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Abstract: Reconstructing the human body from monocular video input presents significant 

challenges, including a limited field of view and difficulty in capturing non-rigid deformations, 

such as those associated with clothing and pose variations. These challenges often compromise 

motion editability and rendering quality. To address these issues, we propose a cloth-aware 3D 

Gaussian splatting approach that leverages the strengths of 2D convolutional neural networks 

(CNNs) and 3D Gaussian splatting for high-quality human body reconstruction from 

monocular video. Our method parameterizes 3D Gaussians anchored to a human template to 

generate posed position maps that capture pose-dependent non-rigid deformations. 

Additionally, we introduce Learnable Cloth Features, which are pixel-aligned with the posed 

position maps to address cloth-related deformations. By jointly modeling cloth and pose-

dependent deformations, along with compact, optimizable linear blend skinning (LBS) 

weights, our approach significantly enhances the quality of monocular 3D human 

reconstructions. We also incorporate carefully designed regularization techniques for the 

Gaussians, improving the generalization capability of our model. Experimental results 

demonstrate that our method outperforms state-of-the-art techniques for animatable avatar 

reconstruction from monocular inputs, delivering superior performance in both reconstruction 

fidelity and rendering quality. 

Keywords: neural rendering; 3D reconstructing; 3D Gaussian splatting; clothing human 

modeling; animatable body 

1. Introduction 

Modeling animatable avatars is a highly challenging task due to the complex 

nature of human movement, clothing, and the wide range of non-rigid deformations 

that must be accurately captured. The difficulties arise from the need to represent 

dynamic, time-varying scenes while ensuring that the reconstructed avatars are 

visually realistic, temporally consistent, and animatable under various conditions. 

Previous methods based on image and video reconstruction for 3D human bodies [1–

3] require stringent conditions, such as a large number of viewpoints and depth maps, 

making them difficult to deploy in real-world applications and personal use. 

Meanwhile, significant progress has been made in reconstructing digital humans from 

monocular videos [4,5]. Existing methods for human reconstruction based on neural 

radiance fields (NeRF) [6] can handle simple rigid transformations but struggle with 

severe non-rigid motion. If the video contains limited motion diversity, these methods 

will exhibit poor render quality for animated human movements and novel view 

synthesis. Besides, coordinate-based MLP methods for NeRF rely on regressing 

continuous fields but suffer from the low-frequency spectral bias of MLPs [7], 
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resulting in suboptimal outcomes.  

Recently, 3D Gaussian splatting [8], an explicit and efficient point-based 

representation, has been proposed to achieve both high-fidelity rendering and real-

time rendering speed. However, 3D Gaussian-based human reconstruction methods 

are constrained by the need for multi-view inputs [9–12]. Existing single-view 3D 

Gaussian splatting methods, such as GoMAvatar [13] and GauHuman [14], remain 

suboptimal under monocular video inputs.  

To address the challenges faced by monocular video inputs, we propose a 

garment-aware 3D Gaussian splatting avatar. Our method builds on Animatable 

Gaussian [10], using orthogonal projection to parameterize 3D Gaussians on a 

canonical template and employing StyleUNet [15] to predict pose-dependent Gaussian 

maps, effectively reconstructing detailed human poses with 2D CNNs and 3D 

Gaussian splatting, thus avoiding the low-frequency spectral bias problem that plagues 

coordinate-based MLP methods in NeRF. Besides, additionally, existing approaches 

typically focus on modeling pose-dependent deformations but fail to effectively model 

clothing, resulting in overly smooth human surfaces. To address this, we introduce 

Learnable Cloth Features, which decouple clothing from non-rigid deformations and 

model it independently. This design enables the clothing on the human body to be 

modeled separately, leading to significantly improved rendering results. 

Furthermore, we observed that rendering the synthesized avatar in the driving 

pose requires deforming the canonical 3D Gaussians into the posed space using Linear 

Blend Skinning (LBS). The accuracy of this transformation is crucial for achieving 

high-quality rendering results. However, since the initial LBS weights are based on a 

smooth body template, such as SMPL, applying these initial weights after the 

canonical 3D Gaussians have undergone non-rigid deformations related to pose and 

clothing results in significant inaccuracies. To address this issue, we introduce an 

Optimizable LBS Weights Module. Leveraging the Tri-planes representation, we 

efficiently predict adaptive LBS weights that account for these deformations. 

