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ABSTRACT 

Reconstructing a 3D human body from a single image is convenient and efficient, but it faces challenges when the 

face is heavily occluded or the person is wearing loose clothing. In this paper, we propose a frequency domain-based 

method for completing missing parts of the human body using manifold harmonics and frequency domain analysis. Our 

approach involves linear interpolation of the incomplete 3D human body obtained through normal integration. The 

interpolated points are then projected onto the appropriate dimension of the frequency domain space using manifold 

harmonic bases. Through Laplacian mesh editing, the interpolated points are replaced, resulting in a refined and complete 

3D human body. Our method surpasses the limitations of template human bodies and marching cubes algorithms, enabling 

more detailed feature reconstruction. By locally completing the body in a low-dimensional frequency domain space, our 

method avoids over smoothing and bulging issues, effectively filling the missing regions while maintaining mesh 

smoothness consistency. Experimental results demonstrate the effectiveness and superiority of our frequency domain-

based completion method for accurate and detailed 3D human body reconstruction from single images. 
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1. Introduction 
With the rapid evolution of virtual reality, human-computer interaction, and digital entertainment, 

realistic 3D human body models have emerged as a pivotal resource for creating immersive experiences in 
various applications. Compared to the 3D human body reconstruction method based on multiple images[1–4], 
although a single image[5–7] provides limited depth information, it is more practical in application due to its 
ease of acquisition and its ability to avoid inconsistencies and matching problems between multiple images. 
Considering the high degree of freedom in human body movements and the wide variety of clothing, 
reconstructing a 3D human body from a single image remains an extremely challenging task. 
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Currently, there are two main methods for reconstructing a 3D human body from a single image: explicit 
representation and implicit representation. The explicit representation method[8–11] usually uses the statistical 
template model SMPL[12] to reconstruct the human body. In order to represent clothing, some Methods[10,13] 
add displacement to the vertices of the SMPL model to reconstruct clothing. However, due to the limitations 
of the template model, it can only reconstruct tight clothing but cannot accurately reconstruct loose clothing, 
such as skirts. In contrast to the explicit representation method, the implicit representation methods[14–16] are 
able to represent detailed 3D shapes with arbitrary topologies, thereby efficiently reconstructing loose clothing. 
PIFu[17] and PIFuHD[18] use pixel-aligned implicit functions to reconstruct detailed clothed 3D humans. 
However, the drawback of this method is that it lacks explicit prior knowledge about the structure of the human 
body, which often results in issues such as limb artifacts for unseen poses. 

Our goal is to combine the advantages of explicit and implicit representations to achieve more robust 3D 
human body reconstruction. We observed that neural networks are better at predicting 2D information than 
directly predicting 3D information, such as signed distance fields. A depth map is a 2D image with abundant 
3D information that can provide distance information of objects in the scene. Through simple uniform 
sampling, we can obtain a single-sided uniform point cloud of the objects and then triangulate it to obtain a 
body mesh. Compared with the method using the statistical template model, the depth map method does not 
require model parameters and can provide more accurate 3D point cloud information. In addition, the depth 
map method does not appear to have a situation of missing geometry like the method based on the implicit 
function. 

However, the use of front and back depth maps for 3D human body reconstruction will have the issue of 
missing 3D side information. In order to complement the missing 3D point cloud, the usual solution is to 
regress an implicit function[19–23] for surface reconstruction, but this method often reduces the geometric 
accuracy. Inspired by Vallet and Lévy[24], we noticed that the information stored in the frequency domain 
space of various dimensions is different for 3D objects, so it is possible that the missing side information is 
stored in the frequency domain space of a certain dimension. Therefore, we transform the reconstruction task 
from the spatial domain to the completion task in the frequency domain. 

