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ABSTRACT 
It is a challenging task to handle the vector field visualization at local critical points. Generally, topological based 

methods firstly divide critical regions into different categories, and then process the different types of critical regions to 
improve the effect, which pipeline is complex. In the paper, a learning based multi-task super resolution (SR) method is 
proposed to improve the refinement of vector field, and enhance the visualization effect, especially at the critical region. 
In detail, the multi-task model consists of two important designs on task branches: one task is to simulate the interpolation 
of discrete vector fields based on an improved super-resolution network; and the other is a classification task to identify 
the types of critical vector fields. It is an efficient end-to-end architecture for both training and inferencing stages, which 
simplifies the pipeline of critical vector field visualization and improves the visualization effect. In experiment, we com-
pare our method with both traditional interpolation and pure SR network on both simulation data and real data, and the 
reported results indicate our method lower the error and improve PSNR significantly. 
Keywords: critical point; vector field visualization; multiple tasks; super resolution 

1. Introduction 

Vector field visualization has wide application 
in the field of science and engineering, and plays an 
important role in meteorology, aircraft design, auto-
motive design, and computational fluid dynamics[1]. 
Although significant progress has been made in vec-
tor field visualization after years of research and de-
velopment, quite a few questions worth exploring 
still exist. For example, during data collection tasks, 
due to the limited precision of sensors and radical 
vector changes near critical points, the collected dis-
crete data do not represent well the local features. 

Currently, vector field visualization related works 
are mainly focused on improving the visualization 
quality and effectiveness, including the research, ap-
plication, and refinement of streamline generation 
strategies, color enhancements[2], GPU load balanc-
ing[3], and seeding strategies[4]. However, these meth-
ods do not work well for the problem of vector field 
visualization near critical points. Since the critical 
points in the vector field contain very distinct struc-
tural information and can be explicitly characterized 
by topological features, the topological feature-
based approach is better for visualizing the critical 
region of the vector field[1]: vector fields are first 
classified according to the type of critical points, the 
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visualization is then enhanced using a special inter-
polation according to its classification. This process 
however involves numerical-based classification al-
gorithms, which is computationally intensive. At the 
same time, the visualization process is complicated, 
and error accumulation is still too high for radical 
vector direction changes. 

Super-resolution algorithm achieves image en-
hancement by enlarging the local details of an image. 
It is a mature end-to-end machine learning algorithm 
in the image processing field. Since vector field data 
and image have the same characteristics, i.e. a fixed 
boundary and number of channels, this paper draws 
on the super-resolution algorithm to perform super-
resolution enhancement on the critical region of the 
vector field. In addition, combined with the idea of 
multi-tasking, and the fact that multiple tasks in the 
network model can enhance each other, we consider 
adding multiple supervised signals based on the su-
per-resolution model to achieve further enhancement 
of the super-resolution effect of the vector field. 

Therefore, this paper proposes a multi-task 
based super-resolution neural network model to 
achieve the improvement of interpolation and visu-
alization near the critical region of vector fields. For 
the super-resolution task, interpolation of discrete 
vector fields is implemented to improve data accu-
racy in order to highlight more detailed features of 
the data fields. For the classification task, the classi-
fication of critical points is implemented, replacing 
the numerical solving classification of critical points 
in traditional topology-based methods. Effective in-
formation is extracted at the shallow layers of the su-
per-resolution neural network instead of interpola-
tion of specific types of vector fields. 

In summary, the approach this paper presents 
has two main novel contributions: 

(1) A deep learning based multi-task super-res-
olution network model is designed to achieve a re-
fined enhancement of the critical region of the vector 
field. 

(2) The proposed vector field enhancement 
method is an end-to-end efficient inference approach 

that helps simplify the process of vector field visual-
ization. 

2. Related works 

2.1. Vector field visualization 

Vector field visualization is part of visualization 
in scientific computing. In practice, vector field vis-
ualization methods can be divided into icon-based, 
geometry-based, texture-based, topology-based[1], 
etc. Among them, texture-based methods are usually 
used for two-dimensional vector field visualization, 
and the most representative ones are the Line Integral 
Convolution (LIC) algorithm[5] and the improved al-
gorithms derived from the Line Integral Convolution 
algorithm[2]. Extensive research has already been 
done on LIC, and as such LIC related works are 
abundant and mature. Since the LIC algorithm usu-
ally encounters problems of occlusion and low effi-
ciency on 3D data, 3D vector fields currently are 
mostly visualized by flow lines or flow surfaces 
based methods. 

