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Abstract: Industrial Revolution 4.0 transforms healthcare systems. The first three 

technological revolutions changed the relationship between human and machine interaction 

due to the exponential growth of the number of machines. The fourth revolution has placed 

humans in a scenario where heterogeneous data is generated in unprecedented quantity and 

quality, not only through traditional methods enhanced by digitization, but also through 

ubiquitous computing, machine-to-machine interactions, and smart environment. The modern 

cyber-physical space underlines the role of humans in the expanding context of 

computerization and big data processing. In healthcare, where data collection and analysis 

particularly depend on human efforts, the disruptive nature of these developments is evident. 

Adaptation to this process requires deep scrutiny of the trends and recognition of future medical 

data technologies` evolution. Significant difficulties arise from discrepancies in requirements 

by healthcare, administrative and technology stakeholders. Black box and grey box decisions 

made in medical imaging and diagnostic Decision Support Software are often not transparent 

enough for the professional, social and medico-legal requirements. While Explainable AI 

proposes a partial solution for AI applications in medicine, the approach has to be wider and 

multiplex. LLM potential and limitations are also discussed. This paper lists the most 

significant issues in these topics and describes possible solutions. 

Keywords: big data; explainable AI; black and white boxes; large language model; healthcare 

transformation 

1. Introduction 

World demographic trends require adjustment of all social institutions. The rapid 

population growth in expanding economies coexists with lower birth rates and quick 

ageing in economically developed societies [1]. Healthcare systems have to adapt to 

the higher demand. Extensive broadening of healthcare services cannot be seen as a 

primary solution. The fourth technological revolution is projected to be one way to 

solve the problem of society's growing financial and social healthcare burden [2,3]. 

New technologies have improved communication, data collection, and 

management. Artificial intelligence helps analyze voluminous medical data, 

ubiquitous computing, and Ambient Assisted Living to improve the condition of 

home-based patients. Telemedicine and robotics connect geographically distant 

specialists and patients, to name just a few. The SARS-CoV-2 pandemic inadvertently 

intensified current trends [4]. 

At the same time, the technological development of healthcare has to overcome 

not only financial, social and psychological barriers. There are fundamental and 

methodological problems which cannot be solved by financial and administrative 
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efforts. Human-Machine interaction specialists are acutely aware of the significant gap 

in effective synergy [5]. Big data studies are fruitful in medical image processing, 

laboratory analysis, public health, and some areas of clinical research, but they are 

somehow less fruitful in the field of general patient-centred clinical healthcare data 

analysis. The pandemic demonstrated the importance and robustness of prophylaxis 

on the level of public health by means of quarantine and vaccination. On the personal 

level, besides prevention, treatment is exhaustively thorough in intensive care, with 

traditional oxygen, heavy staff workload, and pulmonary and other intensive care 

protocols of treatment. The highly effective drug for direct treatment has been 

developed only recently, despite all endeavours with the help of the best technologies 

[6]. 

To understand the underlying causes, it is important to disentangle fundamental 

issues of human-centred technologies from temporary “development” hindrances [5]. 

Appropriate focus on the right type of solutions allows for proper healthcare progress. 

Figure 1, provided below, demonstrates the structure of the represented topics. 

 

Figure 1. The article’s roadmap. 

2. Setting the context to address health data collection and analysis 

There are a number of fundamental and applied questions, which are 

understandably demanding focus before any solution can be found. Human-machine 

interaction is reshaped by ubiquitous computing and big data. The main areas in these 

topics hold keys to the balanced vision and rational estimation of future changes in the 

area of healthcare data handling. 

2.1. Human-Machine interaction 

HMI was formulated in the 1960th and can be distilled into the necessity to 

interact between user and machine despite their dissimilarities [7]. There are several 

areas in the HMI: language disparities between human and technical devices, different 

types of possible errors and bias, and demand for specific interfaces, humans and 

machines, to list just a few. Ideally, technologies would allow the closing of the gap 

between humans and machines by creating perfect interactive systems, but this task 
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has yet to be fulfilled. 

