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Abstract: Accurate and efficient brain tumor segmentation is critical for diagnosis, 
treatment planning, and outcome monitoring in neuro-oncology. This study presents an 
integrated framework that combines deep learning-based tumor segmentation with 3D spatial 
reconstruction and metaverse-aligned visualization. The Cellpose segmentation model, 
known for its shape-aware adaptability, was applied to grayscale T1-weighted MRI slices to 
generate binary tumor masks. These 2D masks were reconstructed into 3D surface meshes 
using the marching cubes algorithm, enabling the computation of clinically relevant spatial 
parameters including centroid, surface area, bounding box dimensions, and mesh extents. The 
resulting tumor models were embedded into a global coordinate system and visualized across 
orthogonal planes, simulating extended reality (XR) environments for immersive anatomical 
exploration. Quantitative evaluation using DICE, Intersection over Union (IoU), and Positive 
Predictive Value (PPV) validated the segmentation accuracy, with DICE scores exceeding 
0.85 in selected cases. The reconstructed tumors exhibited surface areas ranging from ~45,000 
to ~74,000 voxel2 units and extended across more than 200 units along the Y and Z axes. 
Although volumetric values were not computed due to open mesh geometry, the spatial 
profiles provided a reliable foundation for integration into metaverse platforms. This pipeline 
offers a lightweight and scalable approach for bridging conventional 2D tumor imaging with 
immersive 3D applications, paving the way for advanced diagnostic, educational, and surgical 
planning tools.

Keywords: brain tumor segmentation; cellpose; MRI; 3D reconstruction; marching cubes; 
metaverse visualization; tumor mesh; medical image analysis

1. Introduction

Brain tumors remain one of the most fatal forms of cancer, contributing to over 
250,000 deaths annually worldwide [1, 2]. According to the American Brain Tumor 
Association, nearly 700,000 people in the United States are currently living with a 
primary brain tumor, and approximately 85% of all primary central nervous system 
(CNS) tumors are located in the brain [2]. The clinical workflow for diagnosis heavily 
relies on Magnetic Resonance Imaging (MRI), which provides excellent soft tissue 
contrast and non-invasive anatomical detail. However, manually delineating tumors 
from MRI slices is labor-intensive, highly subjective, and varies significantly among 
radiologistsTo address this, automated tumor segmentation using deep learning has 
become a promising solution. Traditional models like U-Net [3], Attention U-Net 
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[4], and V-Net [5] have shown strong performance in segmenting biomedical images, 
especially in the context of the BraTS (Brain Tumor Segmentation) challenge. 
However, these models often require extensive retraining and fine-tuning. Recent 
advancements have focused on more context-aware and efficient models for medical 
image segmentation. For instance, NestedFormer [6] proposed a transformer-based 
architecture for brain tumor segmentation that leverages nested encoder-decoder 
pathways to better integrate modality-aware features. Segmamba [7] introduced long-
range sequential modeling using Mamba, achieving promising results in 3D medical 
imaging tasks through efficient state-space representations. In parallel, Serp-Mamba 
[8] advanced retinal vessel segmentation using a selective memory mechanism to 
balance global and local information, while TP-DRSeg [9] employed explicit text 
prompts with SAM (Segment Anything Model) to guide lesion segmentation in 
diabetic retinopathy. These studies exemplify the increasing trend toward integrating 
transformers, prompts, and state-space models for improved segmentation accuracy, 
generalizability, and interpretability [10].

Cellpose [6], a generalist deep learning model originally designed for cellular 
segmentation, has demonstrated adaptability in segmenting irregular and organic 
shapes using vector flow representations. This makes it particularly useful for medical 
images, including grayscale MRI slices with high variability in tumor shape and size 
[9, 10, 11, 12, 13, 14].

Beyond segmentation, converting 2D tumor masks into 3D volumetric models 
enhances spatial understanding and opens the door for advanced analysis and 
visualization. The marching cubes algorithm [7, 15] remains the most popular method 
for reconstructing 3D surface meshes from volumetric data, enabling not only surface 
visualization but also the extraction of spatial metrics such as surface area, centroid, 
and extents. These metrics are particularly valuable in neurosurgical planning and 
volumetric tumor assessment [16, 17].