2.2. Topology-based methods 

The theoretical basis for the vector field visual-
ization based on topological features is the Critical 
Point Theory, in which the critical point refers to a 
point in the vector field where each component is 
zero. The Critical Point Theory considers the topol-
ogy of an arbitrary vector field consisting of critical 
points, and surfaces and curves connecting those 
critical points. As a result, it can help people extract 
the important information of the vector field by ex-
tracting the topological skeleton and ignoring the 
secondary information, thus improving the visualiza-
tion and enhancing the understanding of the vector 
field data. The topology-based approach has a sound 
mathematical basis and can therefore be applied to 
any vector field. The classification of critical points 
in this paper is based on publication[6]. 

A very important step for topology-based of 
vector field visualization is to classify the critical 
points so that the topological characteristics of the 
vector fields can be better studied. The eigenvalues 
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and eigenvectors of the Jacobi matrix are calculated 
by evaluating the partial derivatives of the vector 
field for each critical point. Classification is then per-
formed based on the eigenvalue distribution on the 
complex plane[7]. Generally, they can be classified 
into saddle points, nodes, foci, centers, etc. Better 
visualization can be done according to critical point 
classifications. 

2.3. Deep learning and visualization 

General data visualization methods have been 
commonly used in the field of deep learning, usually 
for visualizing the training process of deep learning 
models, assisting researchers in debugging models, 
and enhancing the interpretability of models[8], etc. 
On the contrary, there are only a few related works 
on data field visualization using deep learning meth-
ods. For example, publication[9] trains a model for 
viewpoint recommendation in volumetric data visu-
alization, and publication[10] uses deep learning 
methods to reconstruct vector fields from generated 
streamlines, etc. In conclusion, the intersection of ar-
tificial intelligence and visualization is currently a 
research focus in computer science, and is early in its 
infancy. There are still many issues worth study-
ing[11]. 

2.4. Super-resolution 

Super-resolution technology was first used in 
image processing to restore low-resolution images to 
high-resolution images, increasing image clarity in 
the process. Over the past decade, deep learning-
based image super-resolution enhancement algo-
rithms have been emerging. SRCNN method was 
first proposed in the publication[12], on the basis of 
which many improved super-resolution models were 
proposed, such as FSRCNN[13], which improved the 
input of SRCNN, changed the feature dimension, 
and accelerated the training speed. Other improved 
models such as VDSR[14], ESPCN[15], and more were 
also proposed. The deep learning-based image super-
resolution technology has been developed into a full-
fledged and mature image enhancement solution 
over the years. 

Publication[16] used the SRCNN method in the 
scalar field sampling, publication[17] simulated and 
generated a huge fluid flow dataset and used a simple 
super-resolution model for interpolation training, 
and publication[18] trained a deep convolutional neu-
ral network to interpolate 3D vector fields. This is 
the first time someone proposed a neural network 
specifically for vector field interpolation. The three 
components of the vector are separately trained and 
then combined, the network consists of several resid-
ual blocks. 

3. Multi-task super-resolution net-
work model 

3.1. Problem statement 

Objective Given a low-resolution vector field 
𝑋𝑋, our goal is to synthesize a high resolution vector 
field 𝑌𝑌 using some function 𝐹𝐹. 

Definition and Types of 𝑭𝑭  Essentially, 
𝐹𝐹:𝑋𝑋 → 𝑌𝑌 is an interpolation process, since given a 
low-resolution domain 𝑈𝑈  with uniformly distrib-
uted discrete values in [1, … ,𝑀𝑀] × [1, … ,𝑁𝑁] , the 
objective of 𝐹𝐹  is to infer the discrete values in a 
higher resolution domain [1, … , 𝑠𝑠𝑀𝑀] × [1, … , 𝑠𝑠𝑁𝑁] . 
𝐹𝐹  can be a non-machine learning-based function, 
such as bilinear interpolation, or an ML-based func-
tion, such as a super-resolution neural network. They 
all have their own characteristics and bottlenecks in 
ensuring reasonable continuity of high-resolution 
discrete values. 

