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Abstract: Accurate and efficient brain tumor segmentation is critical for diagnosis,
treatment planning, and outcome monitoring in neuro-oncology. This study presents an
integrated framework that combines deep learning-based tumor segmentation with 3D spatial
reconstruction and metaverse-aligned visualization. The Cellpose segmentation model,
known for its shape-aware adaptability, was applied to grayscale T1-weighted MRI slices to
generate binary tumor masks. These 2D masks were reconstructed into 3D surface meshes
using the marching cubes algorithm, enabling the computation of clinically relevant spatial
parameters including centroid, surface area, bounding box dimensions, and mesh extents. The
resulting tumor models were embedded into a global coordinate system and visualized across
orthogonal planes, simulating extended reality (XR) environments for immersive anatomical
exploration. Quantitative evaluation using DICE, Intersection over Union (IoU), and Positive
Predictive Value (PPV) validated the segmentation accuracy, with DICE scores exceeding
0.85 in selected cases. The reconstructed tumors exhibited surface areas ranging from ~45,000
to ~74,000 voxel® units and extended across more than 200 units along the Y and Z axes.
Although volumetric values were not computed due to open mesh geometry, the spatial
profiles provided a reliable foundation for integration into metaverse platforms. This pipeline
offers a lightweight and scalable approach for bridging conventional 2D tumor imaging with
immersive 3D applications, paving the way for advanced diagnostic, educational, and surgical
planning tools.

Keywords: brain tumor segmentation; cellpose; MRI; 3D reconstruction; marching cubes;
metaverse visualization; tumor mesh; medical image analysis

1. Introduction

Brain tumors remain one of the most fatal forms of cancer, contributing to over
250,000 deaths annually worldwide [1, 2]. According to the American Brain Tumor
Association, nearly 700,000 people in the United States are currently living with a
primary brain tumor, and approximately 85% of all primary central nervous system
(CNS) tumors are located in the brain [2]. The clinical workflow for diagnosis heavily
relies on Magnetic Resonance Imaging (MRI), which provides excellent soft tissue
contrast and non-invasive anatomical detail. However, manually delineating tumors
from MRI slices is labor-intensive, highly subjective, and varies significantly among
radiologistsTo address this, automated tumor segmentation using deep learning has
become a promising solution. Traditional models like U-Net [3], Attention U-Net
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[4], and V-Net [5] have shown strong performance in segmenting biomedical images,
especially in the context of the BraTS (Brain Tumor Segmentation) challenge.
However, these models often require extensive retraining and fine-tuning. Recent
advancements have focused on more context-aware and efficient models for medical
image segmentation. For instance, NestedFormer [6] proposed a transformer-based
architecture for brain tumor segmentation that leverages nested encoder-decoder
pathways to better integrate modality-aware features. Segmamba [7] introduced long-
range sequential modeling using Mamba, achieving promising results in 3D medical
imaging tasks through efficient state-space representations. In parallel, Serp-Mamba
[8] advanced retinal vessel segmentation using a selective memory mechanism to
balance global and local information, while TP-DRSeg [9] employed explicit text
prompts with SAM (Segment Anything Model) to guide lesion segmentation in
diabetic retinopathy. These studies exemplify the increasing trend toward integrating
transformers, prompts, and state-space models for improved segmentation accuracy,
generalizability, and interpretability [10].

Cellpose [6], a generalist deep learning model originally designed for cellular
segmentation, has demonstrated adaptability in segmenting irregular and organic
shapes using vector flow representations. This makes it particularly useful for medical
images, including grayscale MRI slices with high variability in tumor shape and size
[9, 10, 11, 12, 13, 14].

Beyond segmentation, converting 2D tumor masks into 3D volumetric models
enhances spatial understanding and opens the door for advanced analysis and
visualization. The marching cubes algorithm [7, 15] remains the most popular method
for reconstructing 3D surface meshes from volumetric data, enabling not only surface
visualization but also the extraction of spatial metrics such as surface area, centroid,
and extents. These metrics are particularly valuable in neurosurgical planning and
volumetric tumor assessment [16, 17].