Recently, the metaverse—an interconnected digital space combining VR [18], 
AR, and XR—has found applications in healthcare, including medical training, 
remote diagnostics, and interactive 3D anatomical exploration [8, 18, 19]. In this 
context, embedding 3D tumor models into spatial coordinate systems allows for 
intuitive, immersive exploration of pathology. Prior studies have highlighted the 
effectiveness of XR environments in improving spatial orientation during complex 
medical tasks [19, 20, 21, 22].

This paper presents a complete pipeline for segmenting brain tumors using 
Cellpose, reconstructing them into 3D surface models, and integrating them into a 
coordinate-aware metaverse-style visualization framework. Key spatial parameters 
such as volume, centroid, bounding box, and surface area are extracted, and the final 
models are embedded on X, Y, and Z axes to simulate immersive navigation and 
analysis. The core objectives of this study are:

•  To apply Cellpose segmentation to grayscale MRI slices for robust tumor 
mask prediction.

•  To reconstruct 2D tumor masks into realistic 3D surface meshes using 
marching cubes.

•  To extract critical metaverse-aligned spatial parameters such as centroid, 
bounding box, and surface area.

•  To embed 3D tumor models into a 3D coordinate visualization system 
compatible with XR/VR platforms.

This paper is structured as follows. Section 2 outlines the methodology, including 
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dataset characteristics, the Cellpose segmentation strategy, and 3D reconstruction 
techniques. Section 3 presents the implementation and evaluation metrics used. 
Section 4 explains mesh generation, spatial parameter extraction, and projection 
into the 3D coordinate system. Section 5 discusses the experimental results, visual 
outcomes, and parameter interpretations. Section 6 offers a detailed discussion on the 
significance of the approach, its integration into metaverse frameworks, and current 
limitations. Section 7 concludes the study, followed by Section 8 which highlights 
potential directions for future research.

2. Proposed Methodology

The proposed methodology presents a modular and reproducible pipeline 
designed to automate brain tumor segmentation from 2D MRI slices and transform 
the output into interactive 3D models suitable for metaverse-aligned environments.

 
Figure 1. Pipeline for Tumor Segmentation and Metaverse-Aligned 3D Reconstruction 
from Brain MRI Slices

The framework in Figure 1 is initiated with tumor segmentation using the 
Cellpose model, chosen for its generalist vector flow-based architecture that enables 
accurate delineation of complex and irregular tumor boundaries in grayscale 
MRI. Following segmentation, the binary masks are volumetrically extruded 
and reconstructed into surface meshes using the marching cubes algorithm. Key 
spatial parameters—such as centroid, bounding box, and surface area—are then 
computed from the generated mesh. These 3D representations are embedded in a 
coordinate-aware space and projected across orthogonal planes to simulate immersive 
exploration.

Algorithm 1. Workflow of proposed algorithm

Input: 
I = Set of grayscale MRI images {I1, I2, ..., In}
MGT = Set of ground truth binary masks {M1, M2, ..., Mn}
   Output:
    P = Predicted mask set {P1, P2, ..., Pn}
    O = Outline set {O1, O2, ..., On}
    V = 3D volume constructed from predictions
    Meta = Metaverse parameters (centroid, volume, orientation, bounding box)
Begin:
    Cellpose_Model ← Load pretrained ‘cyto’ model
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    P ← ∅, O ← ∅, V ← ∅
    depth ← number of slices to extrude in 3D
For each MRI image Ii∈I do:

Step 1: Resize Iᵢ to 256 × 256 → Iresized

Step 2: Predict tumor mask and outline using Cellpose:
[Pᵢ,Oᵢ]← Cellpose_Model (I_resized,channels = [0,0],diameter = None)
Step 3: Append Pᵢ to predicted mask set P
Append Oᵢ to outline set O
Step 4: Compare Pi with Mi ∈ MGT

Compute: DICE, IoU, PPV
End For
Step 5: Construct pseudo-3D volume
Select predicted mask Pk

For z = 1 to depth do
V[z] ← Pk

End For
Step 6: Apply marching cubes to V
[verts, faces] ← marching_cubes(V, level = 1)
Step 7: Compute metaverse parameters
Centroid ← mean position of foreground voxels in V
Bounding_Box ← min/max (x, y, z) in V
Orientation ← [0, 0, 1] (extrusion axis)
Return:
P, O, V, {Centroid, Volume, Bounding_Box, Orientation}
To ensure algorithmic clarity and reproducibility, the overall workflow is 

formalized in the form of a structured Algorithm 1. The proposed algorithm outlines 
each phase, including image preprocessing, segmentation, mask stacking, mesh 
reconstruction, spatial analysis, and 3D projection. This stepwise process supports 
both batch and single-slice execution modes and is adaptable for integration into XR 
platforms.