2.1.1. Data collection 

Historically, information was collected, recorded, and analyzed by humans only, 

first at the biological and psychological levels and then at the social and civilization 

levels [7]. Language, writing, mathematical and statistical methods allowed data 

prepossessing, classification and analysis. The advance of machines and information 

theory laid the foundation for the computer era. HMI problem was formulated from 

the start, data collection was prone to human mistakes and bias. Input into the machine 

was highly technical and required an appropriate interface, which could create 

additional obstacles for human operators. Then, regardless of the form of data storage, 

the problem of human readability arises. Health and biometric information are mostly 

collected by humans, and the records are still mostly human-readable. Machine 

intervention requires significant effort to optimize data collection as a prerequisite for 

machine storage and analysis. The dominant role of humans is inevitably being taken 

more and more by machines with improvements in data collection, archiving, 

transmission, and analysis. Human control is important in clinical data handling, but 

technical assistance is clearly beneficial [8]. 

Today, healthcare data is potentially heterogeneous and comes not only from 

primary health records. Secondary data is harvested from Electronic Health Records 

(EHR). The three basic Vs of big data, volume, velocity, and variety, require a 

different approach. Behavioural data flows from the Internet and surveillance sources, 

and more information comes from smartphones, smart health devices and applications, 

smart homes, and smart environments. Clinical data itself, especially biometric data, 

is often read from sensors before being recorded by medical staff in EHR [9]. 

2.1.2. Language, classification, interoperability 

There is a well-known fundamental difference between human natural language 

and machine languages. Automatic data analysis also employs classification 

techniques. Artificial Intelligence classification of health data significantly differs 

from the traditional human-based one. Human bias is reflected, for example, in 

nosology’s diseases` classifications. Polysemy in terminology creates confusion even 

in the different areas of medicine. An unclear definition of the simple term “abdomen” 

prevents the easy transfer of information [10]. Other healthcare areas, like psychiatry, 

are known for difficulties in precise classification [11]. 

Medical nosology classifications historically reflect expert-driven beginnings, 

objective observations, and further classifications based on symptoms and syndromes. 

Anatomy, physiology, biometric information, and genetic and biomolecular data today 

form the basis for more acceptable bottom-up classifications [12]. However, being 

ontologically more modern, these classifications still lack easy machine readability. 

Figure 2 schematically shows the standard medical procedure from obtaining initial 

information to the final records. From this process, we can see that nosology 

classifications naturally depend on expert-driven processes.  

While the initial trigger can be complaints by patients, relatives or members of 

the public, the next step is always framed by medical professionals, even when the 

starting point is a routine examination. After collecting anamnesis, physical, 

instrumental, and laboratory examinations are performed. The results lead to a primary, 
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most probable diagnosis. They are registered in medical records. Differential diagnosis 

may require additional checks. Primary nosology code is added to the records. The 

treatment can be started at the earliest possible stage or postponed to a later stage. The 

results of treatment also help to make a more precise diagnosis and final detailed 

diagnosis. A nosology code is applied for final records and stored in the documentation 

and database. 

 

Figure 2. Standard procedure of diagnosis and treatment, with matching records. 

Even top standards differ depending on their classification purpose. The widely 

used SNOMED-CT terminology is multiaxial, clinically oriented, procedure-oriented, 

and input-based. The International Classification of Diseases (ICD) is statistically and 

output-oriented. ICD-10 partially differs in ontology from ICD-11—the last one is 

closer to SNOMED and multiaxial. However, it does not fully solve the problem of 

interoperability [13]. 

Figure 3 shows simplified data flow in healthcare. The starting point is similar 

to the scheme in Figure 2. Data flow between medical stakeholders’ domains is 

demonstrated by dark blue arrows, while intra-domain data transformation interchange 

is shown by thin arrows. Light blue blocks reflect generative and transformative nodes. 

