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ABSTRACT 

Geometric shape representation algorithms are key technologies in the fields of computer graphics and geometric 

modeling. The Medial Axis Transform (MAT) is an important geometric model description tool that provides a simpli-

fied representation of complex geometric shapes while ensuring accurate descriptions of geometric shape and topology. 

Therefore, it can meet the requirements of many modern research fields, including geometric modeling, pattern recogni-

tion, model segmentation, model deformation, physical simulation, path planning, and more. This paper first introduces 

the basic concept of the medial axis transform, including the definition of the medial axis transform and the concept of 

medial axis primitives. It then describes the extraction algorithms for the medial axis transform, specific research on the 

medial axis transform in computer vision and computer graphics, potential applications of the medial axis transform, 

and medial axis transform datasets. Finally, the disadvantages and advantages of the medial axis transform are discussed, 

and some suggestions on possible future research directions are presented. 
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1. Introduction

Computer vision and computer graphics have

always been hot research topics in the field of 

computer science. However, due to the increasing 

complexity of target scenes as technology advances, 

many works are constrained by the representation of 

geometric models, which hinders the overall 

computational efficiency. Therefore, efficient 

processing and representation of geometric objects 

are essential research topics. Some researchers 

thought of using contour tree[1,2] or skeleton[3,4] to 

simplify the representation of the original model in 

order to improve the overall computational 

efficiency. However, these representation methods 

still have some limitations, which can cause the loss 

of some feature information and affect the final 

effect. Similarly, the Medial Axis Transform 

(MAT)[5] is a very typical and popular geometric 
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representation method that extracts the complete 

skeleton topology of 2D or 3D geometric shapes and 

records the thickness information of the 

corresponding parts of the original shape at each 

position on the skeleton. Finally, this simplified 

representation replaces the original shape to 

complete various tasks in computer vision and 

graphics. The purpose of this article is to introduce 

the relevant theory and applications of the medial 

axis transform and provide guidance to researchers 

in the computer vision and graphics communities, 

while also discussing some open issues, with the aim 

of encouraging more people to participate in 

research on the medial axis transform. 

1.1. History and development of MAT 

 The concept of medial axis transformation was 

first introduced in 1976. At that time, Blum et al.[5] 

proposed the 2D medial axis transformation for ex-

tracting skeletal features of biological organisms, 

with research focusing on how to compute a unique 

and continuous medial axis from a 2D image. Later, 

Nackman et al.[6] extended the concept to 3D space, 

making the medial axis transformation applicable to 

more complex scenarios. Subsequently, research on 

the medial axis transformation mainly divided into 

two branches. One continued to investigate how to 

extract a medial axis with smaller errors, with Li et 

al.[7] proposing the concept of medial axis primitives, 

for example, and providing new ideas for medial 

axis transform extraction research. The other branch 

focused on various applications of the medial axis 

transform, utilizing its properties to great effect in 

computer graphics and computer vision. Sonka et 

al.[8] used the medial axis transformation for image 

semantic recognition, while Latombe[9] employed it 

in robot path planning. Moreover, the implicit local 

thickness information of the medial axis has been 

utilized in various fields, including shape segmenta-

tion[10,11], 2D or 3D curve/surface reconstruction[12,13], 

region decomposition in mesh generation[14,15], fea-

ture extraction in geometric design[16,17], shape ap-

proximation and retrieval[18–20], and so on. 

1.2. Theoretical fundamentals of MAT 

The medial axis transform is a mathematical 

tool used to describe 2D or 3D geometric shapes. 

Siddiqi et al.[18] provided a rigorous mathematical 

definition for shapes and their corresponding medial 

axis transforms. Simply put, the core of the medial 

axis transform lies in the inscribed sphere (circle). 

The medial axis is composed of a series of points 

inside the geometric shape, which must satisfy the 

following constraint: the inscribed sphere (circle) 

with these points as centers and the model boundary 

has at least two tangential points. These spheres are 

called medial axis spheres (circles), and the surface 

or curve formed by their centers is called the medial 

axis surface (line). The medial axis transform is a 

function composed of the medial axis and the cor-

responding inscribed sphere radius at each position. 

The skeleton is a concept very similar to the 

medial axis. In the 2D case, the model's skeleton is 

identical to its medial axis, both of which are curves 

inside the model. In the 3D case, the medial axis 

may be composed of either curves or surfaces, 

whereas the skeleton can be entirely composed of 

curves, called the skeleton line. The following Fig-

ure 1 shows an example of the medial axis in 2D. 

Figure 1. Medial axis transform of a 2D model. 

Interpolation-based shape approximation is a 

common method in geometric approximation. In 

Zbrush[21], a sphere skeleton can be manually con-

structed to approximate the overall geometric con-

tour, achieving a rough expression of the geometric 

shape. Building on this, B-Mesh[22] extracts a mesh 

from the sphere skeleton. Furthermore, the Sphere 

Mesh Model[23] uses interpolation based on endpoint 

spheres to approximate large-scale geometric vol-

umes and achieve a good volume approximation 
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effects. This approach has also been applied in pro-

gressive medial mesh simplification methods[24] and 

HEM[25] methods, which use a mesh composed of 

sphere interpolation to simplify medial axial ex-

pressions. 

Based on this, the medial mesh[7] is another 

definition of medial axis transformation in 

three-dimensional geometry. It can be represented as 

a non-manifold triangular mesh called the medial 

mesh, which consists of triangles and isolated edges. 

Each vertex in the mesh represents a medial sphere 

and is represented by a four-dimensional coordinate 

like m = {c, r} where c ∈ R3 is the center of the 

medial sphere and r ∈ R is the radius of it. Edge 𝑒 = 

{  , } on the mesh will be used to represent the 

medial cone and the medial cone is obtained by 

linearly interpolating between two medial spheres at 

the two endpoints, and it can be expressed by the 

following formula: 

{𝑚|𝑚 =𝛼 +(1−𝛼)  , 𝛼 ∈[0,1]} 

(1) 

Similarly, triangular faces on the mesh denot-

ed by ={  ,  , }, are referred to as medial 

slabs, which are obtained by interpolating the cen-

troids of the three medial spheres at the vertices. The 

formula can be expressed as: 

{𝑚|𝑚= + +(1− − ) , ∈[0,1], ∈

[0,1− ]}

(2) 

Figure 2. Illustration of medial cone and medial slab (left) 

medial cone (right) medial slab[61]. 