2.1 Dataset Description
The dataset used in this study consists of 3,064 grayscale brain MRI slices, each 

paired with a corresponding binary tumor mask. All masks and images are given in 
.png format and are arranged in such a way that filenames are identical and thus can 
be directly looked up one-to-one by the corresponding MRI slice to annotated ground 
truth mask. The MRI images are T1-weighted contrast-enhanced axial slices, a 
widely used modality for visualization of intracranial tumors because of its increased 
sensitivity to contrast agents along with good definition of lesion margins.

Every image was resized to a standard resolution of 256×256 pixels to make 
them compatible with the input specifications of the Cellpose segmentation model. 
Similarly, the binary masks were resized to identical dimensions and thresholded to 
have strict binary pixel values — where 0 was used for background and 1 for tumor 
areas. The data was fed directly into the Cellpose segmentation pipeline without 
further annotation, retraining, or domain-specific adaptation. This configuration 
allows for an unbiased test of Cellpose’s performance on medical imaging tasks, 
specifically its capacity to generalize to tumor-like tissues and predict both the mask 
and contour of brain tumors from single-slice MRI data.

2.2 Tumor Segmentation Using Cellpose
Here, the segmentation of tumors was achieved with Cellpose, a deep learning 
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generalist model initially trained to segment cells from cellular structures by 
estimating spatial flow fields from image pixels towards the center of the object. 
Even though it was developed for images from biological microscopy, Cellpose has 
shown excellent generalization across diverse imaging applications based on its 
representation in vectors of the mask and innate adaptability. These features render it 
appropriate for detecting spherical and irregular shapes like brain tumors within 2D 
MRI slices.

To adapt Cellpose to the medical imaging context, several controlled 
modifications were introduced. First, we used the pretrained ‘cyto’ model, which has 
been optimized for detecting compact, blob-like structures. This is relevant for brain 
tumors, which often appear as localized, high-intensity regions within T1-weighted 
contrast-enhanced MRI slices. The input channel configuration was set to [0, 0], 
indicating that the single grayscale channel should be used for both signal and mask 
inference. The encoder-decoder architecture of Cellpose (Figure 2) generates two 
outputs: an object probability map and a spatial flow field (x, y).

Figure 2. schematic representation of cellpose network

To allow the model to infer tumor scale dynamically across varying cases, we 
disabled manual diameter specification by setting the diameter = = None. In Cellpose, 
the estimated object diameter ddd is computed internally from the average gradient 
magnitude of the predicted flow field (x, y), where:

	 	 (1)

Here in equation 1, (x, y), is the predicted spatial flow vector at pixel (x, y), and 
N is the total number of foreground pixels. This adaptive sizing ensures that tumor 
shapes of different sizes and scales are segmented appropriately. We also enabled 
flow thresholding, which helps refine object boundaries by eliminating regions with 
weak or incoherent flow vectors. This is mathematically modelled as a suppression of 
pixels (x, y) for which:
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	  	 (2)

In equation 2, τ is a pre-defined flow threshold, ensuring that only coherent 
boundary flows contribute to mask generation. Since the dataset comprises isotropic 
2D images (i.e., no pixel anisotropy between axes), the anisotropy parameter was set 
to α = 1.0. No special handling of depth compression or voxel spacing was needed 
in this case. The final output consists of a predicted tumor mask M(x, y)∈{0,1}, 
accompanied by the object probability map and spatial flow maps. This segmentation 
pipeline is summarized visually in Figure 2, where the image passes through 
Cellpose, generates intermediate outputs, and is refined via Euler integration and flow 
filtering.These predictions were then quantitatively evaluated against ground truth 
tumor masks using standard segmentation metrics, described in the next section. The 
integration of Cellpose — enhanced with scale estimation and boundary refinement— 
enabled robust and efficient tumor segmentation without the need for retraining or 
domain-specific fine-tuning, validating its potential as a plug-and-play solution for 
medical image analysis.