Dark blue blocks show data storage and types of data. We can see complex quasi-

horizontal interaction between domains of the general public, healthcare professionals, 

and biomedical and clinical researchers. The research domain is important for creating 

treatment standards and protocols, which reflect combined results of analyzed data 

from the healthcare system and scientific exploratory quasi-horizontal interaction 

between domains of the general public, healthcare professionals, and the field. Natural 

language-processed records might be relatively easy to save on the primary level but 

have to be integrated into machine-readable ontologies on the database level. 

Analytical results from the databases also cannot be fully machine-adapted because of 

the inclusion of natural language. The interplay between machine and human 

readability will exist well in the healthcare system and scientific exploratory quasi-

horizontal interaction between domains of the general public, healthcare professionals, 

and the future. 
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Figure 3. Data flow and the problem of interoperability. 

2.1.3. Clinical decision support 

Clinical Decision Support System is a software application that helps the main 

stakeholders make optimal decisions. Patients, administrative staff, and healthcare 

practitioners—each group sees their own benefits in it [14]. For clinicians, the main 

purpose of CDSS is to optimize the diagnostic procedure. A widely discussed topic is 

the ability of the automatic system to diagnose and propose treatment without human 

supervision. However, Clinical Decision Support Systems (CDSS) are widely 

available. While expert society is aware of its limitations, there is a gap in 

understanding when we take the viewpoints of different stakeholders. A significant 

discrepancy exists between technical and healthcare stakeholders. 

Technically, there is no obstacle to maximally automatizing the procedure. The 

patient can contact CDSS before first interacting with clinical staff. If the data stream 

from the smart environment is informative enough, a system that can point out possible 

pathology signs and recommend the next step is conceivable. 

This approach is more proactive than the contemporary retroactive point-of-care 

procedure. The process usually starts with subjective complaints by patients or 

relatives and goes through iterative stages. Knowledge-based CDSS gives significant 

advantages at every step. However, it is still too early to speak about a more automatic, 

proactive, highly autonomous system, even with the help of Big Data and Artificial 

Intelligence. 

2.1.4. Legal responsibility 

Clinical data usually requires approval from several stakeholders for handling. In 

the case of private entrepreneurship, rules can be stricter or more relaxed, depending 

on the position of authorities and society. With the entry of Big Data and Artificial 

Intelligence, the question of responsibility becomes more complex [15]. 

It is necessary to understand every step in the data handling process clearly. The 

nature of Big Data itself makes it more complicated. It is important to point out that 

artificial intelligence tools often work with unlabeled or partially labelled data when 

analytical processes are at least foggy or treated as a black box. The legal or technical 

solutions for these problems are not simple. 
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2.2. Big data challenges 

Big Data is changing society’s landscape. Some expect it to replace earlier data 

collection and analysis techniques. It is difficult to deny the advantages of Big Data 

and new methods of its analysis. On the other hand, there are reservations about the 

paramount nature of analytical methods based on Artificial Intelligence. It is possible 

that some areas of life are more suitable for this approach and some less.  

2.2.1. Big data advantages 

Big Data, with its basic three Vs—volume, velocity, and variety—has many 

benefits over traditional forms of data. The fourth V, validity, eliminates the negative 

influence of bias and brings it to a high-quality level [16]. The speed of data influx 

allows quick response, which is important in emergency situations and can literally 

save lives in healthcare. 

In public medicine, Big Data may show tendencies of epidemiological processes 

and trigger an administrative reaction. Biomedical research gains a lot from hypothesis 

formulation based on big data analysis. Genomics, proteomics, and metabolomics 

routinely employ Artificial Intelligence for significant masses of data. Behavioural 

data obtained from the internet, analysis of search engine requests, smart vehicle data, 

smart environment data, health applications on a smartphone, and Internet of Things 

in Ambient Assisted Living assure a promising future for healthcare. Medical image 

processing in radiology, sonography, MRI, laboratory methods, and automatic 

processing of skin conditions show robustness and precision. 