In this paper, we present a novel approach for 3D human body reconstruction by combining normal 
recovery and frequency domain completion. Our method starts by reconstructing the “hole” in the human body 
using the normal integration technique. This initial reconstruction is then refined through interpolation, 
resulting in a coarse human body mesh. Next, we project the mesh into the frequency domain space using 
manifold harmonic basis and further refine it using the Laplacian grid editing method. Unlike traditional 
methods that rely on statistical template models, our approach excels in reconstructing loose clothing, yielding 
superior results. The effectiveness of our method has been demonstrated through rigorous experimentation. 

The main contributions of this work can be summarized in two points: 

1) We introduce a method that utilizes normal integration to reconstruct the 3D human body, 
overcoming limitations in existing statistical template models, implicit function reconstruction, and 
the marching cube algorithm. This enables more detailed and robust 3D human body reconstruction. 

2) We propose a novel human body completion method using manifold harmonic basis and Laplacian 
grid editing. This approach effectively completes missing regions, enhancing the fidelity of the 
reconstruction. 
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2. Related works 

2.1. Explicit and implicit reconstruction methods 

Reconstruction methods based on explicit and implicit combinations usually integrate the parametric 
human body model as prior knowledge into the implicit surface to achieve more accurate 3D human body 
reconstruction. PaMIR[16] uses the corresponding SMPL model to extract the 3D features of the human body 
and combines the 2D features to determine the location of the sampling point. However, this method learns 
global information, making the network extremely sensitive to the position of the human body. In contrast, 
ICON[25] uses the corresponding SMPL human body to obtain the basic normal map and reconstruct the 3D 
human body from basic feature information without global picture information. Bhatnagar et al.[26] and others 
employed a contrary approach, using implicit network process the input the sparse 3D point cloud of the human 
body surface to obtain a parameterized human body model, and then the details of clothes, face, and hair are 
captured by adding offsets to the vertices of SMPL. However, the explicit-implicit combination method[27–29] 
mentioned above has a significant drawback. It often misinterprets loose clothing, like skirts, as pants due to 
limitations in the model. Therefore, a more comprehensive approach is required to effectively combine the 
advantages of explicit and implicit reconstruction methods and achieve accurate and robust 3D human model 
reconstruction. 

2.2. Depth map-based methods 

Recently, a 3D human body reconstruction method based on positive and negative depth maps and 
geometric completion was proposed. As a data representation closely related to 3D geometry, depth maps can 
preserve distance and geometry information, which helps reconstruct the shape and pose of the 3D human 
body more accurately. Compared with directly using 3D information for reconstruction, the method based on 
the depth map[30–32] has the advantages of lower dimensionality and higher resolution. Gabeur et al.[33] proposed 
a non-parametric method using dual depth maps to reconstruct 3D human bodies. They estimated the front and 
back depth maps of the human body and used the Poisson reconstruction algorithm to reconstruct the 
corresponding front and back point clouds into a complete 3D human body. However, Poisson reconstruction 
can easily lead to loss of accuracy and bulge. ECON[34] proposed two new human body completion methods. 
One method uses the Poisson surface reconstruction algorithm to fuse the SMPL-X model with the point cloud 
data of the human body with holes to complement the area with holes. However, since the SMPL-X model 
only contains surface information of naked people, it cannot generate a coherent surface for the originally 
missing clothing and hair. Another method uses IF-Nets[35] to extract multi-scale features in the encoding stage 
to capture the global and local information of the input shape. The 3D human body is reconstructed by 
predicting an occupancy field in the decoding stage. 