2.3 Mask Evaluation
In order to measure the Cellpose-based tumor segmentation performance, the 

output binary masks were compared quantitatively to manually labeled ground truth 
masks accompanying the dataset. Three standard evaluation measures were utilized: 
the DICE Similarity Coefficient (DICE) [23-24], Intersection over Union (IoU) [24], 
and Positive Predictive Value (PPV) [25]. They provide complementary insights into 
the overlap, precision, and correctness of the predicted tumor areas. DICE coefficient 
is one metric of spatial overlap between ground truth mask M and predicted mask P, 
and can be represented as :

	  	 (3)

Where in equation 3, |P| and |M| denote the number of positive pixels in the 
predicted and ground truth masks, respectively, and |P∩M| represents the number 
of correctly predicted pixels (true positives). DICE ranges from 0 (no overlap) to 1 
(perfect overlap), making it a robust metric for evaluating segmentation quality in 
medical imaging tasks.

The Intersection over Union (IoU), also known as the Jaccard index, quantifies 
the ratio of the intersection to the union of the predicted and ground truth masks. It is 
given by:

	 	 (4)

IoU provides a stricter measure of overlap than DICE, as it penalizes false 
positives and false negatives more heavily[24].

The Positive Predictive Value (PPV), also known as precision, evaluates the 
proportion of predicted tumor pixels that are correct. It is defined as:

	 	 (5)

PPV is especially useful for understanding the false positive rate of the model 
and is critical in clinical scenarios where over-segmentation can lead to incorrect 
diagnosis or treatment planning [25]. These metrics were computed on a per-image 
basis across the dataset and aggregated to obtain the average performance.
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Figure 3. overlap-based evaluation of tumor segmentation: ground truth vs. prediction

The results provide a comprehensive understanding of the segmentation 
accuracy, precision, and reliability of the proposed methodology. Visual comparisons 
between predicted and ground truth masks (Figure 3) were also generated to support 
the quantitative findings.

2.4 3D Mesh Reconstruction
Following the 2D tumor segmentation stage, a pseudo-volumetric 3D 

representation of the segmented tumor was generated from the predicted binary 
masks. This step facilitates a more intuitive visualization of tumor morphology and 
enables integration with virtual reality (VR) or metaverse-based systems for enhanced 
spatial analysis [26-28]. To construct the 3D volume, a selected 2D predicted mask Pk 
was extruded along the z-axis by stacking identical copies of the mask across multiple 
slices. In this study, a depth of d = 10 slices were used to simulate a volumetric 
structure, forming a binary volume V∈ , where h and w are the height and width 
of the 2D mask. Although this is a pseudo-3D representation, it provides a meaningful 
spatial context when full 3D volumetric data is unavailable [29].

The resulting binary volume was then processed using the marching cubes 
algorithm, a standard surface reconstruction technique used to extract a polygonal 
mesh from 3D voxel data. The algorithm identifies is surfaces within the binary 
volume by evaluating the intensity transitions across voxel boundaries and generates 
a triangular mesh consisting of vertices and faces. Specifically, the implementation 
from the scikit-image library was used, which returns a set of mesh vertices 
vi∈ 3 and triangular faces fj⊂{V1, V2, V3}. The reconstructed mesh was subsequently 
visualized using Plotly’s Mesh3D module, which allows interactive 3D inspection 
of the tumor surface. Each mesh vertex was color-coded based on the corresponding 
voxel intensity value in the 3D volume, producing a heatmap-style visualization. This 
enabled the incorporation of not only geometric shape, but also internal activation 
intensity as inferred from the 2D Grad-CAM heatmap [30-32], providing a richer 
spatial insight into tumor regions.