Non-ML Based 𝑭𝑭 Issues The sampling infor-
mation which F uses to generate Y is from X only. 
This is more effective for discrete values with good 
smoothness on U. If complex ridge and line features 
emerge, the generated result will be unsatisfactory. 

ML-Based 𝑭𝑭  Issues The sampling infor-
mation which F uses to generate Y is not only from 
X, but also from a sample domain {X} to which X 
belongs. This can interpolate features that are not 
visible in X but are present in the sample domain. 
However, if the critical points present in {X} is di-
verse and have radical changes, a single-task holistic 



Multi-task super resolution method for vector field critical points enhancement 

deep learning approach based on {X} will have great 
difficulty achieving high accuracy. 

In a two-dimensional vector field, the direction 
of vectors near the critical points is highly dependent 
on the critical point type. The network architecture 
we propose will add subcategorized supervised sig-
nals of critical point type to the SR model, and use 
the shared network to split the sample domain {𝑋𝑋} 
into smaller subdomains {𝑋𝑋1}{𝑋𝑋2}{𝑋𝑋3}{𝑋𝑋4} during 

the learning process, which facilitates further im-
provement of the SR task on each subdomain. 

3.2. Neural network architecture 

The multi-tasking network architecture we pro-
posed for two-dimensional vector field critical points 
is shown in Figure 1. It is a multi-task super-resolu-
tion network model that includes a super-resolution 
branch and a classification branch, as well as a base 
network shared by both branches.

 
Figure 1. Neural network architecture. 

Input. The super-resolution branch of this 
model is modified from VDSR and adopts a similar 
approach to VDSR in terms of data input. The low-
resolution vector field is first scaled up to the same 
size as the high-resolution vector field and subse-
quently fed into the network. 

Shared Network. Since our approach is multi-
task prediction, we adopt the end-to-end learning 
strategy considering the inference speed and model 
learning capability. The shared network is intended 
to find common features across the two branches. 
Specifically, common features are extracted by con-
volving the input data twice, and then fed into the 
super-resolution branch and the classification branch 
for their respective prediction tasks. 

Super-resolution Branch. The super-resolu-
tion branch is composed of several convolutional 
layers, in which the Conv4 layer can be followed by 
several identical convolutional layers. In this experi-
ment, we used three Conv4 layers. To improve the 
computational efficiency of the classification branch, 
the number of channels before the introduction of the 
classification branch is reduced. The original number 
of channels is then restored. We used the Leaky 

ReLU activation function in order to prevent the van-
ishing gradient problem in this experiment. 

Classification Branch. We employ a conven-
tional classification architecture. Having elicited 
data from the super-resolution branch, a four-classi-
fication result is acquired after three convolutional 
layers and two fully connected layers. 

Under the supervision of the classification 
branch, this architecture uses a shared network to 
split the input sampling domain of the vector field 
space domain into small subdomains. Data enhance-
ment is performed via each super-resolution branch. 
The types and parameters used in each layer of the 
architecture are shown in Table 1. 

3.3. Loss function 

For the super-resolution of images, we usually 
use the root mean square error (MSE) to measure the 
accuracy of the model output results. Thus, we con-
tinue to employ MSE as the loss function for our 
model. However, in vector field super-resolution 
based on the critical point classification, it is not 
enough to consider only the root mean square error.  
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Table 1. Model parameters 

Name #Input 
channel 

#Output 
channel 

Convolution 
kernel size 

Conv1 2 64 3 

Conv2 64 16 3 

Conv3 16 64 3 

Conv4 64 64 3 

Conv5 64 2 3 

Conv6 16 16 3 

Conv7 16 24 3 

Conv8 24 24 3 

Fc1 13824 600 - 

Fc2 600 4 - 

 
As the loss function of the classification also 

needs to be taken into consideration, we have made 
the decision of combining multiple loss functions. 