Clinical decision support, robotic surgery support, and clinical workflow 

organization are benefiting from Big Data analytics methods. However, there is no 

consensus about Big Data's solely positive nature and its analysis. 

2.2.2. Data-driven and hypothesis-driven approach 

Besides the problems with clinical Big Data listed above, there are serious 

concerns about the Big Data character itself [17]. There is a fundamental difference 

between traditional clinical data and big clinical data [18]. Traditional data is well 

prepared, structured, human-readable, and controlled, presented in relatively small sets, 

and easy to analyze with proven methods. Big data lacks a clear structure. It is often 

collected and handled without usual human supervision. Sometimes, the data remains 

unclear for users, even after classification and clusterization. Some researchers 

strongly believe that big data is more suitable for data-driven hypothesis creation. 

However, the proof of the hypothesis, especially in clinical research, still requires 

standard statistical methods and a traditional hypothesis-driven approach [19]. 

Multidimensionality incorporates large data sets, which are often not the case for 

clinical data. Sceptical voices reject even the possibility itself of Big Data replacing 

traditional statistics and metrics [20]. Traditional clinical biometrics and biomarkers 

leave limited options for completely unsupervised methods of data handling. 

3. Potential solutions 

This A number of proposals have been made to tackle these issues. One approach 

is straightforward and oriented toward narrowing the gap between the human and 

machine sides. The other is called Explainable AI and deals with issues of a black box. 
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An emerging field of large language models (LLM) can also be considered a 

prospective solution, at least partially. These options are discussed below. 

3.1. Closing the gap 

The difference between the human-managed data approach and automated big 

data collection and analysis can potentially be lessened if not entirely overcome. It can 

be achieved by making machines able to accept natural language information, by 

training human side operators in technical input-output specifics or by complex 

incremental approaches from both sides. 

3.1.1. Machine side 

Berners-Lee formulated one of the basic methods as a semantic web concept [21]. 

The gap between humans and machines can be closed from the machine side when all 

data becomes machine-readable. Then, only problems of data presentation and human 

interface will remain for the full solution. The concept still needs to be achieved. 

3.1.2. Middle way 

More mundane measures are needed to bring both sides closer. Up-to-date IT 

education, specifically for healthcare specialists, intuitive UIs, wide data 

standardization, and gradual, disruption-free technology implementation are practical 

steps toward workable solutions. CQL, the Clinical Quality Language, is Human-

Machine readable and works in both domains [22]. A complex approach, when 

different sources of data are confluent, leaves a possibility for filtering all clinical data 

to subdivide it into small data sets for robustness and more straightforward operation. 

3.1.3. Human side 

The other data approach is patient oriented. The so-called 4P concept shows the 

way for future development. Personalized, predictive, preventative, participatory 

healthcare requires all types of data to be equally machine- and human-readable and 

analyzable. 

The more mundane way to narrow the machine-human gap is to address the issue 

of practical usability habits. The prior video gaming experience is beneficial for 

operators in a high-fidelity virtual reality simulated robotic surgery [23]. Similar 

results are shown in real-day laparoscopic surgery by warming up through the video 

game prior to it [24]. Explainable AI can be related to the human-side solution. 

However, it is a matter of balance to put this topic into a separate part to discuss it in 

more detail. 

3.2. Explainable AI 

Big Data analysis with AI differentiates from regular data analysis with classical 

statistical tools. Unsupervised AI/ML neural networks, such as Deep Learning (DL), 

can be pretty efficient if judged by results but difficult for humans to comprehend. 

Black box AI poses a problem for high-risk areas of human activity. Explainable AI 

(XAI) is one way to solve it [25]. 