The medial axis transformation of a 3D shape is 

the approximation of the geometric model by the 

union of the envelopes of the medial primitives. 

Figure 2 illustrates the medial cone and medial slab 

in the volume primitives. 

In summary, as a skeleton of geometric models, 

the medial axis transform not only provides the 

topological properties of the model, but also de-

scribes the shortest distance from the skeleton to 

the boundary of the region. It expresses both shape 

and volume and has the following properties. (1) 

Uniqueness: the skeleton of the model is unique. (2) 

Symmetry: due to the symmetry of the medial 

spheres, the resulting skeleton also has symmetry. (3) 

Topological invariance: for a given model, its geo-

metric topology remains unchanged and the corre-

sponding medial axis is unique and invariant. (4) 

Dimension reduction: the medial axis of a 2D shape 

is a curve, while the medial axis of a 3D shape can be 

a curve or a surface. All of these properties match 

well with the requirements of some areas in com-

puter vision and graphics. 

1.3. Organizations 

The remaining organization of this paper is as 

follows: Chapter 2 introduces the techniques for 

extracting the medial axis of geometric models, in-

cluding precise computing methods and simplifica-

tion methods. The latest research also supports the 

extraction of static or dynamic medial axes from 

point clouds or images. In Chapter 3, in combination 

with the characteristics of medial axis transfor-

mation, existing research on medial axis transfor-

mation techniques is presented. In the field of 

computer vision, it mainly includes semantic seg-

mentation and mesh reconstruction, while in com-

puter graphics, it mainly includes geometric defor-

mation and collision detection. Chapter 4 introduces 

the future application areas of medial axis trans-

formation and proposes some ideas. Chapter 5 in-

troduces the existing datasets of medial axis trans-

formation and hopes to build a more extensive 

dataset to expand the medial axis transformation 

database. Chapter 6 summarizes the advantages and 

disadvantages of medial axis transformation based 

on existing research and proposes future research 

directions accordingly. Finally, in Chapter 7, the 

article is concluded, and it is hoped that more 

scholars will contribute to the research on medial 

axis transformation.  
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2. Computing and approximating of

MAT

Figure 3. Comparison of “spikes” in medial axis transform. (top) 

Medial axis transform with lots of spikes (bottom) Simplified 

medial axis transform. 

As an ideal geometric approximation repre-

sentation, the medial axis transformation can not 

only preserve the complete geometric shape and 

topological structure, but also approximate the 

original geometry’s regional volume using local 

thickness information. However, in reality, the me-

dial axis transform computed by using accurate me-

dial axis transform computing algorithms often has 

defects and cannot meet expectations. This is be-

cause there is often some noise or small perturba-

tions at the boundary of the geometric model, and in 

this case, the extracted medial axis transform will 

produce many unstable branches, which are also 

known as “spikes”. These “spikes” usually appear in 

the form of separately hanging line segments or 

elongated triangles around the main body of the 

medial axis in geometry. The “spikes” of the medial 

axis transformation are shown in Figure 3.  

Moreover, the existence of these “spikes” not 

only contributes nothing to shape representation but 

also takes up a large amount of storage space. 

Therefore, subsequent research has focused on the 

simplification of medial axis transformations which 

can also be called approximated MAT, overcoming 

the instability caused by the sensitivity of medial 

axis transformations to noise, and obtaining more 

stable medial axes. Generally speaking, we will use 

“medial axis transform computing” to refer to the 

extraction of accurate medial axis transform, and use 

“approximate medial axis transform” to refer to the 

extraction of simplified medial axis transform. This 

section mainly introduces some precise medial axis 

transform extraction methods and approximate me-

dial axis transform simplification methods, which 

are mainly suitable for static model medial axis 

computing and require dense sampling of the geo-

metric model surface. Finally, it is supplemented by 

the medial axis transform simplification algorithm 

for dynamic models and how to extract medial axis 

transform from special geometric models such as 

sparse point clouds.  

2.1. Computing of MAT from mesh 

For simple models such as planar polygons[26] 

or arc-boundary shapes[27,28], accurate medial axis 

transform can be conveniently extracted. The ex-

traction algorithms of accurate medial axis transform 

mainly include topological thinning methods[29–33], 

distance field-based medial axis transform extraction 

algorithms[34–40], and medial axis transform extrac-

tion algorithms based on Voronoi diagram, etc. Ta-

ble 1 presents the similarities and differences as well 

as advantages and disadvantages among different 

methods for computing the medial axis transform. 

Topological thinning methods[29–33] construct 

the medial axis transform using voxels as elements. 

Starting from the boundary of the original geometry 

model, the method diffuses inward until the local 

shape is refined and converged to a single voxel size, 

and then constructs the medial axis transform using 

these voxels. However, due to the resolution limit of 

voxels, the medial axis transform extracted by such 

methods is difficult to accurately represent the 

original geometric shape.
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Table 1. Comprasion of different methods of MAT computing 

Methods Similarities Differences Advantages Disadvantages 

Topological thinning 

Computing accu-

rate MAT 

Slow computing 

3D 
Easy to conver-

gence 

difficult to 

represent orig-

inal shape. 

Distance field 2D & 3D Reducing “spikes” 

generate re-

dundant medial 

axis spheres 

Voronoi graph 2D & 3D Good stability 

produces re-

dundant medial 

spheres 

SMAT Binary image 
Globally smooth 

MAT 

Only for sim-

ple images of 

objects 

Distance field-based medial axis transform ex-

traction algorithms[34–40] first construct a signed dis-

tance field function of the geometry model, and then 

deduce the positions and corresponding radii of the 

medial axis spheres from the distance field, thus 

obtaining the complete medial axis transform. In fact, 

the extracted medial axis transform is the medial axis 

of the iso-surface of the distance field function, and 

this method essentially reconstructs a new surface 

from the original model surface and then extracts the 

medial axis transform from the new surface. This 

approach is suitable not only for complex geometric 

shapes but also for significantly smoothing the noise 

in the original model and reducing the number of 

“spikes”. However, constructing the distance field 

itself increases the computational cost, slows down 

the efficiency of medial axis transform extraction, 

and may generate too many redundant medial axis 

spheres due to the accuracy of surface reconstruc-

tion. 