2.3. Frequency domain processing on grids 

Frequency domain processing methods on grids mainly use techniques such as discrete Fourier transform 
and discrete cosine transform to convert geometric shapes from Euclidean space to spectral space for tasks 
such as shape reconstruction. Taubin proposed a Laplacian operator for grid smoothing in 1995[36], which laid 
the foundation for subsequent grid frequency domain processing. Vallet and Lévy[24] proposed a manifold-
based frequency domain method of harmonic basis to process triangular grids. This method constructs the 
harmonic function space by calculating the eigenvectors of the discrete Laplacian operator. This frequency 
domain processing method on the grid has also been applied to the human body reconstruction field. Kim et 
al.[37] used Laplacian coordinates to represent the local structure of the input grid. This method uses the SMPL 
model to reconstruct a controllable base grid and learns a surface function using a neural network. The function 
can predict the Laplacian coordinates of surface details on the basic mesh, thereby achieving fine human body 
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reconstruction. Inspired by the work of Vallet and Lévy[24], we found that 3D objects retain various information 
in frequency domain spaces of different dimensions. Therefore, we consider converting the reconstruction task 
from the spatial domain to the frequency domain and completing the completion task in the frequency domain. 

3. Method 

3.1. Process of reconstructing 3D human body from a single image  

Given an RGB image, we first estimate the front and back normal maps and then use the method of normal 
integral[38] to obtain the front and back depth maps, so as to reconstruct a 3D human body with a hole on the 
side. For the hole filling, we use the projection method of the manifold harmonic basis to transform the 
interpolated 3D human body model into the frequency domain space of appropriate dimensions. By applying 
the Laplacian grid transformation, we replace the points in the interpolated region and then reconstruct a 
smooth and complete human body model, as seen in Figure 1. The method of normal integration has the 
advantages of not being limited by the template human body and avoiding the accuracy limitation of the 
marching cube algorithm so that a high-fidelity 3D human body can be reconstructed. In addition, the manifold 
harmonic-based method can preserve the human body shape obtained by normal integral reconstruction as 
much as possible and effectively fill the holes in the human body so as to obtain a complete, high-fidelity 3D 
human body model. 

 
Figure 1. Reconstruct 3D human body from a single image. 

3.2. Reconstruction of “hole” human body by normal integral 

Since a single picture cannot provide human body information on the back, in order to obtain the normal 
map of the human back, a neural network is required to infer from the known front human body information. 
PIFuHD[18] uses a large number of RGB images and their corresponding front normal maps to train the neural 
network to infer the back normal map. However, the back normal map obtained by this method is too smooth 
and lacks individual characteristics. To solve this problem, we use SMPL model corresponding to each image 

in the THuman 2.0 data set[39] to provide prior knowledge to assist normal generation network 𝑁𝑒𝑡௫ଶ௫ௗ to 

predict a more accurate back normal map and prevent the prediction from being too general. Specifically, we 

input the input image, and its front and back normal maps 𝑁
ௌ

 and 𝑁
ௌ rendered by corresponding SMPL 

mesh model 𝑀ௌ  into 𝑁𝑒𝑡௫ଶ௫ௗ  to predict the complete front and back normal maps 𝑁
 , 𝑁

 . The 

training process is defined as:  

𝑁
 ,  𝑁

 = 𝑁𝑒𝑡௫ଶ௫ௗ ቀ𝐼 , 𝑅𝑒𝑛𝑑𝑒𝑟(𝑀ௌ)ቁ (1) 

where 𝑅𝑒𝑛𝑑𝑒𝑟൫𝑀ௌ൯ is the rendering operations by using SMPL mesh model 𝑀ௌ to obtain the coarse 

normal maps. 

To train the network, we minimize the following loss function: 
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𝐿௧௧ = 𝐿(𝑁, 𝑁) + 𝐿(𝑁, 𝑁) + 𝐿௦(𝑁ௌ , 𝑀) (2) 

where 𝐿 is the normal map loss, which is the L1 loss between the ground truth normal maps 𝑁
, 𝑁

 and the 

predicted normal map 𝑁
 , 𝑁

 . 𝐿  is perceptual loss between 𝑁
 , 𝑁

  and 𝑁
 , 𝑁

  and it can help to 

reconstruct details. 𝐿௦ is L1 loss between the normal map 𝑁
ௌ, 𝑁

ௌ and masks 𝑀
 , 𝑀

 . This loss ensure 

that the normal map of the SMPL model is accurately aligned with the input image, which is a basic 
requirement for generating a correct normal map. 

