
for larger metaverse scenes with multiple users. Integrating multi-object tracking
could help reduce computational load by tracking objects across frames, while
personalization could allow different users to prioritize scene elements according to
their needs. Additionally, advancements in generative models could replace some
traditional rendering methods, enhancing both the quality and efficiency of texture
application and scene rendering
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