A Voronoi-based medial axis transform extrac-

tion method requires a smooth surface model and 

dense sampling on the model surface, which is saved 

as a point set. The Voronoi diagram is then con-

structed from the points to determine the conditions 

for constructing the medial axis transform. Lee et 

al.[26] proposed an algorithm for extracting the ac-

curate medial axis transform of 2D shapes using 

Voronoi diagrams and edge bisectors, but it can on-

ly be used for 2D polygonal models. Attali et al.[41] 

applied Delaunay triangulation to sample points on 

the geometric surface and classified the resulting 

tetrahedra, retaining the tetrahedra that met certain 

requirements and removing those that did not affect 

the topology. The simplified set of retained tetrahe-

dra is used to obtain the model’s medial axis trans-

formation. However, this method’s effectiveness is 

affected by the number of sampled points, and effi-

ciency decreases significantly with a large number of 

points. Bisssonnat[42] used Delaunay triangulation to 

sample points and selected the tetrahedra inside the 

model to generate the Voronoi diagram vertices, 

which are then used as medial axis points. The to-

pology of the medial axis transform is then com-

pleted based on the connection relationship between 

the tetrahedra. Amenta et al.[43] proposed Power 

Crust, which removes non-real medial axis points 

from Voronoi vertices. The Power Crust algorithm 

not only supports various types of geometric models 

as inputs, such as triangle meshes or dense point 

clouds, but also has good stability. However, this 

method often produces redundant medial spheres, 

resulting in a redundant medial axis transform that 

cannot effectively solve the problem of “spikes”. 

Influenced by Zhu et al.[44] idea of spline fitting 

the medial axis transform, Wang et al.[45] proposed an 

algorithm called SMAT for accurately extracting the 

medial axis transform from binary images. SMAT 

is based on an iterative method consisting of two 

steps: segmentation and fitting. First, the image is 

segmented into several sub-regions, and the medial 

axis transform variation for each local range is ob-
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tained. Then, the local medial axis transforms are 

fitted with B-splines to obtain a globally smooth 

medial axis. SMAT can significantly reduce image 

size while maintaining a certain image quality, but 

for complex images of objects, it may lose many 

image details after compression.  

2.2. Approximating of MAT 

Table 2. comprasion of different methods of classical MAT approximating 

Methods Similarities Differences Advantages Disadvantages 

Angle-based meth-

od 

Approximate MAT  

Slow Approximating 

Reduce the number of 

medial spheres or 

medial edges 

Threshold is angle 
effectively 

eliminate spikes 

Changing the to-

pology of MAT 

λ-medial axis 

method 

Threshold is medial 

sphere radius  

Preverving to-

pology 

Cannot elimate 

spikes effictively 

Scale Axis Trans-

form 

Threshold is a removal 

factor 

Esay to reduce 

the medial 

sphere 

Cannot control the 

number of re-

maining spheres 

Prrogressive medial 

axis filteration 
Based on edge merging 

Preserving to-

pology 

Cannot update the 

position of medial 

sphere dynamically 

Hausdorff er-

ror based method 

Based on single-side 

Hausdorff distance  

Controlling the 

approximating 

errors 

Cannot update the 

position of medial 

sphere dynamically 

Table 3. comprasion of different of methods of computing medial mesh 

Method Similarities Differences Advantages Disadvantages 

Q-MAT

Approximating MAT 

Slow Approximating  

Based on medial mesh 

Based on QEM to 

mearge edges 

Manually defining 

ratio to merge the 

edges 

Error thickness 

on medial axes 

Considering the global 

external measurements 

Complex compu-

ting process 

Q-MAT+

Increasing local sam-

pling for external fea-

tures 

Dense sampling 

LSMAT least-squares method Dense sampling 

Restricted Power 

Diagram 

Considering the internal 

features 

Inefficiency of 

construction of 

restricted power 

diagrams 

Coverage Axis 

Consider local approx-

imation error and the 

global shape structure 

Fast computing and 

preserving topology 

Easy to distinguish 

noise and features 

Better approximat-

ing effects 

Obtaining the nor-

mal vectors of MAT 

Achieving 

high-precision ap-

proximation 

Achieving 

high-precision ap-

proximation of MAT 

Complex compu-

ting process 

Based on the methods above, it is unrealistic to 

extract the exact medial axis transform of complex 

geometric models. No matter how the algorithm is 

processed, it cannot effectively solve the problem of 

“spikes” caused by medial axis transform redun-

dancy. Therefore, the focus of many algorithms is to 
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extract a approximated medial axis transform, which 

reduces the number of medial spheres or edges while 

ensuring that the medial axis transform closely ap-

proximates the original model. Table 2 presents the 

similarities and differences as well as advantages 

and disadvantages among different classical meth-

ods for approximating the medial axis transform, 

which is based on the definition of the mathematical 

principles. And Table 3 presents the other one for 

approximating medial axis transform based on the 

definition of medial mesh. 

There are two kinds of approaches to an-

gle-Based methods[46–49]. The first kinds of method 

determines the angle between each medial axis point 

and its two nearest geometric surfaces. When the 

angle is smaller than a threshold θ, the corresponding 

medial sphere is removed. The other kind of method 

is to sort each medial sphere by the corresponding 

angle and sequentially eliminate a specified number 

of medial spheres from smallest to largest. This 

method can effectively eliminate “spikes”, but may 

cause changes in medial axis transform topology, 

and threshold adjustment is also important. If it is too 

large, the medial axis transform cannot approximate 

the geometric model, and if it is too small, “spikes” 

cannot be effectively removed. 

Similarly, the external sphere radius-based 

medial axis transform simplification method[46–50] 

(λ-medial axis method) constructs an external sphere 

with the closest boundary point for each medial axis 

point and removes all medial spheres with a corre-

sponding external sphere radius smaller than a 

threshold λ. Chaussard et al. [51,52]  proved that when 

a small threshold is selected, the complete topology 

structure can be preserved. However, a threshold that 

is too small still cannot effectively eliminate 

“spikes”, and a threshold that is too large will cause 

details of the medial axis transform to be lost. 

The Scale Axis Transformation [53,54] (SAT) sets 

a removal factor “S” and enlarges the radius of all 

medial spheres by “S” times. The medial spheres 

that are completely surrounded by other medial 

spheres after being enlarged are removed, and the 

remaining medial spheres are reduced to the current 

“1/S” radius to obtain a simplified medial axis 

transform. Similarly, setting a removal factor that is 

too large will damage the medial axis transform 

topology and lose local details, and it is still impos-

sible to control the number of remaining medial 

spheres.  