Specifically, we interpolate the Tri-planes at the center locations of the deformed 3D 

Gaussians to extract feature vectors, which are then processed by a weight decoder to 

predict LBS weights dynamically. This approach allows the LBS weights to adapt to 

non-rigid deformations, significantly improving the accuracy of the transformation 

and ultimately enhancing the rendering quality of the posed avatar. 

Contributions: 

(1) We propose a garment-aware 3D Gaussian splatting method that combines the 

strengths of 2D CNNs and 3D Gaussian splatting to achieve detailed human pose 

reconstruction from monocular video inputs. 

(2) We introduce a decouple garment and pose- dependent non-rigid deformations 

while incorporating compact, optimizable LBS weights, significantly enhancing 

the reconstruction quality of monocular 3D human models. 

(3) We demonstrate the effectiveness of our method through experiments on datasets 

with monocular video inputs, achieving superior rendering results and 

reconstruction accuracy compared to existing approaches. 
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2. Related work 

Rendering and radiance fields: Early scene reconstruction from a collection of 

images, such as Structure-from-Motion (SfM) [16] and Multi-View Stereo (MVS) 

[17], often struggled to completely reconstruct scenes and dynamic scene modeling. 

Volumetric representations [18–20] for novel-view synthesis using volumetric ray 

marching have a significant cost due to the large number of samples required to query 

the volume. Neural Radiance Fields (NeRFs) [6] is one of the impressive works, 

representing scenes as implicit functions and synthesizing realistic images from 

arbitrary viewpoints through volumetric rendering. NeRF follow-up works have made 

progress in image synthesis quality and speed [21–23]. Some approaches focus on 

novel view synthesis from sparse input [24,25], while others extend to dynamic scene 

modeling [26,27]. 

Despite their advances, these approaches often struggle with real-time 

performance due to the heavy computational demands of volumetric rendering, 

leading to further exploration into more efficient representations like 3D Gaussians 

[8]. Due to its excellent performance in photo-realistic scene rendering and speed, 

3DGS has been rapidly extended for digital human reconstruction [10,13,14,28] and 

dynamic scene modeling [29–31]. 

Human representation: The work of Alldieck et al. [32,33] utilizes the human 

parameter template SMPL [34] to provide human priors for human modeling. Zheng 

et al. [35] enhance geometric accuracy by extracting 3D features from the SMPL 

model and pixel-level features from images. Dong et al. [2] reconstruct from RGB-D 

image sequences, improving geometric precision with depth information and allowing 

for clothing reconstruction. Saito et al. [36,37] introduce a pixel-aligned implicit 

function for reconstructing 3D humans, capable of handling arbitrary human images 

and supporting single-view inputs. Jiang et al. [38] model human geometry and 

clothing separately, overcoming the limitations of parametric human models in 

representing clothing geometry. Xiu et al. [39] enhance local features based on the 

SMPL-X model [40] by incorporating normal information, achieving finer-grained 3D 

human models. These methods still struggle to animate dynamic human motions 

effectively. 

Although NeRF has achieved excellent results in modeling static scenes, it still 

faces challenges in handling dynamic scenes, especially for high degrees of freedom 

and non-rigid deformations in humans. Peng et al. [4] synthesize novel view images 

of humans from sparse camera views and use the parametric human model SMPL for 

dynamic modeling. Weng et al. [41] propose the Vid2Actor, which connects 

deformation space with canonical space based on human pose movements, but the 

resulting rendering quality is poor. Weng et al. [5] focus on the free-viewpoint 

application, by introducing a pose correction module and a non-rigid deformation 

module to model moving people from monocular video. Weng et al. [42] reconstruct 

an editable human model by training on a collection of images with different views 

and textures, but it cannot generate continuous human motion images. Some works 

[43,44] aggregate features from input and introduce an efficient human representation 

to achieve higher dynamic human modeling quality. Recently, 3DGS human 

representation enabled high-quality rendering and speed. Specifically, Animatable 
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Gaussians leverage powerful 2D CNNs and 3DGS to create high-fidelity avatars. 