By using the above loss function to train the normal map network 𝑁𝑒𝑡௫ଶ௫ௗ, and input the test picture, 

we can get the result shown in Figure 2. Although it is feasible to infer the depth map directly through the 
neural network, there will always be a lot of noise and wrong depth, resulting in the final reconstructed mesh, 
which is usually not ideal[40]. Therefore, we use the normal integral method to obtain the depth map. The 
traditional normal integration method is only suitable for recovering smooth surfaces because it assumes that 
the target surface is continuous and differentiable. However, when dealing with disconnected areas caused by 
occlusion and other reasons, the normal vector calculation of the traditional method will result in an error, 
thereby affecting the shape of the entire object surface in the normal integration. In this case, the method of 
smooth surface assumption will lead to distortion of the surface shape, as shown in Figure 3. 

 
Figure 2. The of the front/back normal map. 

 
Figure 3. From left to right are the normal map, the depth map, the recovery map of the traditional normal integral, and the recovery 
map after optimization of the quadratic regular term. 

Therefore, in order to deal with discontinuous normal integrals, they are usually transformed into an 
optimization problem and solved using quadratic regularization. Inspired by the semi-smooth surface 
assumption of Cao et al.[41], when the surface at a certain point is discontinuous, it will only be discontinuous 
on one side of the point and will not be discontinuous on both sides. Based on this assumption, when 
discontinuity occurs, we will only select the continuous side to participate in the normal integral computation, 
thus ensuring the depth map can be accurately reconstructed. 

We use the following weight function and minimize it to recover the depth map 𝑧: 
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𝑚𝑖𝑛
௭

ඵ 𝑤௨(𝑛௭𝜕௨
ା𝑧 + 𝑛௫)ଶ + 𝑎(𝑛௭𝜕௨

ି𝑧 + 𝑛௫)ଶ

+𝑤௩൫𝑛௭𝜕௩
ା𝑧 + 𝑛௬൯

ଶ
+ 𝑏൫𝑛௭𝜕௩

ି𝑧 + 𝑛௬൯
ଶ

𝑑𝑢 𝑑𝑣

 (3) 

where 𝑎 = 1 − 𝑤௨ , 𝑏 = 1 − 𝑤௩ , 𝜕௨
ା𝑧, 𝜕௨

ି𝑧 is the horizontal side derivative of the point, 𝜕௩
ା𝑧, 𝜕௩

ି𝑧 is the 

vertical side derivative. 𝑤௨, 𝑤௩ is the unilateral differentiability on both sides of each point. Differentiable on 
one side: 

𝑤௨   =   ቐ

0(left differentiable)

0.5(both left and right differentiable)

1(right differentiable)
 

𝑤௩   =   ቐ

0(bottom differentiable)

0.5(both top and bottom differentiable)

1(top differentiable)
 

When the depth map is left differentiable at a certain point, but not right differentiable, the integral term 

remains left side 𝜕௨
ି𝑧, and the right side is ignored. The other two cases are similar, so this relative weight 

covers all possible cases at each point on the semi-smooth surface. 

By discretizing Equation (3), we obtain the human body depth map {𝑧 , 𝑧}. By triangulating each pixel 

along with its three neighboring pixels, we reconstruct a complete human mesh, as is shown in Figure 4. 

 
Figure 4. From left to right: Normal map, depth map, reconstructed mesh. 

Due to the inconsistency in the coordinate system of the reconstructed depth map on the front and back, 
it cannot be directly aligned. Our solution is to choose the highest point of the depth map on the front and back 
as the reference point and set its depth value to zero. Such a simple operation can align the grid on the front 
and back of the human body, thereby obtaining a 3D human body mesh with holes on the side, as shown in 
Figure 5. 

 
Figure 5. The “hole” human body after front and back stitching and preprocessing. 