The Progressive Medial Axis Filteration[24] 

(PMAT) improved the Scale Axis Transform algo-

rithm by adopting an edge merging approach. The 

algorithm calculates the ratio of the length differ-

ence between each medial edge and the radius of its 

two medial spheres, and merges the medial edges in 

ascending order to obtain a simplified medial axis 

transformation. However, the algorithm does not 

dynamically update the radius of the current medial 

spheres during the merging process, only referring to 

the overall state before merging. This method 

therefore cannot solve many of the problems in the 

Scale Axis Transformation. 

In the Hausdorff Error-based method[25] (HEM), 

the idea of edge merging is also used. The medial 

edges are merged, and the single-sided Hausdorff 

distance between the original model and the simpli-

fied medial axis after edge merging is computed as 

the cost for each edge merging. This process con-

tinues until the preset error range is approached, 

resulting in a approximated medial axis transfor-

mation. However, this method is inefficient because 

it requires a large number of Hausdorff distance 

calculations, and it cannot guarantee obtaining the 

optimal medial axis sphere because the simplifica-

tion reference standard is based on the Hausdorff 

distance. Zhu et al.[44] and others used the Hausdorff 

distance as a threshold for pruning the extracted 

medial axis transform to improve the stability of the 

medial axis transformation. Then, the stable medial 

axis transformation is approximated by a spline 

curve to obtain a smooth and compact medial axis 

transformation representation. This method can be 

used to approximate the medial axis transform of any 

geometric object, but it may require repeatedly ad-

justing the threshold to obtain the desired medial 

axis transformation, and it requires the geomet-
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ric boundaries to be sufficiently smooth and free of 

noise. Sun et al.[55] extended this algorithm to 3D 

models, and in the process of extracting the ap-

proximated medial axis transformation, not only the 

edge merging cost described by the one-sided 

Hausdorff distance is considered, but also the topo-

logical structure of the medial axis transformation. 

The approximated medial axis transformation is 

extracted through several iterations. However, this 

method still cannot handle models containing noise 

or missing point cloud models well. 

The Q-MAT method[7] borrows the idea of 

Progressive Medial Axis Filteration and represents 

the medial axis transform as a medial mesh. The 

algorithm is based on the most classic Quadratic 

Error Metric (QEM) in mesh simplification and re-

defines the quadratic metric error based on the me-

dial mesh. By setting the minimum value of this 

error, a new medial sphere is obtained after merging 

the medial edges. Q-MAT introduces a stability ratio 

as the cost of edge merging and merges medial edges 

in order from small to large, ensuring that “spikes” 

are removed first. 

However, all of the aforementioned methods 

only consider the least important medial spheres or 

medial edges based on local information of the me-

dial axis transform, ignoring the impact of these 

local features on the global shape, thus disregarding 

some important characteristics of the models. 

Therefore, Yan et al.[56] proposed a simplification 

method based on global measurements, which re-

quires dense sampling and sets an Erosion Thick-

ness(ET) to identify important features or noise, 

resulting in a more complete and accurately ap-

proximated medial axis transform. Q-MAT+[57] in-

creases sampling on local slabs of the surface to 

obtain a more precise medial axis transformation. 

LSMAT[58], the least-squares medial axis transfor-

mation algorithm, also extracts the static medial axis 

transform from dense sampling. The algorithm cal-

culates curvature using the normal vector of each 

sampling point, constructs quadratic surfaces using 

least-squares method, and takes the intersection 

points of adjacent surfaces as medial points. The 

normal vectors of medial points are interpolat-

ed based on the normal vectors of the quadratic 

surfaces at the medial point. The algorithm obtains 

the normal vectors of the medial axis transform but 

increases computational burden and is not suitable 

for geometric models with complex shapes. 

From another perspective, the aforementioned 

methods only consider the external features of the 

medial axis transformation, including sharp surface 

features and corner information of the input 

mesh, but ignore internal features such as connec-

tions and topology between the medial axis trans-

forms. Sampling for internal features during medial 

axis transform approximation is insufficient, and 

thus, the correct topological connectivity between 

medial axis transforms cannot be well represented. 

Wang[59] et al. innovatively introduced medial 

spheres with restricted power diagrams[60]. The dual 

structure of these restricted power diagrams repre-

sents the connectivity between medial spheres and 

the tangent surface areas of these medial spheres. 

The algorithm first calculates the tangent points of 

the medial spheres to construct restricted power 

diagrams, classifies the medial spheres based on this 

information, identifies the features of the medial 

spheres, and places them in the correct position, such 

as at the intersection point. This algorithm is an ef-

ficient method for sampling and preserving features 

of the medial axis transform internally, achieving 

high-precision approximation of the medial axis 

transformation. However, the construction efficien-

cy of the restricted power diagrams affects the ex-

traction time of the medial axis transform. Addi-

tionally, this algorithm cannot be used for medial 

axis transform approximation of 2D models and is 

only applicable to 3D models.  

Dou et al.[61] proposed Coverage Axis for 3D 

shape skeletonization, which considers not only 

local approximation error but also the global shape 

structure. It can effectively alleviate the negative 

impact of noise and approximate a compact and 

expressive Medial Axis Transform. This method not 

only supports triangle meshes as input but also ex-

tracts the medial axis transform of other geometric 

8



Yao, et al. 

structures, such as point clouds and poor-quality 

meshes. However, because the core idea of this 

method is to find as few inside medial balls as pos-

sible, the calculation process is complex, and the 

computational efficiency is still relatively low. 

2.3. Extracting dynamic MAT from triangle 

mesh 

As an important research topic in computer 

graphics, animation approximation aims to ap-

proximate the original animation sequence with a 

simplified structure as closely as possible. In this 

problem, it is necessary to approximate a dynami-

cally changing geometric model with medial axis 

transform.  

Figure 4. Extract dynamic medial axis transform from triangle 

mesh[62].  

Pan et al.[57]. proposed a deformable medial axis 

transform for dynamic surfaces. Figure 4 shows the 

extraction of dynamic medial axis transform from a 

triangular mesh. First, the precise medial axis 

transform of the reference frame is calculated and 

used as a reference to further calculate the corre-

spondence between the sample point sets of each 

deformation sequence and the volume elements of 

medial axis transform. Then, the As Rigid As Pos-

sible (ARAP) transformation of the medial axis 

transform during the animation process is con-

structed to obtain the medial axis approximation of 

the dynamic mesh. The algorithm dynamically ad-

justs the number and size of medial spheres while 

ensuring the topological structure of the medial 

mesh, making it possible to approximate dynamic 

sequences well. However, this method cannot be 

applied to animation sequences with mesh topology 

changes, nor can it extract dynamic medial axis 

transforms from collapsed mesh sequences.  