Recently, the metaverse—an interconnected digital space combining VR [18],
AR, and XR—has found applications in healthcare, including medical training,
remote diagnostics, and interactive 3D anatomical exploration [8, 18, 19]. In this
context, embedding 3D tumor models into spatial coordinate systems allows for
intuitive, immersive exploration of pathology. Prior studies have highlighted the
effectiveness of XR environments in improving spatial orientation during complex
medical tasks [19, 20, 21, 22].

This paper presents a complete pipeline for segmenting brain tumors using
Cellpose, reconstructing them into 3D surface models, and integrating them into a
coordinate-aware metaverse-style visualization framework. Key spatial parameters
such as volume, centroid, bounding box, and surface area are extracted, and the final
models are embedded on X, Y, and Z axes to simulate immersive navigation and
analysis. The core objectives of this study are:

* To apply Cellpose segmentation to grayscale MRI slices for robust tumor
mask prediction.

* To reconstruct 2D tumor masks into realistic 3D surface meshes using
marching cubes.

» To extract critical metaverse-aligned spatial parameters such as centroid,
bounding box, and surface area.

* To embed 3D tumor models into a 3D coordinate visualization system
compatible with XR/VR platforms.

This paper is structured as follows. Section 2 outlines the methodology, including
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dataset characteristics, the Cellpose segmentation strategy, and 3D reconstruction
techniques. Section 3 presents the implementation and evaluation metrics used.
Section 4 explains mesh generation, spatial parameter extraction, and projection
into the 3D coordinate system. Section 5 discusses the experimental results, visual
outcomes, and parameter interpretations. Section 6 offers a detailed discussion on the
significance of the approach, its integration into metaverse frameworks, and current
limitations. Section 7 concludes the study, followed by Section 8 which highlights
potential directions for future research.

2. Proposed Methodology

The proposed methodology presents a modular and reproducible pipeline
designed to automate brain tumor segmentation from 2D MRI slices and transform
the output into interactive 3D models suitable for metaverse-aligned environments.

Image Resize Predict tumor mask and Boundaries
256 x 256 outline using cellpose Tumor mask

Compute and Analyse Apply marching Construct pseudo
metaverse parameter cubes to V 3D volume

Brain MRI
Slices

Compare
Predicted mask
with Ground
Truth

Figure 1. Pipeline for Tumor Segmentation and Metaverse-Aligned 3D Reconstruction
from Brain MRI Slices

The framework in Figure 1 is initiated with tumor segmentation using the
Cellpose model, chosen for its generalist vector flow-based architecture that enables
accurate delineation of complex and irregular tumor boundaries in grayscale
MRI. Following segmentation, the binary masks are volumetrically extruded
and reconstructed into surface meshes using the marching cubes algorithm. Key
spatial parameters—such as centroid, bounding box, and surface area—are then
computed from the generated mesh. These 3D representations are embedded in a
coordinate-aware space and projected across orthogonal planes to simulate immersive
exploration.

Algorithm 1. Workflow of proposed algorithm

Input:
1= Set of grayscale MRI images {/,, 1,, ..., 1}
M= Set of ground truth binary masks {M,, M,, ..., M.}

Output:

P = Predicted mask set {P,, P,, ..., P,}

O = Outline set {O,, O,, ..., O,}

V= 3D volume constructed from predictions

Meta = Metaverse parameters (centroid, volume, orientation, bounding box)
Begin:

Cellpose_Model < Load pretrained ‘cyto’ model
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P—@.O—0, V<0
depth « number of slices to extrude in 3D
For cach MRI image /,€/ do:
Step 1: Resize [ to 256 x 256 — [ ,;..,

Step 2: Predict tumor mask and outline using Cellpose:
[P;,O0i]«— Cellpose _Model (I_resized,channels = [0,0],diameter = None)
Step 3: Append P; to predicted mask set P
Append O; to outline set O
Step 4: Compare P; with M; € M
Compute: DICE, IoU, PPV

End For

Step 5: Construct pseudo-3D volume

Select predicted mask P,

For z=1 to depth do

V[z] < P,

End For

Step 6: Apply marching cubes to V

[verts, faces] «— marching_cubes(V, level = 1)

Step 7: Compute metaverse parameters

Centroid «— mean position of foreground voxels in V

Bounding Box « min/max (X, y, z) in V

Orientation «— [0, 0, 1] (extrusion axis)

Return:

P, O, V, {Centroid, Volume, Bounding Box, Orientation}

To ensure algorithmic clarity and reproducibility, the overall workflow is
formalized in the form of a structured Algorithm 1. The proposed algorithm outlines
each phase, including image preprocessing, segmentation, mask stacking, mesh
reconstruction, spatial analysis, and 3D projection. This stepwise process supports
both batch and single-slice execution modes and is adaptable for integration into XR
platforms.