Often, ideal DL is envisaged as a tool that accepts raw data and produces high 

results with ready interpretation. There are methods to raise the accuracy of DL by 

tuning the neural network architecture and applying the algorithms with non-
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transparent machine-driven feature detection and processing. These features are 

usually hard to categorize for human readability, while the white box is readable and 

often connected to “real” or physical categories. At the same time, data processing in 

a black box can be highly effective and fast for large datasets. White box relies on 

supervised learning, which includes labelled data and supervised feature engineering. 

Semi-supervised learning is a combination of black-and-white boxes and might utilise 

partial feature engineering. Complex methods with ensemble meta-algorithms, such 

as boosting or bagging, belong to the category of white boxes. For example, Random 

Forest (RF) are often called “self-supervised”. These methods are more explainable 

than the black boxes. Black box models, white box intrinsic or explainable by design 

models and grey box combinations have their strengths and weaknesses. For a 

description of structured characteristics, please see Table 1. The table demonstrates a 

negative relationship between performance and transparency in terms of human 

readability. 

Table 1. Comparative characteristics of black, grey and white box models. 

Type Performance Machine readability Transparency Human readability 

Black box ++++ ++++ + + 

Grey box +++/++++ +++/++++ ++/+++ ++/+++ 

Explained  

White box 
+++/++++ +++/++++ ++/+++ ++/+++ 

Intrinsic  

White box 
++ ++ ++++ ++++ 

3.2.1. Black box 

The opacity of AI models starts from the data collection stage. While limited data 

can be collected and interpreted by humans, big data, especially automatically 

collected or mixed, is less susceptible to human comprehension or analysis. The neural 

network was inspired by the formal model of the minimal neural equivalent of human 

intelligence or neurons. While the artificial “neurons” are pretty simple compared to 

biological specialised cells, the nature of NN “intelligence” is not much better 

understood than natural intelligence. Low transparency, in some way, is a result of the 

high capacity and robustness of the Deep Learning environment, where explainability 

is not required [26]. The limited control can be only applied in the stage of data 

collection, model training or output data interpretation. Multidimensional data 

analysis by unsupervised models is often more precise compared to more transparent 

ones. Nevertheless, higher precision is traded for obfuscation of analytical clarity for 

humans. Black box models can be explainable only post hoc, which is different from 

white box models (see Figure 4). 
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Figure 4. Main categories of explainable. 

Main models with black box properties are based on neural networks, such as 

Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Directed 

Acyclic Graph Neural Networks (DAG-NN), and other types and combinations. More 

explainable, not black box, models include Generalized Additive Models (GAMs), 

random forest busting, bagging models, k-Nearest Neighbour (k-NN), and Support 

Vector Machines (SVM). The explainability of the last ones can be increased by 

applying the dimensionality reduction techniques where Principal Component 

Analysis (PCA) is one example of such types of approach. For schematic information, 

see Figure 5. The dependence between performance and transparency is formal and 

does not need to be strictly linear. 

 

Figure 5. AI/ML methods ranged by performance and transparency. 

3.2.2. Ad hoc and post hoc 

In most transparent cases, data is interpretable before AI/ML application. A 

human-interpretable, transparent by-design statistical AI model is called a white box. 

It is not a direct equivalent to supervised or semi-supervised AI/ML. White box 

frequently utilizes monotonic linear regressions (Linear Regression, Logistic 

Regression, LASSO), rule-based methods, and decision trees. Some of them perform 

only regression or classification, while others can do both. Probabilistic techniques, 

such as Naive Bayes, Markov models (can be seen as primary-level Dynamic Bayesian 

Networks) and other Bayesian networks are readable and often used for explainability. 

The XAI approach can be subdivided into several main types [27] (Also see 

Figure 4). It is divided into local and global according to its explainability at the level 
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of the neuron, layer, or whole system. According to the order of explainable model 

production, white boxes are ad hoc or intrinsic [26], while black boxes are potentially 

post hoc interpretable. The first ones are often designed to be interpretable 

(explainable by design), while the post hoc are produced in the process.  

