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Abstract: As special marks on a human face, facial landmarks reflect the facial features of 

various parts of the face, which is crucial in biomedicine and medical imaging. In addition, 

facial landmarks are also important features in computer vision such as face detection, face 

recognition, facial pose estimation, and facial animation. In this paper, we construct a 3D 

facial acupoint annotated dataset by labeling 37 facial acupoints on 846 neutral face triangle 

mesh on the FaceScape dataset. Based on these annotated data, we use a feature template 

matching method to realize the automatic annotation of 37 acupoints on triangle meshes. We 

used 40 meshes as the training set to extract the geometric patterns of 3D acupoints and then 

measured the performance of the automatic labeling algorithm on 20 meshes and 806 meshes 

as the test sets. In the training process, we extract the tangent plane for each landmark, 

project the neighbor vertices of the landmark to the tangent plane, and construct the feature 

image with R × R resolution through the bounding box of the projected points. In the testing 

process, we use the pattern images extracted during training to find the average features and 

use them as a guide to optimize the predicted landmarks. The experimental results show that 

our automatic acupoint labeling method has achieved good results. 
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1. Introduction 

The human face is as innate as other biological characteristics of the human 
body (such as fingerprints, iris, etc.), and its uniqueness provides the necessary 
prerequisite for the identity of human beings. The characteristics of the human face 
are usually abstracted into facial landmarks. Therefore, fields such as biomedicine 
[1], medical imaging [2], and computer vision will widely use facial landmarks to 
deconstruct and analyze facial features. In medicine, such as orthodontics, X-ray 
cephalometry is a simple and effective way to observe craniofacial structure and 
internal connections. Through the marking points described on the X-ray 
cephalometric film, the line distances, angles, and proportions are measured to 
understand the structure and relationship of soft and hard tissues such as craniofacial 
and teeth can be found to find cost-effective indicators to quickly and accurately 
guide clinical diagnosis and treatment. In computer vision tasks such as face 
recognition, registration, craniofacial analysis [3], 3D face reconstruction [4], facial 
expression analysis [5], head pose estimation [6], and many other tasks, we first 
automatically located some facial landmarks on the input face data, such as eye 
corners, nose tip, mouth corners, face contour, etc., and then complete complex 
visual tasks through the processing and analysis of these landmarks. 

Facial landmarks can reflect the characteristics of various parts of the face. With 
the development of technology and the increase in accuracy requirements, the 
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number of facial key points has grown from 5 points in the early stage to more than 
200 points. In visual tasks, the basic function of the key points is to describe the 
structure of the face. Therefore, some regions that appear to have special structures 
are usually selected subjectively as landmarks, and one or several points are used to 
describe a specific part of the face, such as one landmark to represent the nose tip, 
two eye corners to identify the eyes, and two mouth corners are used to represent the 
mouth, which provides convenience for the structured description of the face. In 
medical auxiliary tasks, the selection of facial landmarks needs to consider the 
deeper facial skull structure, not just the facial surface, such as the pronasale (the 
most prominent point of the nose, that is, the tip of the nose), the orbitale (the lowest 
point of the inferior orbital margin), and the supramental (the most concave point of 
the bone between the inferior alveolar margin point and the premental point). These 
points can also describe the tip of the nose, eyes, mouth, and other parts, but it is 
more difficult to obtain skull information by X-ray than only considering the face’s 
surface. Although the selection of these landmarks is different, it is essentially a 
structured description of the face. Visual tasks consider more facial surface 
information because it is easier to obtain, while in medical tasks, facial skull 
information is considered to describe the facial structure more accurately. If there is a 
set of landmarks that are easy to obtain the face surface information and have the 
accuracy of the craniofacial structure, it is beneficial to both visual and medical 
tasks. 

Obtaining landmarks from face data usually requires manual labeling by 
participants, which is extremely laborious and tedious work, and the repeated 
annotation work of the same personnel for a long time can easily bring errors by 
attention or muscle memory. Therefore, the automatic labeling algorithm of 
landmarks has also become a popular research field. Research on facial landmark 
localization has a long history, from traditional methods such as active shape models 
(ASM) [7], activate appearance models (AAM) [8], etc., to machine learning 
methods such as regression models. With the rapid development of deep learning, a 
variety of neural network structures are also used for the automatic localization of 
landmarks. 

In this paper, we first select a part of face acupoints as facial landmarks, and 
manually annotate acupoints on 846 triangle meshes in the FaceScape dataset [9], 
forming a 3D facial acupoint labeling dataset. Based on this data, we propose an 
automatic landmark annotation algorithm based on a small amount of data, which 
achieves good results on the test data. 

In summary, this article has the following contributions: 
 Construction of an annotated dataset containing 846 labeled data of 37 acupoint 

landmarks on the FaceScape dataset. 
 Development of an automatic labeling algorithm for 37 3D facial acupoint 

landmarks based on local geometric pattern image matching method, and the 
algorithm is decoupled from the number of landmarks, making it adaptable to 
any type and number of landmarks. 
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2. Related works 

2.1. Landmark selection strategy 

The selection strategy of facial landmarks revolves around the parts of the face 
that have the most prominent features and then selects the most representative point 
from these parts as a feature point. 

The Farkas craniofacial anthropometry system [10] is a landmark scheme 
widely used in medicine, clinical genetics, plastic surgery, and oral maxillofacial 
surgery. Dr. Farkas created a measurement system based on anthropometric 
landmarks. These landmarks are located on the midline or are symmetrically 
distributed about the midline of the face, covering important parts such as the eyes, 
nose, mouth, and ears (as shown in Figure 1 and Table 1). Based on Farkas’s 
system, Qiao et al. [11] define 26 soft tissue landmarks and use these landmarks to 
extract facial phenotype measurements to analyze the genetic and geographical 
associations. Liang et al. [12] used the landmarks ex and en to extract the eye 
phenotype. In addition, Farkas landmarks are also widely used in the study of human 
face morphology [13,14], and there are also many variants and derivatives [15]. 