D3GA [9] utilizes cage-based deformation to model the motion of 3D Gaussians. 

Other approaches like GART [45] and GauHuman [14], employ linear blend skinning 

(LBS) to model 3DGS-based animatable avatars from monocular videos but still show 

results of limited visual quality. 

3. Methods 

Figure 1 given a monocular video, we first obtain the corresponding pose using 

an off-the-shelf SMPL parameter estimator and initialize canonical Gaussians based 

on the SMPL model. We then parameterize posed but unclothed Gaussians, anchoring 

them to a canonical template, and project them onto the front and back views using 

orthogonal projection. These projections are combined with optimizable cloth 

features, which are pixel-aligned with the former. Next, we employ 2D CNNs to 

generate a deformed Gaussian map. Subsequently, we apply deformation to the 

canonical Gaussians to obtain the deformed Gaussians, which are then animated using 

optimizable LBS weights and finally rendered into realistic images. 

 
Figure 1. An overview of our methods. 

In this section, given a monocular video of a human where the pose changes with 

each frame, we represent the canonical human body as a set of 3D Gaussians [8]. These 

Gaussians are defined by a full 3D covariance matrix Σ in world space and are centered 

at points (means) P. 

𝐺(𝑥) = 𝑒−
1
2

(𝑥−𝑃)𝑇𝛴−1(𝑥−𝑃)
 (1) 

To render the synthesized avatar in the driving pose, we deform the canonical 3D 

Gaussians into the posed space via LBS. Specifically, given a canonical 3D Gaussian, 

we transform its position Pc and covariance 𝛴𝑐  with rotation matrix R and translation 

vector t.  
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𝑃𝑜 = 𝑅(𝑝)𝑃𝑐 + 𝑡(𝑝)𝛴𝑜 = 𝑅(𝑝)𝛴𝑐𝑅𝑇(𝑝) (2) 

Finally, we rendered the image using the splatting-based rasterization. The 

expected color C is computed by blending N ordered 2D Gaussians: 

𝐶 = ∑ 𝑐𝑖𝛼𝑖 ∏(1 − 𝛼𝑗)

𝑖−1

𝑗=1

𝑁

𝑖=1

 (3) 

where 𝑐𝑖 is the color of each Gaussian and 𝛼𝑖 is given by evaluating a 2D Gaussian 

with covariance Σ multiplied with the learned opacity. 

3.1. Pose-dependent non-rigid deformation 

To handle complex human movements and deformations, we decompose the 

motion field into two parts: the SMPL template with pose-dependent blend shapes, 

and the clothing. This is formalized as: 

𝐺𝑐(𝑥, 𝑝) = 𝐺𝑠𝑚𝑝𝑙(𝑥) + 𝐺𝑑(𝑥, 𝑝) (4) 

where 𝐺𝑠𝑚𝑝𝑙(𝑥) represents the canonical human, and 𝐺𝑑(𝑥, 𝑝) starts from the human 

pose p to produce clothing and pose-dependent Gaussian deformation. However, 

MLPs are known to have a low-frequency bias, limiting their ability to capture high-

frequency human dynamics. We follow Animatable Gaussians [10], parameterizing 

3D Gaussians anchored to a canonical template onto front and back views via 

orthogonal projection and obtaining posed position maps (𝑃𝑓(𝑝), 𝑃𝑏(𝑝)). Then we use 

2D CNNs to predict pose-dependent Gaussian maps based on pose conditions. 

𝐺𝑓(𝑝), 𝐺𝑏(𝑝) = 𝐹𝑠 (𝑃𝑓(𝑝), 𝑃𝑏(𝑝)) (5) 

where the posed position maps (𝑃𝑓(𝑝), 𝑃𝑏(𝑝))
 
are derived from posed but unclothed 

Gaussians, which contain pose-dependent information. For the 𝐶𝑁𝑁(𝑔) , we use 

StyleUNet as our backbone. This technique allows us to not only reconstruct clothing 

details from the smooth parametric template but also model Gaussian deformations 

induced by different poses. For example, similar to SMPL pose blend shapes, this 

approach can handle expansions of the hips during specific movements [34]. 