The mesh generation process also allowed the extraction of key 3D parameters 
for integration into downstream metaverse applications. These include the tumor 
centroid, spatial extent (bounding box), volume (voxel count), and orientation 
(extrusion direction). The resulting 3D mesh, along with these geometric descriptors, 
was later exported to standard 3D model formats as .obj facilitating deployment in 
virtual environments for educational or diagnostic use.

2.5 Metaverse Integration
To fill the gap between medical image analysis and immersive visualization, 

the reconstructed 3D tumor mesh was subsequently processed for export into 
metaverse-capable platforms. The goal of this phase was to prepare the segmented 
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tumor structure and its spatial descriptors for use in virtual or augmented reality (VR/
AR) environments to support greater interaction, education, and diagnostic review 
[33]. After the 3D mesh was created from the volume through the marching cubes 
algorithm, various metaverse parameters were calculated from the volume. These 
are the 3D centroid, being the average position of all voxels in the foreground of 
the volume; voxel-wise volume, being the total number of segmented voxels across 
the slices; bounding box, being the spatial size of the tumor in x, y, and z axes; and 
orientation vector, as [0, 0, 1][0, 0, 1][0, 0, 1] to describe a perpendicular extrusion in 
the z-axis [33]. These parameters give geometric and spatial information required for 
aligning and inserting the tumor object precisely into a 3D scene.

For visualization and deployment, the 3D tumor mesh was then exported into 
standard geometry file formats .obj, which are well-supported within metaverse 
engines such as Unity, Blender, and WebXR. These preserve the mesh’s vertex and 
face structure as well as any intensity-based coloring if available and provide for 
interactive rotation, scaling, and examination in virtual spaces. In addition to the 
geometry, the extracted metadata (centroid, bounding box, volume, orientation) was 
retained in structured form to facilitate automated placement and scripting within 
immersive platforms. This setup supports a variety of downstream applications, 
such as virtual tumor walkthroughs for surgical planning, 3D medical education 
simulations, or diagnostic review in telemedicine environments. Through 
this metaverse integration stage, the study demonstrates how a traditional 2D 
segmentation pipeline can be extended into a fully interactive 3D workflow, thereby 
enhancing both the interpretability and accessibility of medical image analysis.

3. Results and Evaluation

Figure 4 illustrates the performance of the proposed segmentation pipeline using 
Cellpose. The predicted tumor outlines (in red) and filled masks closely align with the 
ground truth, demonstrating accurate boundary detection and consistent segmentation 
across varying tumor sizes and anatomical regions.

 
Figure 4. end-to-end tumor segmentation results using Cellpose
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From left to right: (i) original input MRI image, (ii) ground truth binary mask, (iii) 
Cellpose-predicted tumor outline (in red), and (iv) Cellpose-predicted binary mask 
overlaid on the original image. The Figure 4 demonstrates accurate localization, 
boundary adherence, and shape conformity across varied tumor presentations.

The performance of the proposed segmentation and visualization pipeline 
was evaluated both quantitatively and qualitatively. The Cellpose model, applied 
directly without retraining, demonstrated robust tumor boundary detection and 
mask prediction across a diverse range of T1-weighted MRI slices. The predicted 
binary masks were compared against ground truth annotations using three evaluation 
metrics: DICE Similarity Coefficient, Intersection over Union (IoU), and Positive 
Predictive Value (PPV).

A total of 3,064 MRI slices were processed, and evaluation metrics were 
computed on a per-image basis and then averaged to assess overall performance. 
Table 1 summarizes the mean performance metrics across the dataset.

Table 1. Quantitative Evaluation Metrics for Cellpose-Based Tumor Segmentation

Segmentation Metric Mean Value

DICE Coefficient 0.873

IoU 0.785

PPV 0.902

These results in Table 1, indicate that the Cellpose model was able to accurately 
segment tumor regions with high overlap and precision, despite being originally 
trained on non-medical domains. Notably, the high PPV score suggests that false 
positives were minimal, which is particularly important in clinical applications where 
over-segmentation may lead to misleading interpretations.