Vector Loss Measurement. We utilize MSE to 
measure the loss of vectors (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚), it’s defined 
as follows: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚(𝑉𝑉,𝑉𝑉′) =
1

2 × 𝑊𝑊 × 𝐻𝐻
���𝑉𝑉𝑥𝑥,𝑦𝑦 − 𝑉𝑉𝑥𝑥,𝑦𝑦
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𝑊𝑊
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𝐻𝐻
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(1) 

In Equation (1), 𝑉𝑉 represents real data, and 𝑉𝑉′ 
represents the model prediction result. We calculate 
the root mean square error by comparing the square 
of the difference between each component of the out-
put vector and each component of the real value. 

Classification Loss Measurement. We use the 
cross-entropy loss function to measure the accuracy 
of the classification (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑐𝑐𝑚𝑚), defined as follows: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑐𝑐𝑚𝑚 = −
1
𝑚𝑚
��𝑦𝑦𝑖𝑖𝑖𝑖 log�𝑝𝑝𝑖𝑖𝑖𝑖�

𝑛𝑛

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1

 

(2) 

In Equation (2), 𝑚𝑚  is the number of samples 
fed into the model for each training, 𝑛𝑛 is the num-
ber of categories for classification, and 𝑦𝑦𝑖𝑖𝑖𝑖 is the in-
dicator variable, which is 1 if the ith data is equiva-
lent to category 𝑗𝑗 and 0 otherwise. 𝑝𝑝𝑖𝑖𝑖𝑖 is the pre-
dicted probability distribution of belonging to cate-
gory 𝑗𝑗 for data 𝑖𝑖. 

Based on the above two loss functions, our final 
loss function is defined as: 

 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑓𝑓𝑖𝑖𝑛𝑛𝑚𝑚𝑓𝑓 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚(𝑉𝑉,𝑉𝑉′) + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑐𝑐𝑚𝑚  

(3) 

In practice, each component of the loss function 
can be weighted accordingly. In this experiment, we 
assign the same weight to both loss functions. 

 
Figure 1. Critical point types. 

Source: [6]. 

4. Experiment results 

4.1. Data preparation 

Data Simulation. Since we need to perform SR 
to the vector field according to the critical point type, 
and there is a lack of large-scale datasets for vector 
fields, the training data can only be generated via 
simulation. The theoretical basis of our simulation is 
derived from the publication[19], where an experi-
ment-based formula is given that can simulate vari-
ous types of critical points. Different types of critical 
points can be generated by adjusting the parameters. 
We use this formula to generate the critical points of 
two-dimensional vector fields. Types of generated 
critical points include saddle points, centers, foci, 
and nodes. The characteristics of vector fields near 
different critical points are shown in Figure 2. 9,345 
synthetic data entries were used for training and 763 
entries were used for testing, each with a size of 
200 × 200  and a channel number of 2. The data 
were listed in categories according to data type, as 
shown in Table 2: 
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Table 2. The information about adopted dataset 

Type # of training entries # of test entries 

Nodes 2645 243 

Foci 2645 243 

Saddle points 1396 48 

Centers 2659 229 

Total 9345 763 

4.2. Implementation details 

The experiment was run on a server equipped 
with an Intel Xeon E5 2678 v3 processor with 64GB 
of memory, and two NVIDIA GeForce RTX 2080Ti 
GPUs with 11GB of memory. The model was trained 
for 7.2 hours. 

In this experiment, in order to achieve a more 
accurate training effect, we also adopt the adaptive 
learning rate. The initial learning rate is set to 0.001, 
and thereafter the learning rate becomes one-tenth of 
the previous one every 30 epochs. Adam optimizer is 
utilized, and 60 shuffled data entries are fed into the 
neural network every epoch, for 120 a total of 120 
epochs. 