2.4. Extracting MAT from sparse point 

clouds 

Previous medial axis transform computing or 

approximating algorithms only targeted geomet-

ric bodies with dense sampling, and were unable to 

accurately extract the medial axis transform of ge-

ometries represented by sparse sampling or sparse 

point clouds. However, sparse point clouds are a 

very common way of representing geometry in the 

real world. Inspired by MAT-Net[63] and P2P-Net[64], 

Yang et al.[65] proposed P2MAT-Net, which uses a 

deep neural network to learn the transformation from 

a point cloud to an approximate medial sphere. They 

use the neural network to map sparse point clouds 

into medial spheres, and adjust the predicted medial 

spheres using a sphere boundary strategy and a 

normal optimization strategy. They also learn the 

connection structure between medial points from the 

point cloud to obtain a complete medial mesh. The 

algorithm achieved good results in noisy point 

clouds with very few points, effectively learning 

point cloud features and extracting stable medial 

axis transform. However, during the process of pre-

dicting the medial sphere, the algorithm moves the 

point cloud position one by one to obtain the medial 

sphere. Figure 5 shows the effect of extracting me-

dial axis transformations from sparse point clouds. 

For tasks where the number of medial spheres is less 

than the number of point cloud models, the algo-

rithm cannot be directly applied to solve this prob-

lem. Iterative medial axis transform extraction al-

gorithm[66] is also an algorithm for extracting medial 

axis transform from sparse point clouds. IMAT[66] 

solves two constrained sub-problems in each itera-

tion, including shape marching, finding the best 

position to place the skeleton sphere on the geomet-

ric boundary (extracted from the point cloud), and 

determining the radius of the medial sphere. Spe-

cifically, the error function between the sphere and 
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the geometric boundary is minimized, and the 

number of spheres is continuously adjusted until the 

error function converges. The medial axis transform 

extracted by this algorithm is relatively robust, but 

the convergence speed is slow, which affects com-

putational efficiency.  

Figure 5. Extract static medial axis transform from sparse point 

clouds[65]. 

3. Research on technology based on

MAT

Computer vision and computer graphics are 

two very popular fields in computer science research 

nowadays. Both of them are inseparable from the 

description of geometric models. The ability to find 

an accurate and concise geometric representation is 

an effective way to improve efficiency and effec-

tiveness. The medial axis transform of geometry 

can be well integrated into current visual and 

graphical applications and is a good solution to some 

hard-to-break-through dilemmas. 

This chapter is divided into two main sub-

chapters, including two sections on computer vision 

and computer graphics. Each is further divided to 

show specifically how the medial axis transform 

can break through specific dilemmas in the field. 

3.1. MAT technology in computer vision 

Mesh reconstruction 

Mesh reconstruction is the most direct and es-

sential application of medial axis transformation. It 

can be said that almost all extraction of medial axis 

transform is in order to better reconstruct complex 

geometric shapes. In addition, in recent years, deep 

learning can be used well in 2D image-related re-

search scenarios, but direct application of this 

technology in 3D model representation is difficult. 

This is because, for 3D model surface sampling 

points, the spatial and topological relationships be-

tween them are complex and unpredictable. Tradi-

tional 3D reconstruction algorithms are multi-view 

representation[67], voxel reconstruction[68], or deep 

learning based on point clouds[69]. Multi-view re-

construction represents 3D geometry as 2D images 

from multiple angles, but this does not identify 

problems such as self-obscuration implicit in the 

input image. Conversely, a voxel is a spatial grid, 

which is a method of uniformly dividing space. 

These small voxels can work well as input to a 

neural network, but the computational overhead 

increases as the more spatial resolution is required. 

Point clouds are also suitable for deep neural net-

works for learning, but this representation does not 

capture the topological features of the 3D model 

well, resulting in poor reconstruction quality. 

Therefore, a special convolutional neural network is 

needed that can learn local features based on the 

topology to accomplish shape perception while 

keeping the computational cost low. In fact, the 

medial axis transform can meet the above require-

ments very well. As mentioned before, the medial 

axis transform is the geometric model’s exact skel-

eton and contains the local radius to represent the 

thickness information. These properties can well 

represent the geometric topology and accurately 

restore the original shape of the target. At the same 

time, the medial axis transform is a representation 

that is consistent with human perception of 

shape[70,71]. Based on this, Hu et al. proposed 

MAT-NET[63]. This is the first algorithm to learn the 

medial axis transform features using deep neural 

networks to achieve 3D reconstruction. Hu et al. 

first extracted their corresponding medial axis 

transform as a dataset based on the 3D models pro-

vided in ModelNet40[68] for classification tasks. Af-

ter that, the network is constructed by referring to 

the ideas of PointNet[69] and PointNet++[72]. Specif-
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ically, the new CNN is divided into two parts, 

Group-MAT and Edge-net. First, Q-MAT[7] is used 

to obtain the medial axis mesh, after which Point-

Net is used to learn the features of discrete medial 

axis spheres and encode them into the Group-MAT 

network. Group-MAT calculates the local data 

structures of these disordered medial axis 

spheres based on the connection information of 

edges and then passes them into Edge-net to obtain 

the local features of these structures, and finally 

completes the learning of surface features to realize 

the reconstruction from medial axis transform to 

geometric model. This method can reconstruct the 

accurate target model well, but the computation 

time is still long and requires a large amount of in-

put data for support, which does not perform well 

for complex scenes. 

In recent years, in addition to the reconstruc-

tion of surfaces from multi-view images mentioned 

above, there has been some research on how to re-

construct 3D models from single-view images. Re-

lying on the rich dataset of 3D models nowadays[73], 

existing deep networks can reconstruct various 

types of geometric models from single-view imag-

es[74–81]. However, none of these representations can 

perceive the topological details of the geometric 

structure well, and can only restore the original 

geometric information. Therefore they can only re-

construct geometric models with simple topology or 

shape. For neural networks to fully learn the topo-

logical information of geometric shapes, skele-

ton-based methods[82,83] were proposed, which can 

accurately capture the topology of the original 

model, but their generated skeleton points cannot 

provide the complete surface geometric information, 

they cannot directly construct surfaces. And the 

medial axis transform can solve this problem well. 