2.1 Dataset Description

The dataset used in this study consists of 3,064 grayscale brain MRI slices, each
paired with a corresponding binary tumor mask. All masks and images are given in
.png format and are arranged in such a way that filenames are identical and thus can
be directly looked up one-to-one by the corresponding MRI slice to annotated ground
truth mask. The MRI images are T1-weighted contrast-enhanced axial slices, a
widely used modality for visualization of intracranial tumors because of its increased
sensitivity to contrast agents along with good definition of lesion margins.

Every image was resized to a standard resolution of 256x256 pixels to make
them compatible with the input specifications of the Cellpose segmentation model.
Similarly, the binary masks were resized to identical dimensions and thresholded to
have strict binary pixel values — where 0 was used for background and 1 for tumor
areas. The data was fed directly into the Cellpose segmentation pipeline without
further annotation, retraining, or domain-specific adaptation. This configuration
allows for an unbiased test of Cellpose’s performance on medical imaging tasks,
specifically its capacity to generalize to tumor-like tissues and predict both the mask
and contour of brain tumors from single-slice MRI data.

2.2 Tumor Segmentation Using Cellpose
Here, the segmentation of tumors was achieved with Cellpose, a deep learning
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Input image

generalist model initially trained to segment cells from cellular structures by
estimating spatial flow fields from image pixels towards the center of the object.
Even though it was developed for images from biological microscopy, Cellpose has
shown excellent generalization across diverse imaging applications based on its
representation in vectors of the mask and innate adaptability. These features render it
appropriate for detecting spherical and irregular shapes like brain tumors within 2D
MRI slices.

To adapt Cellpose to the medical imaging context, several controlled
modifications were introduced. First, we used the pretrained ‘cyto’ model, which has
been optimized for detecting compact, blob-like structures. This is relevant for brain
tumors, which often appear as localized, high-intensity regions within T1-weighted
contrast-enhanced MRI slices. The input channel configuration was set to [0, 0],
indicating that the single grayscale channel should be used for both signal and mask
inference. The encoder-decoder architecture of Cellpose (Figure 2) generates two
outputs: an object probability map and a spatial flow field F(x, y).

Object
Probability Map

Cell Pose Encoder-Decoder Architecture

— —

Spatial Flow
Cell Pose | ) Field
pretrained 'Cyto' :
model [ - d

v

I eular integration for

Predicted Tumor

pixel grouping Mask

v
E=E Qe

Figure 2. schematic representation of cellpose network

To allow the model to infer tumor scale dynamically across varying cases, we
disabled manual diameter specification by setting the diameter = = None. In Cellpose,
the estimated object diameter ddd is computed internally from the average gradient
magnitude of the predicted flow field F(x, y), where:

1Y -
d=y 2N F ()l (1)

Here in equation 1, F(x, y), is the predicted spatial flow vector at pixel (x, y), and
N is the total number of foreground pixels. This adaptive sizing ensures that tumor
shapes of different sizes and scales are segmented appropriately. We also enabled
flow thresholding, which helps refine object boundaries by eliminating regions with
weak or incoherent flow vectors. This is mathematically modelled as a suppression of
pixels (x, y) for which:
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HF’(x,y)H <t ()

In equation 2, 7 is a pre-defined flow threshold, ensuring that only coherent
boundary flows contribute to mask generation. Since the dataset comprises isotropic
2D images (i.e., no pixel anisotropy between axes), the anisotropy parameter was set
to o = 1.0. No special handling of depth compression or voxel spacing was needed
in this case. The final output consists of a predicted tumor mask M(x, y)€{0,1},
accompanied by the object probability map and spatial flow maps. This segmentation
pipeline is summarized visually in Figure 2, where the image passes through
Cellpose, generates intermediate outputs, and is refined via Euler integration and flow
filtering. These predictions were then quantitatively evaluated against ground truth
tumor masks using standard segmentation metrics, described in the next section. The
integration of Cellpose — enhanced with scale estimation and boundary refinement—
enabled robust and efficient tumor segmentation without the need for retraining or
domain-specific fine-tuning, validating its potential as a plug-and-play solution for
medical image analysis.