 
Figure 5. visual representation of the transition from a 2D tumor image to 3D spatial 
representation

The Figure 5 provides a visual demonstration of the transition from a 2D 
medical image to a 3D spatial representation of a predicted brain tumor mask, 
aligning with metaverse visualization principles. On the left, a single axial MRI slice 
displays the tumor region highlighted in purple, indicating the predicted segmentation 
mask overlay. From this 2D mask, a 3D surface model is reconstructed and projected 
into a virtual 3D coordinate system, shown on the right. The reconstructed tumor is 
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rendered using a rainbow color gradient, which enhances depth perception and spatial 
clarity across the X, Y, and Z axes.

Dashed connector lines visually link the 2D tumor region to its corresponding 
3D projection, symbolizing the transformation of clinical imaging data into 
immersive spatial models. The 3D coordinate grid is labeled with axes and tick marks, 
indicating physical space and enabling integration into XR or metaverse platforms. 
This type of visualization bridges conventional medical imaging with metaverse-
ready applications, allowing clinicians, researchers, or users in VR environments to 
interact with the tumor’s geometry, analyze its orientation and extent, and embed it in 
interactive simulations or decision-support systems.

Table 2. spatial parameters of predicted tumor meshes

Tumor Centroid (X, Y, Z) Surface Area (voxel2) Bounding Box 
Min (X, Y, Z)

Bounding Box Max 
(X, Y, Z) Extents (ΔX, ΔY, ΔZ)

Mask 1 [14.5, 100.16, 99.84] 55,499.90 [0.0, 16.5, 0.0] [29.0, 263.0, 211.0] [29.0, 246.5, 211.0]

Mask 2 [14.5, 95.39, 89.26] 45,291.19 [2.0, 19.0, 5.0] [29.0, 247.0, 200.0] [27.0, 228.0, 195.0]

Mask 3 [14.5, 110.84, 98.29] 74,146.77 [3.0, 23.5, 4.0] [29.0, 258.0, 209.0] [26.0, 234.5, 205.0]

The Table 2 reflects more realistic spatial descriptors for the three predicted 
tumor masks, reconstructed using a simulated 3D volume of 30 slices. Unlike earlier 
experiments, the bounding box and extent values have been corrected to avoid origin-
alignment artifacts and better represent the true spatial footprint of each tumor. 
Although volume values were not computed due to the open nature of the marching 
cubes surface mesh, the remaining parameters provide significant insights for spatial 
reasoning and immersive visualization.

The centroid (X, Y, Z) coordinates represent the geometric centers of the 
reconstructed tumors, offering valuable information for placement and orientation 
within a 3D environment. The surface area, ranging from approximately 45,291 to 
74,147 voxel2, quantifies the external complexity of the tumor boundary. Furthermore, 
the bounding box and extent dimensions illustrate the range of tumor spread along 
the X, Y, and Z axes—parameters that are especially critical for 3D rendering, camera 
fitting, and interaction in XR or metaverse platforms.

These spatial parameters form a metaverse-ready tumor profile, enabling 
seamless integration into VR/AR simulations or digital twin environments. Despite 
the omission of volumetric closure, the structural mesh and its attributes remain 
highly useful for applications such as visual diagnosis, immersive education, and 
XR-based surgical rehearsal. To support full volumetric simulation—including 
mesh-based deformation or physical modeling—future pipelines should incorporate 
volumetrically closed reconstructions derived from actual 3D MRI stacks or filled 
binary volumes.

4. Discussion 

The Cellpose model, originally introduced for cellular image segmentation, 
demonstrated strong adaptability to grayscale MRI data despite being domain-
agnostic. It successfully delineated tumor boundaries across varied patient cases 
without requiring architectural modifications or domain-specific retraining. This 
robustness is particularly significant, as most deep learning-based brain tumor 
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segmentation models (e.g., U-Net, DeepMedic, V-Net) are tightly coupled with 
task-specific annotated datasets and volumetric architectures. In contrast, Cellpose 
leverages a spatial vector field representation, allowing instance-aware segmentation 
of irregular tumor morphologies. This makes it especially well-suited for imaging 
scenarios with limited data diversity or resolution. While the binary masks generated 
showed strong visual and quantitative agreement with ground truth annotations, 
some pixel-level inconsistencies were noted across adjacent slices due to the model’s 
inherently 2D processing structure.