Besides, due to the errors in reconstructing the depth map, aligning through the highest point may lead to 
a situation where the depth of the back is smaller than the depth of the front, as shown by a foot in Figure 5(a) 
and Figure 5(c) black shadow. To solve this issue, we can simply discard those points with wrong depth values. 
From Figure 5(e) and Figure 5(f), it can be seen that the “dark shadow” of the legs has disappeared. 
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3.3. Human completion based on manifold harmonic basis  

For the completion of the 3D human body mesh, we first use the linear interpolation method to 
complement it into a manifold human body and then transform it into a frequency domain space of appropriate 
dimensions with the manifold harmonic basis, using the Laplacian mesh editing method replaces the 
interpolation points to obtain a complete 3D human body mesh. 

Linear interpolation for areas with “holes”. We use the linear interpolation method for preliminary grid 
completion. However, since the distance between the corresponding points on the front and back are too large, 
randomly inserting points may result in distorted girds. These grids can visually appear as a very flat surface 
even after the subsequent smoothing process. Therefore, we consider finding the maximum distance between 
the corresponding points on the front and back, and, according to a certain ratio, determining the number of 
points that need to be inserted. Insert the same number of points evenly between the corresponding points of 
each front and back to form a regular grid structure, as shown in Figure 6(a). By using a regular grid-building 
strategy, we were able to speed up the process and generate more regular grids. 

Although this interpolation method can avoid some bad grids, it is still difficult for the newly added grids 
to be consistent with the smoothness of the original mesh, and there may be slice-like defects, as shown in 
Figure 6(b). Therefore, we need a smooth operation. From Figure 6(c) and Figure 6(d), it can be seen that if 
Poisson reconstruction not only produces bulging situations but also leads to the loss of high-frequency 
information such as face details. Therefore, we need to find an appropriate smoothing method to ensure 
consistent smoothness of the reconstructed 3D human body. 

 
 

Figure 6. Linear interpolation grid completion and Poisson surface reconstruction. 

Calculation of the harmonic basis of the manifold. In order to compute the manifold harmonic basis, we 

first discretize the Laplacian operator using standard finite element cotangent weights. For a mesh with 𝑛 

vertices, we calculate the cotangent weight of each vertex 𝑉 and its adjacent vertices, and assign it to the 

corresponding edge. Assuming that the set of adjacent vertices of vertex 𝑉 is 𝑛, each cotangent weight 𝑊 

of the adjacent side 𝑗 is: 

𝑤 =
𝑐𝑜𝑡൫𝛼൯ + 𝑐𝑜𝑡൫𝛽൯

2𝐴
 (4) 

where 𝛼  and 𝛽 are the two angles between the vertex 𝑉 and the adjacent vertex 𝑉 respectively, and 𝐴 is 

the triangle area corresponding to the shared side 𝑖𝑗 between the vertex 𝑉 and the vertex 𝑉. Therefore, the n 

× n dimensional cotangent weight matrix W can be obtained by Equation (5): 

𝑊 = ൜
𝑤 , 𝑖𝑓(𝑖, 𝑗) ∈ 𝐸

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5) 

where (𝑖, 𝑗) ∈ 𝐸 means that there is an edge between the vertices 𝑉 and 𝑉. 

After obtaining the cotangent weight matrix W, we perform an eigendecomposition on W. The 

eigenvectors 𝜆ଵ, 𝜆ଶ, … , 𝜆 corresponding to a series of eigenvalues 𝑣ଵ, 𝑣ଶ, … , 𝑣 are obtained, and the 
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pairwise linear independence is known by definition. 

Subsequently, we sort the obtained eigenvectors according to the eigenvalues from small to large, and 

standardize, so as to obtain the arranged eigenvector set 𝑉. 𝑉 is also defined the manifold harmonic basis, and 

they are orthogonal to each other, and the length is ‖𝑉ଵ‖ = ‖𝑉ଶ‖ = ‖𝑉ଷ‖ = 1. Since the information of the 
grid itself can be divided into n dimensions, the relevant information of the grid can be projected to the 
frequency domain space by means of the manifold harmonic basis, such as coordinates or normals. 