3.2. Cloth-dependent non-rigid deformation 

However, posed position maps only contain information related to human body 

poses and do not model the garment geometry. To address this, we introduce Learnable 

Cloth Features 𝐹𝑐, which are pixel-aligned with the posed position maps. This design 

enables us to model the clothing on the human body independently, achieving 

improved rendering results. Accordingly, the above equation can be reformulated as 

follows: 

𝐺𝑓(𝑝), 𝐺𝑏(𝑝) = 𝐹𝑠(𝑃𝑓(𝑝), 𝑃𝑏(𝑝), 𝐹𝑐)  (6) 

This design enables a more nuanced and independent representation of clothing, 

allowing for finer control and improved rendering quality. Unlike previous methods 

that often entangle garment details with body poses, this approach explicitly separates 
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the two, reducing artifacts and enhancing the realism of clothing depiction. 

Additionally, the pixel alignment ensures spatial consistency, which is crucial for 

high-quality results, and the independent modeling of garments allows for better 

generalization. 

3.3. Optimizable LBS weights 

We start with the LBS weights 𝑤𝑠𝑚𝑝𝑙
 from the SMPL model, which are initially 

based on a smooth body template. However, when offsets are applied to the canonical 

3D Gaussians to account for deformations, using the original LBS weights to 

transform from the canonical space to the posed space leads to inaccuracies. To 

address this, we introduce an Optimizable LBS Weights Module. We represent the 

LBS weights as Tri-planes to reduce computational cost. Based on the center locations 

P of the 3D Gaussians, we interpolate the tri-planes to obtain feature 

vectors (𝑓𝑥𝑦(𝑃), 𝑓𝑦𝑧(𝑃), 𝑓𝑥𝑧(𝑃)). Specifically, we project the coordinates (x, y, z) onto 

the xy-planes, yz-planes and xz-planes, which are represented by feature planes, 

obtaining corresponding feature vectors for each projection. These feature vectors are 

then passed through a weight decoder, denoted as denoted as 𝑀𝐿𝑃𝑝𝑜𝑠𝑒, to predict the 

corresponding LBS weight. 

�̂� = 𝑀𝐿𝑃𝑝𝑜𝑠𝑒(𝑓𝑥𝑦(𝑃), 𝑓𝑦𝑧(𝑃), 𝑓𝑥𝑧(𝑃))  (7) 

where 𝑓𝑥𝑦(𝑃) ∈ 𝑅𝑥 × 𝑅𝑦 × 𝐷, 𝑓𝑦𝑧(𝑃) ∈ 𝑅𝑦 × 𝑅𝑧 × 𝐷,  𝑓𝑥𝑧(𝑃) ∈ 𝑅𝑥 × 𝑅𝑧 × 𝐷 , 

𝑅𝑥,𝑅𝑦and 𝑅𝑧 are the resolutions of 𝑥, 𝑦 and 𝑧 axes, respectively, and D is the feature 

dimension. In our experiment, the resolution of each axis is set to 128, and the feature 

dimension is 32. This allows us to handle the deviations caused by these offsets and 

ensures more accurate deformation modeling. In practical applications, to ensure that 

the LBS weights approximate effective values, we predict offset weights relative to 

the SMPL model weights instead of learning global weights directly. 

𝑤 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑙𝑜𝑔( 𝑤𝑠𝑚𝑝𝑙) + �̂�) (8) 

3.4. Optimization  

Pose correction: Human poses are typically estimated from images, making them 

prone to inaccuracies. Therefore, we follow the approach of HumanNeRF [5] and 

introduce a pose refinement module 𝑀𝐿𝑃𝑝𝑜𝑠𝑒  
that learns to correct the estimated 

poses. 

𝑝 = 𝑝𝑠𝑚𝑝𝑙 ⊗ 𝑀𝐿𝑃𝑝𝑜𝑠𝑒(𝑝𝑠𝑚𝑝𝑙) (9) 

where 𝑀𝐿𝑃𝑝𝑜𝑠𝑒(𝑝𝑠𝑚𝑝𝑙)
 
produces a correction rotation to updated 𝑝𝑠𝑚𝑝𝑙. 