First, the radius information provided by the medial 

sphere of the medial axis transform can represent 

the local thickness of the geometry, which is very 

important geometric information in the reconstruc-

tion; second, the connectivity of the medial sphere 

can also represent the topology of the complex ge-

ometry well, with two spheres forming an edge be-

tween them and three spheres connecting into a 

surface; finally, the existing medial axis transform 

can be directly recovered into a flowing shape by 

the Marching Cubes[84] algorithm triangular mesh. 

Based on this idea, Hu et al. proposed the IMMAT 

network[85] to predict the medial sphere and skele-

ton of the geometry from the single-view input im-

age and then further reconstruct the surface. The 

whole network consists of two main modules: the 

image2sphere module and the topology prediction 

module. The former, as the name means, is used to 

learn features from the input single-view image and 

predict a set of discrete median points and corre-

sponding radius. The latter predicts the topological 

connectivity relationships between these spheres. 

Finally, these spheres are smoothed using the MAT 

Smoothing module, and the final surface is recon-

structed from the medial axis transform. This 

method is the first algorithm that uses supervised 

learning to generate the medial axis transform and 

surface reconstruction from single-view images; 

however, due to the limitations of single-view im-

ages, such methods cannot handle some complex 

geometries, while such algorithms are inherently 

sensitive to noise, and excessive noise can affect the 

reconstruction results. 

Similarly, the medial axis transformation re-

construction technique can be used in fields such as 

metallurgy. The casting process allows for obtaining 

components with approximate shapes[86–88]. This 

process requires the estimation of the mold filling 

and melt solidification times to design the casting 

system and, if necessary, to make adjustments to the 

component geometry, where the evaluation of the 

solidification process can be done either by 

FEM-based methods[89] or by geometric methods. 

Among them, the FEM (Finite Element Method) 

analysis requires solving thermodynamic equations 

and a complex computational process, while in the 

geometric approach, the estimation of the time is 

achieved by evaluating the geometry when geomet-

ric factors are the main ones affecting the solidifica-

tion time of the casting. Therefore, some meth-

ods based on the medial axis transform were 

proposed for geometric analysis[90–92]; however, 

these methods can only specify the metal solidifica-
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tion path manually and cannot be automated, and at 

the same time, they can only be used to estimate the 

geometry but not to optimize it. Therefore, a new 

topology-optimized casting algorithm based on the 

medial axis transform is proposed[93]. The algorithm 

first generates a geometric model based on the op-

timized topology. After that, the simplified medial 

axis transform of the model is calculated, and the 

local thickness information of the medial axis 

transform is used to mark the local radius maximum 

and define the curing direction automatically. Fi-

nally, the maximum radius is gradually adjusted and 

the surface reconstruction of the casting is com-

pleted. 

Shape segmentation 

Shape segmentation is a technique that auto-

matically decomposes a complex geometry into 

several independent and simple shaped components 

using some algorithm and can be used in areas such 

as modeling[94,95], and texture mapping[96]. The ma-

jority of current shape segmentation algorithms fall 

into two main categories. One of them is semantic 

segmentation methods based on supervised learning 

and labeled datasets, which split the geometry into a 

number of predefined labels, but do not provide 

specific shape information for each label, which 

may lead to segmentation errors. The other category 

is geometric analysis methods which accomplish 

the segmentation task based on rules or unsuper-

vised learning. Geometric analysis algorithms need 

to find the boundaries and ensure that the geometry 

within the boundaries matches the features[97]. Ex-

isting 3D shape segmentation algorithms based on 

geometric analysis cannot extract features of com-

plex geometric components well[98–100], and at the 

same time, the extracted local geometric features 

lack global contextual information, which may lead 

to unexpected counterintuitive results. Therefore, 

Lin et al. proposed Seg-Mat[101] to accomplish geo-

metric segmentation using the medial axis trans-

form. The algorithm first extracts the medial axis 

mesh using the Q-MAT[7] algorithm to 

avoid boundary perturbations that generate spike to 

affect the final result. After that, the medial axis 

mesh is structured and a rough initial segmentation 

is performed to segment the parts with dimensional 

changes and non-fluid shapes, as well as the parts 

with sharp radius changes based on local thickness 

information. After that, the spatial region is pro-

cessed based on the region growth algorithm[102] to 

complete the fine segmentation. Finally, the seg-

mentation result of the medial transformation is re-

duced to a triangular mesh[100,102–104]. The current 

algorithm only supports simple geometric object 

segmentation, which cannot be applied to complex 

scenes, and also requires high quality of the ex-

tracted medial axis to minimize spike interference 

and also to control the threshold value to achieve 

more accurate segmentation results. 

3.2. MAT technology in computer graphics 

Physical simulation 

The motion and deformation of each animated 

object in the physical simulation are computed in-

dependently, so some areas of the animated object 

may be updated to the same spatial location. This 

phenomenon is known as collision, which is visu-

ally manifested by different geometric elements (e.g. 

triangles) overlapping or penetrating each other. 

Obviously, collisions are a serious visual flaw, and 

in severe cases, it may appear that one animated 

object enters or passes inside another animated ob-

ject. Collisions can occur not only between different 

animated objects in the scene but also between dif-

ferent local areas of the same animated object. The 

former is called other collision between objects, 

while the latter is called self-collision of objects. 

The computational task of collision processing 

mainly includes two aspects: collision detection and 

collision response. Collision detection not only de-

termines whether a collision has occurred but also 

returns a list of all geometric elements associated 

with the collision and gives collision information 

such as the puncture depth. The collision response 

is based on the returned collision information and 

corrects the geometry elements with wrong motion 

states in a reasonable and efficient way. 

Lan et al.[105] proposed a medial-elastic algo-
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rithm for discrete collision detection. medial-elastic 

driven discrete collision detection performs inter-

section tests on medial-elastic elements as enclosing 

elements and then queries the pre-defined 3D 

space by computing the voxel index at the deepest 

point of intersection[106] to collect all potential colli-

sion triangular elements. Finally, a small number of 

triangle intersection tests are executed to obtain the 

location of specific collision occurrence. This 

method takes advantage of the ability of the medial 

mesh to express the 3D model shape as well as the 

internal skeletal features and maps the 

high-resolution 3D mesh onto the medial 

mesh by bisecting and weighting it to simplify the 

global solution step in the dynamic projection 

method. The key idea is similar to the fully simpli-

fied dynamic projection method proposed by Brandt 

et al.[107]. It demonstrates that the medial axis ele-

ments can be used as enclosing elements in discrete 

collision detection to improve detection efficiency. 

In terms of determining collision culling, it innova-

tively proposes a strategy to test the surface dis-

tance function from boundary conditions to deter-

mine whether the medial axis elements intersect. 