The post hoc [28] techniques of XAI include Local Interpretable Model-agnostic 

Explanations (LIMEs), which can be applied to any black box, as well as Anchor, 

another model-independent method [27]; Shapley Additive Explanations (SHAPs), 

sometimes applied with GAMs [29]; Layer-wise Relevance Propagation (LRP); Deep 

Taylor Decomposition (DTD); Explainable Graph Neural Networks (XGNN); 

Prediction Difference Analysis (PDA) and some others. 

3.2.3. Grey box 

The grey box models are usually a combination of black box and white box 

models. The main goal is to integrate the best characteristics of the black box and the 

white box, such as high performance and high transparency, respectively [26]. A grey 

box is suitable in situations where balance is needed between precision, confidentiality 

and openness. Proprietary algorithm performance can be united with model partial 

explainability without disclosure of private details. The grey box is a wide description 

of the model's spectrum with different levels and types of explainability, productivity 

and ability to focus these characteristics on specific areas of narrow interest.   

3.3. Large language models 

Large Language Models (LLMs) are recent popular objects of fascination for 

researchers and the general public. LLMs are extensive AI-powered chatbot versions 

that are able to communicate with users via natural language texts and generate 

prompted written content on demand. LLMs utilise various NLP techniques and 

generative AI. The most well-known LLMs, such as ChatGPT, BingGPT, Bart, 

Chinchilla, LLaMA, and Gopher, are primarily universal. There is also a high demand 

for specialized domain-focused LLMs.  

3.3.1. Current successful applications 

Table 2. LLMs in medicine and healthcare. 

Reference Domain Approach Results and Conclusion 

[31] 
Consultation in vascular surgery 

emergencies 

Consultation with Five attending 

surgeons and four LLMs 

GPT-4 demonstrated 100% accuracy in 

emergency; 

further recommendations were accurate in 68%; 

5% of responses were highly likely to cause 

clinically significant harm 

[32] 

Detecting Alzheimer’s Disease-

related signs and symptoms from 

electronic health records (EHRs) 

Created taxonomy progression of AD 

signs and symptoms was trained using 

synthetic data generated by LLMs from 

EHRs 

The trained model demonstrated acceptable 

quality 

[33] 

Chatbot Systems in Chronic 

Cardiovascular 

Disease Self-Management 

LLM-based chatbot system that 

supported chronic patients with 

hypertension 

The system has potential to motivate patients to 

monitor their blood pressure and adhere to 

prescriptions 

[34] 
HealAI: A Healthcare LLM for 

Effective Medical Documentation 

Optimized LLM for specific medical 

tasks 

Optimized LLM outperformed GPT-4, 

maintaining precision, reducing biases, 

preventing hallucinations, and enhancing note-

writing style 
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Table 3. (Continued). 

Reference Domain Approach Results and Conclusion 

[35] 
LLMs for Healthcare Data 

Augmentation 

Privacy-aware data augmentation 

approach for LLM-based patient-trial 

matching (LLM-PTM) 

Performance improved by 7.32% on average; the 

generalizability of new data improved by 

12.12% 

[36] 

Evaluating LLM -Generated 

Multimodal Diagnosis from Medical 

Images and symptom analysis 

LLM-generated medical diagnosis with 

multimodal multiple-choice questions 

(MCQs) consisting of images and text for 

multiple pathologies 

GPT-4-Vision-Preview scored approximately 

84% of correct diagnoses 

[37] 
Implications of LLMs for dental 

medicine 
LLMs for administrative tasks 

LLMs could improve administrative work via 

clinical decision support, text summarization, 

efficient writing, and multilingual 

communication, and can be applied to dental 

telemedicine 

[38] 
Impact of ChatGPT-3 on Health 

Services as a Virtual Doctor 

Potential benefits from consultation for 

healthcare services, including the Internet 

of Orthopaedic Things (IOT) 

Potential to become a Virtual Doctor (DocGPT) 

The first experiments in this area with ChatGPT [30] were promising when LLM 

was able to successfully pass the US medical qualification exams (USMLE) and 

master the Multiple-Choice Question Answering (MCQA) dataset for medical exams. 