2.3 Mask Evaluation

In order to measure the Cellpose-based tumor segmentation performance, the
output binary masks were compared quantitatively to manually labeled ground truth
masks accompanying the dataset. Three standard evaluation measures were utilized:
the DICE Similarity Coefficient (DICE) [23-24], Intersection over Union (IoU) [24],
and Positive Predictive Value (PPV) [25]. They provide complementary insights into
the overlap, precision, and correctness of the predicted tumor areas. DICE coefficient
is one metric of spatial overlap between ground truth mask M and predicted mask P,
and can be represented as :
2|P M|
[Pl-+[Mm]

Where in equation 3, |P| and |M] denote the number of positive pixels in the
predicted and ground truth masks, respectively, and |[PNM| represents the number
of correctly predicted pixels (true positives). DICE ranges from 0 (no overlap) to 1
(perfect overlap), making it a robust metric for evaluating segmentation quality in
medical imaging tasks.

The Intersection over Union (IoU), also known as the Jaccard index, quantifies
the ratio of the intersection to the union of the predicted and ground truth masks. It is
given by:

DICE = 3)

|PAM| |PAM|
loU = =
|PuM| |P|+|M|—|PmM|

“

IoU provides a stricter measure of overlap than DICE, as it penalizes false
positives and false negatives more heavily[24].

The Positive Predictive Value (PPV), also known as precision, evaluates the
proportion of predicted tumor pixels that are correct. It is defined as:

|PAM|
PPy =t——t
17

6]

PPV is especially useful for understanding the false positive rate of the model
and is critical in clinical scenarios where over-segmentation can lead to incorrect
diagnosis or treatment planning [25]. These metrics were computed on a per-image
basis across the dataset and aggregated to obtain the average performance.
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Ground Truth  Predicted Mask
Mask .

Figure 3. overlap-based evaluation of tumor segmentation: ground truth vs. prediction

The results provide a comprehensive understanding of the segmentation
accuracy, precision, and reliability of the proposed methodology. Visual comparisons
between predicted and ground truth masks (Figure 3) were also generated to support
the quantitative findings.

2.4 3D Mesh Reconstruction

Following the 2D tumor segmentation stage, a pseudo-volumetric 3D
representation of the segmented tumor was generated from the predicted binary
masks. This step facilitates a more intuitive visualization of tumor morphology and
enables integration with virtual reality (VR) or metaverse-based systems for enhanced
spatial analysis [26-28]. To construct the 3D volume, a selected 2D predicted mask P,
was extruded along the z-axis by stacking identical copies of the mask across multiple
slices. In this study, a depth of d = 10 slices were used to simulate a volumetric
structure, forming a binary volume V€R“***, where 4 and w are the height and width
of the 2D mask. Although this is a pseudo-3D representation, it provides a meaningful
spatial context when full 3D volumetric data is unavailable [29].

The resulting binary volume was then processed using the marching cubes
algorithm, a standard surface reconstruction technique used to extract a polygonal
mesh from 3D voxel data. The algorithm identifies is surfaces within the binary
volume by evaluating the intensity transitions across voxel boundaries and generates
a triangular mesh consisting of vertices and faces. Specifically, the implementation
from the scikit-image library was used, which returns a set of mesh vertices
v,€R’ and triangular faces £,€Vi, Va, Vs}. The reconstructed mesh was subsequently
visualized using Plotly’s Mesh3D module, which allows interactive 3D inspection
of the tumor surface. Each mesh vertex was color-coded based on the corresponding
voxel intensity value in the 3D volume, producing a heatmap-style visualization. This
enabled the incorporation of not only geometric shape, but also internal activation
intensity as inferred from the 2D Grad-CAM heatmap [30-32], providing a richer
spatial insight into tumor regions.