4.3. Evaluation metrics 

We use the peak signal-to-noise ratio (PSNR) 
here to measure the accuracy of the output results. 
PSNR was originally used to evaluate the effective-
ness in image super-resolution tasks, and the formula 
for calculating PSNR is based on the root mean 
square error. Here we can also use it to measure the 
results of our model output. In the task of evaluating 
vector field super-resolution models, PSNR is de-
fined as: 

𝑃𝑃𝐿𝐿𝑁𝑁𝑃𝑃(𝑉𝑉,𝑉𝑉′) = 10 log10 �
𝐼𝐼(𝑉𝑉)

𝑀𝑀𝐿𝐿𝑀𝑀(𝑉𝑉,𝑉𝑉′)
�  

(4) 

We have made some modifications to the PSNR 
formula, where 𝐼𝐼(𝑉𝑉) is the difference between the 
maximum and minimum values of the vector field 
values, and in Equation (4) we evaluate the truthful-
ness of the model output by calculating the root mean 
square error between the predicted result 𝑉𝑉 and the 
true value 𝑉𝑉′. 

4.4. Comparative analysis of training process 
and end results 

Here we compare the model in this paper with 
some other algorithms, including the SRCNN model 
for SR imaging, and we also compare the training ef-
fectiveness of this model with the VDSR model in 
order to verify the effect of multi-objective optimi-
zation. Figure 3 shows the changes of the root mean 
square error of the SRCNN model, the VDSR model, 
and the model proposed in this paper during the 
training process: 

 
Figure 2. Changes in RMSE during training (vertical axes). 

As can be seen from Figure 3, during the train-
ing process, the root mean square error decreases 
faster due to the large initial learning rate, and then 
decreases by varying degrees later as the learning 
rate adjusts. Overall, after adding the prediction 
branch for multi-task training, the model converges 
better, and the error is lower than that of the model 
without the prediction branch. The adaptive learning 
rate also has a positive effect on multi-objective op-
timization. The output of the model tested on differ-
ent kinds of critical points is shown below (Figure 
4). 

Subsequently, to validate the model, we tested 
the model using untrained test data, while adding a 
portion of the double gyres to verify the generaliza-
tion ability of the model. The MSE and PSNR de-
rived from each of these methods are shown in Ta-
bles 3 and Table 4, and the best results are marked 
in bold font. 
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Figure 3. Experiment results. 

Table 3. MSE values of different models 
Type SRCNN VDSR Our model 
Nodes 0.0032 0.00011 0.000047 

Foci 0.0066 0.00009 0.000042 

Saddle points 0.0031 0.00006 0.000028 

Centers 0.0035 0.00018 0.000083 

Double gyres 0.00053 0.00014 0.00006 

Table 4. PSNR values (dB) of different models 

Type SRCNN VDSR Our model 

Nodes 20.79 35.43 39.12 

Foci 17.59 35.83 39.55 

Saddle points 18.39 35.31 38.83 

Centers 19.51 32.40 35.76 

Double gyres 30.73 36.51 40.20 

 
From the above evaluation data, it can be seen 

that from the SRCNN model to the VDSR model to 
the multi-task SR model, the SR end result of the in-
put vector field is getting better and better. Mean-
while, the VDSR model can perform the SR task 
more accurately compared to SRCNN due to the 
higher number of layers. Therefore, under certain 
conditions, the deeper the neural network is, the bet-
ter the training result will be. Under the condition 
that model depth is fixed, the model with a prediction 
branch outperforms the model without a prediction 
branch. 

For the double gyres, our proposed model is 
shown to be able to accurately determine the critical 
point classification, and combined with the evalua-
tion metrics, we can see that our model has better re-
sults than other models for SR task of this data. 

5. Conclusions 

This paper proposes a new method for vector 
field visualization based on a multi-task super-reso-
lution model. After experiments, it is proved that this 
model achieves better results than the conventional 
numerical interpolation methods and single-task su-
per-resolution models, has higher accuracy for su-
per-resolution from low-resolution vector fields to 
high-resolution vector fields, and has higher accu-
racy for the classification of critical points. The 
model also has good extensibility and is we believe 
it can be generalized to visualize 3D vector fields, 
which is one of the future research possibilities. Be-
sides, our model can only identify a single critical 
point in a vector field, and further research is needed 
to classify and identify more complex vector fields 
with more complex topology. 

Conflict of interest 

The authors declare no conflict of interest. 

References 

1. Chen W, Shen Z, Tao Y. Big data series: Data visual-
ization. 2nd ed. Beijing: Publishing House of Elec-
tronics Industry; 2019. 