A comparative study on the vascular surgery consultation scenarios was successfully 

done for GPT 3.5, GPT 4, Bard, and Falcon and compared to the panel of five field 

specialists [31]. Positive results are shown in the field of biomedical science and public 

health. Table 2 provides some examples of tests using LLMs applicable to healthcare. 

3.3.2. Limitations 

Still, it is too early to make assumptions about LLM performance in the 

healthcare sphere. The well-known problem of LLM hallucination [39] limits not only 

the reliability and trustworthiness of the generated results but also creates a relatively 

new problem of responsibility for LLM-generated mistakes, wrong advice and 

externally coherent but medically meaningless solutions. GPT-4 demonstrated high 

interpretative abilities but showed reasoning inconsistencies, while Falcon and 

LLaMA 2 reached significant accuracy yet with insufficient explanatory reasoning 

[40]. The potential issues connected to the usage of LLMs are listed in Table 3. 

Table 4. Limitations of LLMs. 

Type Possible Harm or Issues 

Hallucinations Production of a false output that does not match the user's intent 

Security Leakage of people’s private information 

Bias Contribution to the spread of misinformation 

Consent Can expose users to copyright infringement issues 

Scaling Difficulties with time- and resource-consuming for scaling and maintaining the LLMs 

Deployment 
Requires deep learning, transformer model, distributed software and hardware, and 

overall technical expertise 

3.3.3. Potential solutions 

There are several ways to address these problems (see Figure 6). The reliability 

of LLM-generated information can be increased by updating training sets, prompt 
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engineering, domain-specific LLM training, real-time database connection of LLM, 

automatic output correction, and some other instruments and techniques [41]. For 

example, improvement in Out-of-Distribution (OoD) detection raises LLM 

performance [32]. In addition, protecting LLM from adversarial OoD attacks reassures 

LLM performance stability. Another promising method is the model self-reflection 

function [42]. 

 

Figure 6. Main methods of lowering LLM hallucination. 

4. Discussion and conclusion 

There are significant gaps between automatic and human data collection and 

analysis. These differences manifest themselves in the issues of Big Data and 

traditional statistical methods. Clinical data and its analysis are one of the testing 

grounds where questions about human control and responsibility reflect the 

complicated nature of these matters. Solutions are in the area of using more composite, 

heterogeneous human-collected and automatically collected data, mixed modes of 

analysis and dual readability for humans and machines. The tendency is complex: from 

one side, there is significant demand, based on technical capability, for automatically 

collected, analyzed and generated data. On the other side, there is no way to exclude 

human methods, which implies the necessity to enhance education and practical 

experience in the technical sphere not only for healthcare workers but for all members 

of modern society. Moreover, the implementation of modern LLMs might improve the 

diagnostic and treatment processes if the external reasoning agent is added to the 

models’ architecture. It will increase the models’ explainability and overall 

performance. 

Thus, the benefits of advanced AI technologies are numerous, such as enhancing 

diagnostic accuracy, personalizing treatment plans, and smooth-running 

administrative processes. Modern LLMs can quickly analyze the vast amount of 

clinical data, identify specific patterns in it, and provide recommendations that 

improve outcomes. However, AI technologies also present challenges, such as data 

privacy concerns, the possibilities of algorithmic biases, and the need for significant 

computational resources. 
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The future of AI in healthcare lies in the continued development of sophisticated 

machine learning models, integrated evaluation and prediction systems and complex 

hierarchical architectures. Improved natural language processing will lead to better 

patient-system and specialist-system interactions. Enhanced computational 

frameworks can ensure ethical and unbiased AI use. Healthcare systems will achieve 

more comprehensive and accurate data analysis by combining human expertise with 

AI capabilities. Education and practical experience, enriched with AI-related 

technologies for healthcare professionals and the broader society, will maximise these 

benefits and ensure the responsible use of AI applications. 
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