Projection and reconstruction. In manifold harmonic analysis, the calculation of eigenvectors and 
eigenvalues is achieved through solving the eigendecomposition of the Laplacian matrix. Eigenvalues 
represent the importance of each eigenvector, while eigenvectors indicate the shape variations under that 
particular feature. For a 3D mesh, eigenvectors associated with smaller eigenvalues correspond to minor shape 
variations, resulting in a smoother and simpler model. Conversely, eigenvectors associated with larger 
eigenvalues correspond to significant shape variations, resulting in a more complex model. By sorting the 
eigenvectors in ascending order of eigenvalues, a reconstruction can be achieved from coarse to fine. 

We can project the surface grid from the geometric space to the k-dimensional frequency domain space 
through k manifold harmonic bases. Through the projection, we can obtain three k-dimensional coefficients, 
representing the original The x, y, and z components of the vertex set in the frequency domain space. The 
coefficients can be reconstructed based on the k-dimensional manifold harmonic basis through Equation (6). 

  𝑋 ∗ 𝐴

ଷ

ୀଵ



ୀ

 (6) 

where 𝑋  means the i-th coefficient of the j-th k-dimensional coefficient, and 𝐴  is the i-th-dimensional 

manifold harmonic basis. 

Figure 7 shows the 3D human body mesh reconstructed in different dimensions. It can be observed that 
different frequency domain dimensions preserve the 3D human body with different levels of detail. According 
to the point coordinates of the 3D human body reconstructed in the frequency domain space of appropriate 
dimensions, we can replace the interpolation coordinates of the point so as to achieve the smoothing effect of 
the model. 

 
Figure 7. The reconstruction results of projecting the human body from the geometric space to the k (from left to right: k = 62, 250, 
1000, 2000) dimensional frequency domain space based on the manifold harmonic basis. 

Laplacian grid editing to replace interpolation points. If directly replacing the coordinates of the spatial 
interpolation points in the frequency domain to the spatial domain, we obtain the inconsistency of grid 
smoothness as shown in Figure 8(a) and Figure 8(b). Laplacian grid editing is a manifold processing method, 
it obtains delta coordinates by applying Laplacian matrix to vertex coordinates. By using delta coordinates to 
edit the grid, it can maintain the local geometric characteristics of the grid and achieve a smooth editing effect. 
Therefore, we can use this method to replace the interpolated point coordinates. 
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Figure 8. (a)(b) is the reconstruction result after directly replacing the interpolation point coordinates; (c)(d) is the reconstruction 
result edited with Laplacian grid. 

Specifically, based on the idea of local replacement, we record these interpolation points as the point set 

to be replaced 𝑝. We respectively calculate the manifold grid 𝑀 after linear interpolation and the Laplac S-
Beltrami operator, which is an n × n matrix, where n is the number of vertices of the grid. The off-diagonal 

element 𝐿 of the matrix represents the weight between vertex 𝑖 and vertex 𝑗, and the diagonal element 𝐿 is 

the negative value of the sum of the area weights and sparse cotangent weights of all adjacent vertices around 

vertex 𝑖. We can calculate the delta coordinates of each point in p through Equation (7): 

Δ𝑝 =  𝑤𝑝

∈ே

 (7) 

where 𝑁 is the neighborhood of vertex 𝑝, 𝑤 is the weight coefficient between 𝑝 and 𝑝. 

Delta coordinates are differential space coordinates, which represent the distance between each point and 
all 1-neighbor points, and all 1-neighbor points of this point affect each other. We directly set the delta 
coordinates of the point set 𝑝 to be replaced in the 𝑀 grid as the 𝑀 grid delta coordinates of corresponding 

points in the grid to smooth the grid at the interpolated points. 