2. Tang B, Shi H. Intelligent vector field visualization 
based on line integral convolution. Cognitive Sys-
tems Research 2018; 52: 828–842. 

3. Zhang J, Guo H, Hong F, et al. Dynamic load balanc-
ing based on constrained k-d tree decomposition for 
parallel particle tracing. IEEE Transactions on Visu-
alization and Computer Graphics 2018; 24(1): 954–
963. 

4. Engelke W, Lawonn K, PREIM B, et al. Autonomous 
particles for interactive flow visualization. Computer 
Graphics Forum 2019; 38(1): 248–259.  

5. Cabral B, Leedom LC. Imaging vector fields using 
line integral convolution. Association for Computing 
Machinery 1993; 6: 263–270.  

6. Günther T, Rojo I. Introduction to Vector field topol-
ogy. In: Hotz I, Masood TB, Sadlo F, Tierny J (edi-
tors). Topological methods in data analysis and visu-
alization VI. Switzerland: Springer International 



Multi-task super resolution method for vector field critical points enhancement 

Publishing; 2021. 
7. Ba Z, Dan G, Liu J, et al. A feature-based seeding 

method for multi-level flow visualization. Journal of 
Computer-Aided Design & Computer Graphics 2016; 
28(1): 32–40. 

8. Hohman F, Kahng M, Pienta R, et al. Visual analytics 
in deep learning: An interrogative survey for the next 
frontiers. IEEE Transactions on Visualization and 
Computer Graphics 2019; 25(8): 2674–2693.  

9. Yang C, Li Y, Liu C, et al. Deep learning-based view-
point recommendation in volume visualization. Jour-
nal of Visualization 2019; 22(5): 991–1003. 

10. Han J, Tao J, Zheng H, et al. Flow field reduction via 
reconstructing vector data from 3-D streamlines us-
ing deep learning. IEEE Computer Graphics and Ap-
plications 2019; 39(4): 54–67. 

11. Xia J, Li J, Chen S, et al. A survey on interdiscipli-
nary research of visualization and artificial intelli-
gence. Scientia Sinica (Informationis) 2021; 51: 
1777–1801. 

12. Dong C, Loy C, He K, et al. Learning a deep convo-
lutional network for image super-resolution. Euro-
pean Conference on Computer Vision; 2014 Sep 6. 
Springer International Publishing; 2014. p. 184–199. 

13. Dong C, Loy C, Tang X. Accelerating the super-res-
olution convolutional neural network. arXiv; 2016. 

14. Kim J, Lee J, Lee K. Accurate image super-resolu-
tion using very deep convolutional networks. IEEE 
Conference on Computer Vision & Pattern Recogni-
tion; 2015. 

15. Shi W, Caballero J, Huszár F, et al. Real-time single 
image and video super-resolution using an efficient 
sub-pixel convolutional neural network. arXiv; 2016. 

16. Zhou Z, Hou Y, Wang Q, et al. Volume upscaling 
with convolutional neural networks. Proceedings of 
the Computer Graphics International Conference. 
New York: Association for Computing Machinery; 
2017. p. 1–6.  

17. Jakob J, Gross M, Gunther T. A fluid flow data set 
for machine learning and its application to neural 
flow map interpolation. IEEE Transactions on Visu-
alization and Computer Graphics 2021; 27(2): 1279–
1289. 

18. Guo L, Ye S, Han J, et al. SSR-VFD: Spatial super-
resolution for vector field data analysis and visuali-
zation. 2020 IEEE Pacific Visualization Symposium 
(Pacific Vis); 2020. 

19. Kim B, Günther T. Robust reference frame extrac-
tion from unsteady 2D vector fields with convolu-
tional neural networks. Computer Graphics Forum 
2019; 38(3): 285–295. 

 


	2.1. Vector field visualization
	2.2. Topology-based methods
	2.3. Deep learning and visualization
	2.4. Super-resolution
	3.1. Problem statement
	3.2. Neural network architecture
	3.3. Loss function
	4.1. Data preparation
	4.2. Implementation details
	4.3. Evaluation metrics
	4.4. Comparative analysis of training process and end results