Regularization: Under monocular input settings, the lack of constraints on non-

rigid deformations leads to uneven distributions of 3D Gaussians, causing defects in 

the human geometry and adversely affecting the final rendering results. Inspired by 

Qian et al. [46], we incorporate an as-isometric-as-possible constraint to regulate the 

distances between points: 
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𝐿𝑎𝑖𝑎𝑝 = ∑ ∑ |𝑑(𝑃𝑐
𝑖, 𝑃𝑐

𝑗
) − 𝑑(𝑃𝑜

𝑖 , 𝑃𝑜
𝑗
)|

𝑗∈𝐵(𝑗)

𝑁

𝑖=1

 (10) 

Considering that the density of 3D Gaussians varies across different body 

regions, for instance, the human face typically contains a higher density of points, we 

employ a ball query sampling method to ensure that the 3D Gaussians within a given 

area remain as isometric as possible. Here, 𝐵(𝑗)
 
denotes the spherical neighborhood 

of a point P, and 𝑑(𝑃𝑖, 𝑃𝑗) represents the L2 norm between points. 

In addition, we apply a geometry norm regularization loss 𝐿𝑔𝑒𝑜 constrains the 

predicted Gaussian offsets, including both position and covariance, from becoming 

excessively large:  

𝐿𝑔𝑒𝑜 = ‖𝛥(𝐺)‖2
2  (11) 

Thus, our overall regularization loss can be expressed as: 

𝐿𝑟𝑒𝑔 = 𝐿𝑎𝑖𝑎𝑝 + 𝐿𝑔𝑒𝑜  (12) 

This formulation ensures a more uniform and stable distribution of 3D Gaussians, 

improving the accuracy of geometry modeling and rendering results. 

Loss function: The total loss function includes the following components: 

𝐿 = 𝐿𝑐𝑜𝑙𝑜𝑟 + 𝜆1𝐿𝑚𝑎𝑠𝑘 + 𝜆2𝐿𝑟𝑒𝑔  (13) 

The color loss involves an mse loss and a perceptual loss between the rendered 

image 𝐶 and the ground-truth image 𝐶𝐺𝑇. 

𝐿𝑐𝑜𝑙𝑜𝑟 = 𝐿𝑚𝑠𝑒(𝐶, 𝐶𝐺𝑇) + 𝐿𝑙𝑝𝑖𝑝𝑠(𝐶, 𝐶𝐺𝑇)  (14) 

𝐿𝑚𝑎𝑠𝑘 are the L1 loss between the accumulated volume density 𝑀 and ground-

truth subject masks𝑀𝐺𝑇. 

𝐿𝑚𝑎𝑠𝑘 = 𝐿1(𝑀, 𝑀𝐺𝑇)  (15) 

where 𝜆 are loss weights. Empirically, we set 𝜆1 = 0.5 and𝜆2 = 0.2. 

4. Experiment results and discussion 

4.1. Evaluation dataset and metrics 

We validate our method on two datasets: the ZJU-MoCap dataset [4]. For novel 

views synthesis evaluation, we select one camera as input, while the remaining 

cameras for evaluation. For novel pose synthesis. We provide qualitative results for 

animation on out-of-distribution poses. For quantitative experiments, we use Peak 

Signal-to-Noise Ratio (PSNR), Structure Similarity Index Measure (SSIM), and 

Learned Perceptual Image Patch Similarity (LPIPS) as evaluation metrics. 

4.2. Baselines 

We compare our method with state-of-the-art methods for human body 

reconstruction using monocular video, including NeuralBody [4], HumanNeRF [5], 

GART [45], Gauhuman [14], GoMAvatar [13]. NeuralBody and HumanNeRF are 
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based on NeRF (Neural Radiance Fields) reconstruction methods, while the remaining 

methods utilize 3D Gaussian Splatting (3DGS). We conduct experiments using the 

monocular setup for all methods and evaluate the results in comparison with our 

approach. 

4.3. Comparison 

Table 1 presents the quantitative comparison results of novel view synthesis 

between our method and the other approaches. Our method shows improvements 

across different metrics compared to the other methods. 

Table 1. Quantitative results on the ZJU-MoCap dataset. 