Following segmentation, the binary masks were extruded into 3D volumes 
by stacking 2D slices. These pseudo-volumetric stacks were processed using the 
marching cubes algorithm to reconstruct surface meshes representing tumor regions. 
The generated 3D meshes were evaluated based on geometric parameters, including 
centroid coordinates, surface area, extents, and bounding box dimensions. Although 
true volumetric values could not be computed due to open-surface geometry and 
limited depth, increasing the simulated depth to 30 slices improved anatomical 
realism. The extracted parameter values showed consistency with expected tumor 
spread and morphology. In addition, the pipeline supports direct export of 3D models 
in .obj format, enabling seamless integration into immersive rendering platforms.

To contextualize the segmentation performance of Cellpose, we compared 
its results with commonly used architectures such as U-Net, V-Net, and Attention 
U-Net. As shown in Table 3, Cellpose achieved the highest DICE coefficient (0.873) 
and PPV (0.902), reflecting superior overlap accuracy and minimal false positives. 
Despite being applied without any retraining, it produced results comparable to or 
better than task-specific models. The ability to handle variable tumor shapes, scale 
automatically, and segment directly from grayscale input reinforces its suitability for 
clinical use.

Table 3. Comparative performance of segmentation models on brain MRI slices.

Model DICE IoU PPV

U-Net 0.862 0.788 0.895

V-Net 0.856 0.76 0.888

Attention U-Net 0.865 0.77 0.882

Cellpose 0.873 0.785 0.902

The final reconstructed tumor meshes were embedded within a global 3D 
coordinate system aligned with the X, Y, and Z axes to facilitate spatial navigation. 
These tumors were projected onto orthogonal planes, allowing users to explore 
anatomical structures in an XR setting. This spatial visualization bridges conventional 
image segmentation and immersive diagnostic experiences, opening pathways for 
applications such as pre-operative planning, telemedicine, and 3D medical education. 
The extracted spatial parameters—centroid, bounding box, and extents—also support 
downstream interaction and alignment within XR engines such as unity, unreal 
engine, or WebXR. While this prototype does not support real-time manipulation, 
it establishes a functional and scalable base for future metaverse-based clinical 
integration.

5. Conclusion and Future Scope

In summary, this study presents a lightweight and generalizable pipeline for 
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brain tumor segmentation and spatial 3D visualization, aligned with the emerging 
integration of metaverse principles in healthcare. The framework utilizes Cellpose 
for shape-aware segmentation on 2D grayscale T1-weighted MRI slices, followed by 
3D surface mesh reconstruction using the marching cubes algorithm. The predicted 
tumors are not only localized and segmented with high spatial accuracy but are 
also reconstructed into interactive 3D surface representations embedded within 
a coordinate system, facilitating immersive exploration in virtual and augmented 
environments. Quantitative evaluation using Dice, IoU, and PPV metrics demonstrated 
that Cellpose outperformed conventional models like U-Net, V-Net, and Attention 
U-Net in segmentation accuracy, as summarized in Table 3. Key spatial parameters—
such as centroid, surface area, and axis-aligned extents—were successfully extracted, 
enabling downstream integration with XR-compatible platforms. Although volumetric 
computation was not performed due to the open nature of the mesh geometry, the 
projected 3D visualizations (see Figure 3) offer tangible spatial context and practical 
applicability in, simulation, and surgical planning. .

Future research will focus on integrating real volumetric MRI datasets such 
as BraTS to replace simulated 2D stacking, thereby ensuring anatomically accurate 
reconstructions and enabling volume calculation. The segmentation framework 
will also be extended to support multi-class labeling, including tumor subregions 
like necrotic core, enhancing rim, and peritumoral edema—offering deeper clinical 
insight. Incorporating comparison with state-of-the-art segmentation methods such 
as NestedFormer, TP-DRSeg, Segmamba, and Serp-Mamba will further enhance 
benchmarking rigor. Additionally, integrating explainable AI techniques such as 
Grad-CAM overlays may improve interpretability and clinical trust. Real-time 
deployment on XR platforms via Unity or WebXR is envisioned, along with HL7/
FHIR compatibility for seamless hospital system integration. Collectively, this work 
demonstrates the feasibility of bridging AI-powered segmentation with immersive 
metaverse visualization, providing a scalable path toward next-generation diagnostic 
and educational tools in neuro-oncology.
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