In order to reconstruct the original 3D grid from the delta coordinates, we need to convert the edited grid 

from the differential space to the Euclidean space, which means solving for the edited vertex coordinate set �̂�. 
To avoid affecting the coordinates of non-interpolated points in the subsequent solving process, we set the 

points obtained by taking the inverse of point set 𝑝 as anchor points. 

However, since the number of anchor points is greater than 1, resulting in over-constraint, the Laplacian-
Beltrami operator is no longer full rank, so it cannot be solved directly. Our solution is using the least squares 
method to find the closest to the original vertex coordinate solution to obtain the 3D coordinates of the 

interpolation point in the original grid. For each point in 𝑝, we calculate its point-to-plane distance, and if the 
distance exceeds a certain threshold, the grid formed by the point will visually appear as bulging. Therefore, 
we set the coordinates of these points to the average value of their 1-neighbors to smooth these grids. Figure 
9 shows the results of our 3D human body reconstruction based on the frequency domain completion method. 

 
Figure 9. 3D human body reconstruction based on frequency domain completion method. 
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4. Experiment results 

4.1. Datasets and evaluation metrics  

In this work, we use the THuman 2.0 dataset as our training dataset, which contains 525 high-quality 
human scans captured by dense DSLR equipment. Each human scans includes a 3D model with corresponding 
texture maps and their corresponding SMPL-X fitting parameters and corresponding grid.  

Because the CAPE dataset[42] was not used as a training dataset among the compared methods, we used 
the dataset CAPE to evaluate the generality of various methods. The CAPE dataset is high-precision human 
scan data. The acquisition frame rate is 60 frames/second, which provides an accurate shape of the human 
body under clothes for each frame, including details such as body contours, muscles, and fat. The data set 
includes 10 males and 5 females, covering more than 600 people. Action sequences and 140K+ frames. It 
covers a wide range of human body pose variations, including various postures and movements, which can be 
used to test the robustness and stability of algorithms. 

4.2. Qualitative assessment  

Comparing our method with PIFu[17], ICON[25] on the data set SHHQ[43], the results are shown in Figure 
10, and the detailed four sides comparison of human body reconstruction is shown in Figure 11. 

 
Figure 10. Comparison of the qualitative evaluation of our method with PIFu and ICON on the SSHQ data set. 

 
Figure 11. Comparison of the reconstruction results of our method with PIFu and ICON on the SSHQ data set. 
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From the first row of Figure 10, we can see that when the input image has a human hand in a pocket 
posture, PIFu and ICON will incorrectly estimate the side hand posture, and our method is significantly better. 
For human body reconstruction in loose clothes, PIFu based on the implicit method for human body 
reconstruction has seriously lost the details of the clothes, while ICON, which combines explicit and implicit 
methods, cannot reconstruct reasonable clothes. Our method can recover both the head and clothes. better than 
those two methods. 

In addition, the reconstruction results using PIFu often exhibit an unrealistic bulging phenomenon on the 
sides and ICON is unable to reconstruct reasonable geometric shapes when the human body is wearing loose-
fitting clothing. Our normal integration and frequency domain completion algorithms are able to reconstruct 
clothing geometry details and achieve higher consistency with the original input images. 

4.3. Quantitative assessment 

In the quantitative evaluation we use three evaluation metrics: chamfer distance, P2S, and normals 
difference. Chamfer distance and P2S distance is used to measure the difference between the real mesh 
generated by the scanned data and the mesh generated by our method. To eliminate the effect of the resolution 
difference, we uniformly sample the same points on the scanned data and the reconstructed mesh, and calculate 
the two-way (chamfer distance)/one-way (P2S) average distance from the point to the surface. The chamfer 
distance and P2S distance can capture larger geometric differences, but will ignore smaller geometric details. 
For high-frequency geometric details difference, we use the normal map difference to measure. It means the 

L2 distance between the front normal map 𝐼ଵ of the reconstructed mesh rendered from a fixed perspective and 

the ground-truth front normal map 𝐼ଶ. 