However, the discrete collision detection based on 

the medial axis also suffers from the common prob-

lem of other methods, it is difficult to accurately 

capture the collision between objects or geometric 

elements moving at high speed. It is also mentioned 

in its experimental results that the time step is not 

small enough to miss the collision and lead to the 

penetration phenomenon between models. Also, the 

collision culling during the simulation would be a 

violent traversal of the medial elements of all the 

simulated objects without a higher-level collision 

culling method, so there would still be performance 

issues with a high number of simulated objects.  

Figure 6. Elastic body collision based on Medial-IPC[107]. 

On the basis of the discrete collision detection 

idea based on Medial axis transform, Lan et al.[108] 

further proposed a continuous collision detection 

framework Medial-IPC based on medial mesh. 

Among them, the continuous collision detection 

module is implemented based on the IPC[108] algo-

rithm, which can ensure that the penetration phe-

nomenon will not occur at all times during the 

movement of the object. Specifically, the IPC algo-

rithm is based on the theory of incremental potential 

energy. Under the condition of ensuring that the 

kinetic energy, elastic potential energy, and friction-

al potential energy of the system all decrease as a 

whole, the algorithm solves the energy equation 

with “non-penetration” as a constraint. In order to 

solve this nonlinear system, the constraint of 

“non-penetration” was innovatively defined as 

a barrier energy and represented by a logarithmic 

function. This ensures that when two objects are 

close enough, a sufficiently large contact potential 

energy will separate them, and when the objects are 

far enough apart, the contact energy is very small or 

even zero. This is why objects will never penetrate 

each other. In Medial-IPC, the same idea as medi-

al-Elastic is used to replace collision culling algo-

rithms such as Spatial-Hash by Medial axis mesh to 

improve computational efficiency. At the same time, 

according to the characteristics of IPC, the distance 

calculation method between medial axis primitives 

and the energy of barrier function are defined to 
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ensure the principle of non-penetration. The algo-

rithm makes good use of the characteristics of the 

medial axis transform to accelerate the IPC calcula-

tion process, and improves the calculation efficien-

cy of the continuous collision detection of elas-

tic bodies. However, due to the computational 

complexity of the medial axis transform, the algo-

rithm cannot be well applied to real-time simulation 

applications. Figure 6 shows the collision effect of 

the elastomer based on the Medial-IPC framework. 

Figure 7. Continuous collision detection based on medial axis 

transform in rigid body simulation[109]. 

Song et al.[110] proposed a continuous collision 

detection method driven by the medial axis. This 

method makes full use of the geometric characteris-

tics of the medial axis primitives, simplifies the 

complex continuous collision detection problem 

into two sub-problems that can be solved analyti-

cally, and obtains the first collision time by fast 

convergence through alternating iteration. Under 

the premise of fully ensuring the accuracy, the 

computational efficiency of continuous collision 

detection in rigid body simulation is improved. The 

complex root finding problem of high-order poly-

nomial is simplified into the problem of nearest 

sphere pairs between medial axis elements and the 

problem of continuous collision detection between 

medial axis spheres by means of fixed parameters, 

and a new alternating iterative numerical solution 

method is proposed. Then, the problem solution is 

extended to the collision detection between differ-

ent types of medial axis primitives, and an optimi-

zation scheme is proposed to avoid redundant prim-

itive testing for complex primitives. Figure 7 

illustrates the rigid body collision simulation based 

on medial axis transform. 

Geometric deformation 

Figure 8. Deformation and volume preservation of ARAP 

driven by the medial axis[111]. 

Because the medial axis computation is sensi-

tive to noise, early work made it difficult to obtain 

high-quality medial axes that were simple in struc-

ture (no undesirable spikes), approximated the sur-

face precisely, and was compact enough to compute 

deformations. Fortunately, with recent advances in 

neutral axis simplification, such as Q-MAT[11], 

high-quality medial axes can be obtained by pruning 

unstable branches and simplifying from an initially 

poor-quality medial axis. As a result, it is now pos-

sible to use a “real” medial axis to drive shape de-

formation. Lan et al.[110] proposed an algorithm for 

shape deformation driven by the medial axis, a de-

formation scheme “As Rigid As Possible” (ARAP) 

is used to deform the medial axis so that its local 

transformation is as close to the rigid transformation 

as possible. Surface features of the deformed shape 

are obtained using an implicit skinning-based ap-

proach. The algorithm is essentially a skeleton 

structure for representing 3D shapes, but it provides 

more information about the surface, such as thick-

ness and features, than a traditional bar skeleton or 

curved skeleton. Combining ARAP deformation 

with radius adjustment on the dial mesh ensures that 

the overall volume is maintained during shape de-

formation. Equal surface projections with tangential 

relaxation not only preserve surface features but also 

address the candy-wrapper and volume-loss artifacts 

in distortion and bending associated with traditional 

deformation methods. Figure 8 shows the trans-

formation effect of ARAP deformation and volume 

preservation driven by the medial axis. 
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4. Database based on MAT

In order to advance the research and applica-

tions related to the medial axis transform more 

widely, a complete dataset is essential. Especially in 

deep neural network-based applications[63,85,101], a 

canonical dataset is necessary to train a practical 

neural network. 

Currently, only Hu et al.[63] constructed the first 

medial axis transform dataset Mod-

elNet40-MAT based on ModelNet40[68]. No other 

related work on medial axis transform data is 

available. Therefore, more publicly available da-

tasets of 2D or 3D geometric models, which 

can be based on point clouds or on triangular sur-

faces, can be searched for and the corresponding 

datasets constructed by extracting the medial axis 

transform of these shapes. Further, these datasets 

can be organized to construct a complete medial axis 

transform database to provide data support for future 

medial axis transform related research. 

5. Open challenges and future di-

rections

This chapter discusses the advantages and dis-

advantages of medial axis transform, and tries to 

lead to possible future research directions according 

to these characteristics.  

5.1. Advantages and disadvantages of MAT 

After the above description of the calculation of 

medial axis transform and the related applications of 

medial axis transform, the advantages and disad-

vantages of medial axis transform can be summa-

rized. 

The most prominent advantage of the medial 

axis transform is its simplicity; it can describe the 

complete geometric features of the original model 

with a simple data structure. Medial axis transform 

can preserve the complete topological characteristics 

of the original model with precisely defined skele-

tons. At the same time, the shortest distance from the 

local boundary provided by the radius can be used to 

restore the original shape. Furthermore, the medial 

axis mesh composed of medial axis sphere, medial 

axis cone and medial axis slab can provide better 

wrapability to the original model. Given these 

properties and the existing applications of the medial 

axis transform, it can be found that the most useful 

applications of the medial axis transform are de-

formation calculation, collision detection and shape 

analysis. 