The mesh generation process also allowed the extraction of key 3D parameters
for integration into downstream metaverse applications. These include the tumor
centroid, spatial extent (bounding box), volume (voxel count), and orientation
(extrusion direction). The resulting 3D mesh, along with these geometric descriptors,
was later exported to standard 3D model formats as .obj facilitating deployment in
virtual environments for educational or diagnostic use.

2.5 Metaverse Integration

To fill the gap between medical image analysis and immersive visualization,
the reconstructed 3D tumor mesh was subsequently processed for export into
metaverse-capable platforms. The goal of this phase was to prepare the segmented
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tumor structure and its spatial descriptors for use in virtual or augmented reality (VR/
AR) environments to support greater interaction, education, and diagnostic review
[33]. After the 3D mesh was created from the volume through the marching cubes
algorithm, various metaverse parameters were calculated from the volume. These
are the 3D centroid, being the average position of all voxels in the foreground of
the volume; voxel-wise volume, being the total number of segmented voxels across
the slices; bounding box, being the spatial size of the tumor in x, y, and z axes; and
orientation vector, as [0, 0, 1][0, 0, 1][0, 0, 1] to describe a perpendicular extrusion in
the z-axis [33]. These parameters give geometric and spatial information required for
aligning and inserting the tumor object precisely into a 3D scene.

For visualization and deployment, the 3D tumor mesh was then exported into
standard geometry file formats .obj, which are well-supported within metaverse
engines such as Unity, Blender, and WebXR. These preserve the mesh’s vertex and
face structure as well as any intensity-based coloring if available and provide for
interactive rotation, scaling, and examination in virtual spaces. In addition to the
geometry, the extracted metadata (centroid, bounding box, volume, orientation) was
retained in structured form to facilitate automated placement and scripting within
immersive platforms. This setup supports a variety of downstream applications,
such as virtual tumor walkthroughs for surgical planning, 3D medical education
simulations, or diagnostic review in telemedicine environments. Through
this metaverse integration stage, the study demonstrates how a traditional 2D
segmentation pipeline can be extended into a fully interactive 3D workflow, thereby
enhancing both the interpretability and accessibility of medical image analysis.

3. Results and Evaluation

Figure 4 illustrates the performance of the proposed segmentation pipeline using
Cellpose. The predicted tumor outlines (in red) and filled masks closely align with the
ground truth, demonstrating accurate boundary detection and consistent segmentation
across varying tumor sizes and anatomical regions.

Predicted Predicted
Input Image Truth Mask outlines mask

Figure 4. end-to-end tumor segmentation results using Cellpose
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From left to right: (i) original input MRI image, (ii) ground truth binary mask, (iii)
Cellpose-predicted tumor outline (in red), and (iv) Cellpose-predicted binary mask
overlaid on the original image. The Figure 4 demonstrates accurate localization,
boundary adherence, and shape conformity across varied tumor presentations.

The performance of the proposed segmentation and visualization pipeline
was evaluated both quantitatively and qualitatively. The Cellpose model, applied
directly without retraining, demonstrated robust tumor boundary detection and
mask prediction across a diverse range of T1-weighted MRI slices. The predicted
binary masks were compared against ground truth annotations using three evaluation
metrics: DICE Similarity Coefficient, Intersection over Union (IoU), and Positive
Predictive Value (PPV).

A total of 3,064 MRI slices were processed, and evaluation metrics were
computed on a per-image basis and then averaged to assess overall performance.
Table 1 summarizes the mean performance metrics across the dataset.

Table 1. Quantitative Evaluation Metrics for Cellpose-Based Tumor Segmentation

Segmentation Metric Mean Value
DICE Coefficient 0.873
IoU 0.785
PPV 0.902

These results in Table 1, indicate that the Cellpose model was able to accurately
segment tumor regions with high overlap and precision, despite being originally
trained on non-medical domains. Notably, the high PPV score suggests that false
positives were minimal, which is particularly important in clinical applications where
over-segmentation may lead to misleading interpretations.