Table 1 shows the differences in chamfer distance, P2S distance and normal between our method and 
PIFu[17], PIFuHD[18], PaMIR[16] and ICON[25] under the CAPE data set. From Table 1, it can be found that, Our 
method uses normal integration to reconstruct the front and back mesh, and does not operate the points of 
normal integration in the Laplacian mesh editing to maintain the fine 3D human body obtained by normal 
integration. Our method outperforms other algorithms in the normal difference. 

Table 1. Quantitative comparison with different methods under the CAPE dataset. 

 PIFu PIFuHD PaMIR ICON Ours 

Chamfer 3.627 3.237 2.122 1.142 2.946 

P2S 3.729 3.123 1.495 1.065 3.005 

Normal 0.116 0.112 0.088 0.066 0.048 

For the chamfer distance and P2S distance, our algorithm outperforms PIFu and PIFuHD but falls behind 
PaMIR and ICON. After analyzing the normal map, depth map and other intermediate products of the 
reconstruction process, we observed that for loose-fitting clothing, our algorithm exhibits significant errors in 
depth prediction near the feet. Specifically, our algorithm predicts that the depth near the feet is in the same 
plane as the skirt, which is clearly incorrect. Additionally, due to our front-back alignment strategy starting 
from the head, errors accumulate towards the feet, resulting in the ‘swollen’ appearance of the feet as shown 
in Figure 12. Because the disparity at the feet is substantial, our algorithm’s performance is not optimal when 
calculating chamfer distance and P2S distance. This issue can be addressed in the future through optimization 
of foot depth prediction or refining the front-back alignment strategy. However, due to our normal integration 
producing fine front and back human body reconstructions, our algorithm still outperforms PIFu and PIFuHD, 
which exhibit similar bulky leg issues. Furthermore, our recovery of the skirt is noticeably better than ICON, 
which performs better than us in terms of chamfer distance and P2S distance. 
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Figure 12. ICON based on the SMPL prior model reconstruct the skirt into legs (middle), PIFu based on the implicit function (left) 
and our method (right) results in a swollen foot. 

4.4. Ablation experiment 

We designed an ablation experiment to verify the effectiveness of the proposed frequency domain 
completion method. We compared it with the method of directly using linear interpolation method and directly 
replacing the frequency domain spatial coordinates with the interpolation point coordinate completion method. 
Figure 13 shows results of various completion methods. It can be seen from the results that the completion 
result using the linear interpolation method presents a flat surface at the seam, while directly replacing the 
coordinates of the frequency domain space with the coordinates of the interpolation points results in the 
collapse of triangles in the hole area. In contrast, our frequency domain completion method successfully 
stitches the body and maintains the smoothness of the mesh. The results of the ablation experiment verify the 
effectiveness of our completion method using frequency domain projection reconstruction. 

 
Figure 13. Comparison with each part of the design in the frequency domain completion method. 

5. Conclusions 
In this study, we propose a method for 3D human body reconstruction from a single image that combines 

normal recovery and frequency domain completion. Our approach involves reconstructing an initial “holed” 
human body through normal integration and then locally completing it using manifold harmonic transform and 
Laplacian grid editing techniques. The key contribution of our method is the projection of the interpolated grid 
from the spatial domain to the frequency domain space, followed by smoothing of the interpolation points 
using Laplacian grid editing. Unlike methods that rely on statistical template models or implicit reconstruction 
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marching cube algorithms, our approach does not require prior knowledge of human body models and achieves 
improved accuracy in reconstructing human bodies wearing loose-fitting clothing. However, Our method of 
body reconstruction may cause leg curvature in certain baggy pants areas. In addition, the reconstruction effect 
of our method is relatively poor when the hand occlusion area is too large and when the feet are reconstructed 
under loose clothes. To solve the problem of inaccurate prediction of feet by depth maps, the effect of our 
algorithm should be better than the previous comparison method. Further optimization will be necessary to 
address these challenges in future research. 
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