From a deformation calculation perspective, the 

medial axis transform itself acts as a skeleton located 

at the center of the model, a more general and precise 

definition of the skeleton than the common stick fire 

curve skeleton. As a simplified model for defor-

mation calculation, the medial axis transform can 

maximize the ability to capture the local shape detail 

features of the model, especially for objects with 

complex geometric structures. 

From the collision processing point of view, the 

volume envelope of the medial axis transform can 

highly reconstruct the model shape, while the vol-

ume envelope has a smaller amount of data and a 

more compact envelope effect compared to the hi-

erarchical envelope box. This means that the medial 

axis transform can provide more efficient collision 

culling as a simplified model for collision pro-

cessing. 

From a shape analysis point of view, the medial 

axis transform cull the non-essential aspects of the 

shape and retains only the geometric elements 

that best represent its topology. Compared to other 

shape representation tools, the medial axis transform 

represents complex shape features, such as circles or 

sharp protrusions, with only a small amount of ge-

ometric data. More importantly, the medial axis 

transform contains a local volume description of the 

model, which directly characterizes the semantic 

information of the local thickness of the structure. 

However, from the existing extraction methods 

of medial axis transform and related applications, it 

can be seen that the medial axis transform still has 

certain limitations, which makes it unable to be 

widely used. The first drawback is the instability of 
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the medial axis transform. Because the medial axis 

transform is very sensitive to noise and subtle per-

turbations at the boundary of the model shape, these 

subtle perturbations and noises will cause many 

unstable branches called “spike” in the calculated 

medial axis. The computation of these “spike” is not 

only time-consuming, but also does not contribute to 

the expression of the final geometry and occupies a 

large amount of storage space. The existing extrac-

tion algorithms all try to ensure the accuracy of the 

medial axis itself as much as possible while ex-

tracting the medial axis transform with fewer spike. 

The second drawback is that the input model has 

strict requirements, and the current algorithm can 

only extract densely sampled point clouds or closed 

popular mesh. Although Yang et al.[65] proposed a 

medial axis extraction algorithm based on sparse 

point cloud model in 2020, the effect still needs to be 

improved. Finally, the medial axis transform is 

generally computationally inefficient, and it is very 

time consuming to compute the complete medial 

axis. The existing medial axis transform extraction 

technology has almost no algorithm to greatly op-

timize the computational efficiency, so that it can be 

calculated in real time, so that the medial axis can-

not be well applied to real-time tasks. 

5.2. Future research directions 

For the extraction of medial axis transform, we 

can start from four aspects. On the one hand, the 

existing simplification algorithm of medial axis 

transform is improved to reduce the redundancy and 

instability of medial axis transform. The reserch 

topic can be “Approximating MAT by Reduce 

Spikes Efficiently”. On the other hand, we can start 

to improve the calculation speed of the medial axis 

transform, so that it can reach the standard of re-

al-time application. Some topic basd this idea can be 

“A Real-time Method to Extract MAT”. In addition, 

we can also consider extracting medial axis that do 

not require an input model, such as sparse point 

clouds or medial axis transform of images. Similar 

topic can be “The Extraction Methods of MAT for 

Different Types of Input Models”. Finally, after the 

medial axis extraction algorithms of different mod-

els are available, we can consider constructing a 

corresponding medial axis transform dataset for the 

public geometric model dataset and organize it as a 

medial axis transform database. We can use some-

thing like “Building an Open and Comprehensive 

MAT Database ” to describe this topic. 

For the application of the medial axis transform, 

the envelope of the medial axis primitives can be 

considered instead of the traditional bounding box. 

Therefore, any technique that originally required the 

application of bounding boxes can be further studied, 

such as “A Ray Tracing Acceleration Method Based 

on MAT”. At the same time, the idea of using the 

medial axis transform skeleton to represent the shape, 

as well as the local thickness information, can well 

meet the requirements of the existing 3D recon-

struction tasks. In addition, for the simulation field 

of intelligent manufacturing, the medial axis trans-

form can also be considered as a model expression to 

optimize the simulation process. 

6. Conclusion 

Medial axis transform, as a kind of precisely 

defined skeleton, can accurately express the topo-

logical structure of geometric shapes. The radius 

corresponding to the medial axis sphere represents 

the local thickness information of the geometric 

object, and the original geometric shape can be well 

restored from the medial axis transformation. The 

medial axis primitives defined by the medial axis 

mesh can provide a more compact envelope for the 

original model. These features can be well integrated 

into the mainstream research of computer vision and 

computer graphics. However, the computation of the 

medial axis transform is not only very 

time-consuming, but also may extract the medial 

axis transform with a large number of “spike” since 

the computation process is susceptible to noise or 

perturbation at the boundary of the initial model. 

These spike not only occupy a lot of storage 

space, but also make no contribution to the shape 

representation, increasing the computational burden. 

In addition, most of the existing medial axis trans-
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form extraction techniques only support smooth 

surfaces and densely sampled geometry, and there 

are few related studies on the calculation of medial 

axis transform under point clouds or other types of 

geometric representations. These shortcomings 

prevent the wide application of the medial axis 

transform. 

Future research related to medial axis trans-

formation can be divided into two main branches: 

medial axis transform extraction and medial axis 

transform application. For the research of medial 

axis transform extraction, we can focus on how to 

improve the calculation speed of medial axis trans-

form. At present, there are few researches in this 

direction, which is an important factor that hinders 

the integration of medial axis transform into re-

al-time applications. In addition, one can also con-

sider extracting the medial axis transform of multi-

ple types of geometry, and reasonably optimize the 

“spike”. For the application of medial axis transform, 

the original geometric model can be replaced by 

medial axis transform to improve the efficiency or 

effect of related research, and the envelopedness of 

medial axis mesh can also be considered to replace 

the hierarchical bounding box related algorithm. 

Finally, for the emerging research direction of digital 

twin, there are many possibilities for the application 

of medial axis transformation. At present, there is no 

related research work combined with medial axis 

transformation in this field. This review can provide 

new technical ideas and theoretical support for ap-

plications such as industrial design, robot control, 

virtual reality, and human organ policy, and will 

certainly help to promote the research process of 

digital twin technology in China. 
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