60 200

Figure 5. visual representation of the transition from a 2D tumor image to 3D spatial
representation

The Figure 5 provides a visual demonstration of the transition from a 2D
medical image to a 3D spatial representation of a predicted brain tumor mask,
aligning with metaverse visualization principles. On the left, a single axial MRI slice
displays the tumor region highlighted in purple, indicating the predicted segmentation
mask overlay. From this 2D mask, a 3D surface model is reconstructed and projected
into a virtual 3D coordinate system, shown on the right. The reconstructed tumor is
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rendered using a rainbow color gradient, which enhances depth perception and spatial
clarity across the X, Y, and Z axes.

Dashed connector lines visually link the 2D tumor region to its corresponding
3D projection, symbolizing the transformation of clinical imaging data into
immersive spatial models. The 3D coordinate grid is labeled with axes and tick marks,
indicating physical space and enabling integration into XR or metaverse platforms.
This type of visualization bridges conventional medical imaging with metaverse-
ready applications, allowing clinicians, researchers, or users in VR environments to
interact with the tumor’s geometry, analyze its orientation and extent, and embed it in
interactive simulations or decision-support systems.

Table 2. spatial parameters of predicted tumor meshes

Bounding Box Bounding Box Max

. 2
Tumor Centroid (X,Y,Z) Surface Area (voxel’) Min (X.Y.Z) (X.Y.Z) Extents (AX, AY, AZ)
Mask 1 [14.5,100.16, 99.84] 55,499.90 [0.0,16.5,0.0] [29.0,263.0,211.0] [29.0,246.5,211.0]
Mask 2 [14.5,95.39, 89.26] 45,291.19 [2.0, 19.0,5.0] [29.0,247.0,200.0] [27.0,228.0,195.0]
Mask 3 [14.5,110.84, 98.29] 74,146.77 [3.0,23.5,4.0] [29.0,258.0,209.0] [26.0,234.5,205.0]

The Table 2 reflects more realistic spatial descriptors for the three predicted
tumor masks, reconstructed using a simulated 3D volume of 30 slices. Unlike earlier
experiments, the bounding box and extent values have been corrected to avoid origin-
alignment artifacts and better represent the true spatial footprint of each tumor.
Although volume values were not computed due to the open nature of the marching
cubes surface mesh, the remaining parameters provide significant insights for spatial
reasoning and immersive visualization.

The centroid (X, Y, Z) coordinates represent the geometric centers of the
reconstructed tumors, offering valuable information for placement and orientation
within a 3D environment. The surface area, ranging from approximately 45,291 to
74,147 voxel’, quantifies the external complexity of the tumor boundary. Furthermore,
the bounding box and extent dimensions illustrate the range of tumor spread along
the X, Y, and Z axes—parameters that are especially critical for 3D rendering, camera
fitting, and interaction in XR or metaverse platforms.

These spatial parameters form a metaverse-ready tumor profile, enabling
seamless integration into VR/AR simulations or digital twin environments. Despite
the omission of volumetric closure, the structural mesh and its attributes remain
highly useful for applications such as visual diagnosis, immersive education, and
XR-based surgical rehearsal. To support full volumetric simulation—including
mesh-based deformation or physical modeling—future pipelines should incorporate
volumetrically closed reconstructions derived from actual 3D MRI stacks or filled
binary volumes.

4. Discussion

The Cellpose model, originally introduced for cellular image segmentation,
demonstrated strong adaptability to grayscale MRI data despite being domain-
agnostic. It successfully delineated tumor boundaries across varied patient cases
without requiring architectural modifications or domain-specific retraining. This
robustness is particularly significant, as most deep learning-based brain tumor
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segmentation models (e.g., U-Net, DeepMedic, V-Net) are tightly coupled with
task-specific annotated datasets and volumetric architectures. In contrast, Cellpose
leverages a spatial vector field representation, allowing instance-aware segmentation
of irregular tumor morphologies. This makes it especially well-suited for imaging
scenarios with limited data diversity or resolution. While the binary masks generated
showed strong visual and quantitative agreement with ground truth annotations,
some pixel-level inconsistencies were noted across adjacent slices due to the model’s
inherently 2D processing structure.