Method SSIM↑ PSNR↑ LPIPS↓ 

NeuralBody [4] 0.9518 28.56 0.052 

HumanNeRF [5] 0.9606 29.16 0.039 

GoMAvatar [13] 0.9604 29.42 0.040 

Gauhuman [14] 0.9600 29.25 0.045 

GART [45] 0.9609 28.85 0.041 

Ours 0.9610 29.52 0.035 

In terms of qualitative results, as shown in Figure 2, our approach produces better 

texture details. Other methods, such as those shown in the first and third rows of the 

figure, exhibit blurring artifacts. Especially in terms of clothing textures, our method 

achieves better results compared to others. 

 

Figure 2. Qualitative comparison for novel view synthesis to state-of-the-art. 

Figure 3 compares the qualitative results of synthesizing novel poses between 

our method and the other approaches. Our method performs more realistically in terms 
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of both pose and texture. 

 

Figure 3. Novel pose qualitative results. 

We also report a comparison of inference speed with NeRF-based methods and 

Gaussian-based methods, as shown in Table 2. Overall, Gaussian-based methods are 

faster than NeRF-based methods, such as NeuralBody and HumanNeRF. While 

Gaussian-based methods like Gauhuman offer fast speed, they compromise on texture 

quality and struggle with large deformations or fine details. In contrast, our method 

achieves a better balance between speed and detail with the potential for real-time 

performance with appropriate optimizations. The FPS values are computed on a single 

RTX 3090 GPU, rendering images at a resolution of 512 × 512. 

Table 2. Comparison of inference speed. 

NeRF-based FPS↑ 3DGS-base FPS↑ 

NeuralBody 1.5 Ours 8 

HumanNeRF 0.2 GoMAvatar 20 

ARAH 0.07 Gauhuman 120 

4.4. Ablation study 

Through ablation studies, we validate the effectiveness of our contributions. 

Table 3 presents the quantitative comparison results of novel view synthesis, 

highlighting the improvements between different modules and validating the 

effectiveness of our method. 
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Table 3. Ablation studies for novel view synthesis. 

Method SSIM↑ PSNR↑ LPIPS↓ 

Full model 0.9610 29.52 0.035 

w/o Learnable cloth features 0.9578 29.06 0.037 

w/o Optimizable LBS weights 0.9591 29.22 0.037 

w/o Pose correction 0.9597 29.02 0.040 

w/o 𝐿𝑎𝑖𝑎𝑝 0.9601 29.44 0.038 

Figure 4 demonstrates the importance of Learnable Cloth Features. By modeling 

the cloth separately, our approach is better able to capture the fine texture details of 

human clothing. 

 

Figure 4. Optimizable cloth features improve novel view synthesis. 

Due to the initial LBS weights being based on the smooth SMPL model, they 

cannot effectively handle the deformations of human clothing after non-rigid 

transformations, resulting in ghosting effects on the clothing. By using optimizable 

LBS weights, we can simultaneously update the LBS weights, improving the rendering 

results, as shown in Figure 5. 

 

Figure 5. Optimizable LBS weights, by optimizing the Gaussian LBS weights, 

handle clothing deformations more effectively. For instance, the button on the 

clothing in the figure is more clearly visualized. 
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Figure 6 demonstrates how 𝐿𝑎𝑖𝑎𝑝, considering non-rigid deformations, it constrains 

the human geometry, resulting in more detailed human body features. 

 

Figure 6. Without 𝐿𝑎𝑖𝑎𝑝, noticeable artifacts appear on the face. By maintaining the 

relative positions of the facial features, we can constrain the facial distortion caused 

by non-rigid deformations. 

5. Conclusion 

We present a garment-aware 3D Gaussian splatting method that effectively 

integrates the advantages of 2D CNNs and 3D Gaussian splatting, enabling precise 

clothed human pose reconstruction from monocular video inputs. By introducing a 

novel approach to decouple garment and pose-dependent non-rigid deformations, and 

incorporating compact, optimizable LBS weights, our method significantly improves 

the quality of monocular 3D human model reconstructions. Experimental results on 

datasets with monocular video inputs confirm that our approach achieves enhanced 

rendering and reconstruction accuracy under monocular video. 
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