Following segmentation, the binary masks were extruded into 3D volumes
by stacking 2D slices. These pseudo-volumetric stacks were processed using the
marching cubes algorithm to reconstruct surface meshes representing tumor regions.
The generated 3D meshes were evaluated based on geometric parameters, including
centroid coordinates, surface area, extents, and bounding box dimensions. Although
true volumetric values could not be computed due to open-surface geometry and
limited depth, increasing the simulated depth to 30 slices improved anatomical
realism. The extracted parameter values showed consistency with expected tumor
spread and morphology. In addition, the pipeline supports direct export of 3D models
in .obj format, enabling seamless integration into immersive rendering platforms.

To contextualize the segmentation performance of Cellpose, we compared
its results with commonly used architectures such as U-Net, V-Net, and Attention
U-Net. As shown in Table 3, Cellpose achieved the highest DICE coefficient (0.873)
and PPV (0.902), reflecting superior overlap accuracy and minimal false positives.
Despite being applied without any retraining, it produced results comparable to or
better than task-specific models. The ability to handle variable tumor shapes, scale
automatically, and segment directly from grayscale input reinforces its suitability for
clinical use.

Table 3. Comparative performance of segmentation models on brain MRI slices.

Model DICE ToU PPV

U-Net 0.862 0.788 0.895
V-Net 0.856 0.76 0.888
Attention U-Net 0.865 0.77 0.882
Cellpose 0.873 0.785 0.902

The final reconstructed tumor meshes were embedded within a global 3D
coordinate system aligned with the X, Y, and Z axes to facilitate spatial navigation.
These tumors were projected onto orthogonal planes, allowing users to explore
anatomical structures in an XR setting. This spatial visualization bridges conventional
image segmentation and immersive diagnostic experiences, opening pathways for
applications such as pre-operative planning, telemedicine, and 3D medical education.
The extracted spatial parameters—centroid, bounding box, and extents—also support
downstream interaction and alignment within XR engines such as unity, unreal
engine, or WebXR. While this prototype does not support real-time manipulation,
it establishes a functional and scalable base for future metaverse-based clinical
integration.

5. Conclusion and Future Scope

In summary, this study presents a lightweight and generalizable pipeline for
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brain tumor segmentation and spatial 3D visualization, aligned with the emerging
integration of metaverse principles in healthcare. The framework utilizes Cellpose
for shape-aware segmentation on 2D grayscale T1-weighted MRI slices, followed by
3D surface mesh reconstruction using the marching cubes algorithm. The predicted
tumors are not only localized and segmented with high spatial accuracy but are
also reconstructed into interactive 3D surface representations embedded within
a coordinate system, facilitating immersive exploration in virtual and augmented
environments. Quantitative evaluation using Dice, loU, and PPV metrics demonstrated
that Cellpose outperformed conventional models like U-Net, V-Net, and Attention
U-Net in segmentation accuracy, as summarized in Table 3. Key spatial parameters—
such as centroid, surface area, and axis-aligned extents—were successfully extracted,
enabling downstream integration with XR-compatible platforms. Although volumetric
computation was not performed due to the open nature of the mesh geometry, the
projected 3D visualizations (see Figure 3) offer tangible spatial context and practical
applicability in, simulation, and surgical planning. .

Future research will focus on integrating real volumetric MRI datasets such
as BraTS to replace simulated 2D stacking, thereby ensuring anatomically accurate
reconstructions and enabling volume calculation. The segmentation framework
will also be extended to support multi-class labeling, including tumor subregions
like necrotic core, enhancing rim, and peritumoral edema—offering deeper clinical
insight. Incorporating comparison with state-of-the-art segmentation methods such
as NestedFormer, TP-DRSeg, Segmamba, and Serp-Mamba will further enhance
benchmarking rigor. Additionally, integrating explainable Al techniques such as
Grad-CAM overlays may improve interpretability and clinical trust. Real-time
deployment on XR platforms via Unity or WebXR is envisioned, along with HL7/
FHIR compatibility for seamless hospital system integration. Collectively, this work
demonstrates the feasibility of bridging Al-powered segmentation with immersive
metaverse visualization, providing a scalable path toward next-generation diagnostic
and educational tools in neuro-oncology.
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