Table 1. Landmarks of the Farkas system. 

Midline landmarks Symmetrical landmarks along the midline 

Label Name Label Name Label Name 

g Glabella ft Frontotemporale sba Subaurale 

n Nasion sa Superaurale al Alare 

prn Pronasale zy Zygion go Gonion 

sn Subnasale ex Exocanthion ch Cheilion 

ls Labiale superius en Endocanthion   

li Labiale inferius ps Palpebrale superius   

pg Pogonion pi Palpebrale inferius   

gn Gnathion mf Maxillofrontale   

 
Figure 1. Landmarks defined by the Farkas system [16]. 

Compared with Farkas’ craniofacial landmarks, which can be easily obtained 
from face images, cephalometric landmarks require X-rays to obtain skull images. 
The landmarks in cephalometric measurement can be divided into two categories: 
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one is anatomical, which truly represents some anatomical structures of the skull. 
The other type is extended. This type of landmark is obtained by extending the 
anatomical landmark points on the cephalogram. 

In computer vision, facial landmarks have a wide range of applications, such as 
high-precision face pose alignment [17,9], accurate analysis of facial features and 
expressions based on landmarks, processing, and synthesis of specific parts to 
achieve entertainment functions such as beautification and animation [18,19]. 

The number of landmarks used in computer vision has developed from the 
initial few to hundreds of landmarks. The selection of landmarks is mainly to locate 
the key parts of the face [6]. Therefore, compared with medical landmarks, there will 
be some points that are not on the surface of the face, such as the center of the eye, 
the center of the open mouth, etc., such as the landmarks of the eye center in the 
AFLW dataset [20] are not points on the surface of the face (as shown in Figure 2). 
In addition, the number of landmarks between different datasets is usually different, 
as shown in Table 2, so it is challenging to use across different datasets. These 
landmarks selection schemes are also widely used in 3D tasks. 

Table 2. Some sample datasets with different landmarks. 

Dataset Faces Landmarks Dimension 

ALFW [20] 25,993 21 2D 

300-W [21] 3837 68 2D 

AFW [22] 205 6 2D 

Helen [23] 2330 194 2D 

Menpo [24] 

10,993 68 2D 

3852 39 2D 

11,971 + 280 k 84 3D 

AFLW2000-3D [25] 2000 68 3D 

FaceScape [9] 847 68 3D 

 
Figure 2. Landmarks labeled in the AFLW dataset [20]. 

These landmarks’ configuration is diverse and closely related to the facial 
surface. Still, it has a weak relationship with the craniofacial surface, so it is difficult 
for direct utilization among different medical applications. 

2.2. Landmarks detection 

Manual annotation of landmarks is tedious and time-consuming repetitive work. 
To solve this problem, a large number of automatic landmark detection/annotation 
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algorithms have been proposed. These landmark detection algorithms can be divided 
into three categories [26]: holistic methods, Constrained Local Model (CLM) 
methods, and regression-based methods. 

Holistic methods use facial appearance information to construct a global facial 
shape model for landmark detection. The statistical model AAM (Active Appearance 
Model [8]) established by Principal Component Analysis (PCA) is used to locate the 
landmarks by fitting the learned appearance and shape models in the test images. 
Most holistic methods focus on improving the fitting algorithm [27,28]. In addition, 
AAM can also be optimized by adjusting the representation of features [29,30]. 
Constrained Local Methods use global facial shape features and unique local features 
around each landmark to infer the location of the landmark. The CLM [31] finds the 
landmarks by minimizing misalignment errors. Regression-based methods learn the 
mapping of landmarks directly from images, usually without explicitly constructing 
a feature model [32]. 

Due to the convenience of image data acquisition and use, automatic landmarks 
detection algorithm is more widely studied in 2D. Zhang et al. [33] use heatmap-
offset regression to perform landmark detection on face images under unconstrained 
conditions. Jeong et al. [34] propose a facial landmark detection algorithm for real-
world driving situations by integrating a locally weighted random forest regressor 
with random sampling consistency and an explicit global shape model. With the 
rapid development of deep learning, a large number of networks have also been 
proposed for 2D facial landmark detection [18,35,36]. Compared with 2D, the 
research on 3D facial landmark detection is relatively new. Salazar et al. [37] 
predicts landmarks through a network that learns the surface statistical information 
around each landmark and the connection structure of landmarks on 3D face scan 
data. Papazov et al. [38] predicts landmarks on RGB-D images through 3D local 
shape descriptors. Berends et al. [39] use two consecutive DiffusionNet models to 
achieve automatic labeling of cephalometric landmarks. Perakis et al. [40] uses 3D 
local shape descriptors to extract candidate landmarks, and identify landmarks by 
matching the candidate landmarks with the FLM (Facial Landmark Model) of facial 
anatomical landmarks. 

3. Landmarks and method 

3.1. Acupoint landmarks 

Acupoints are important locations in traditional Chinese medicine. It represents 
the position where the energy from the internal organs and meridians of the human 
body is infused on the surface. Acupoints are not only the reaction points of diseases 
but also the stimulation points of acupuncture, massage, and other clinical medicine. 

Acupoints are usually located in the depressions of the skull or the pores where 
muscles and bones meet and are widely distributed on the surface of the body. 
Hence, we believe that using facial acupoints as facial landmarks can not only 
describe the shape of the human face but also have the accuracy of the skull structure 
of the human face. So that visual tasks and medical tasks can have a unified 
landmarks framework. 

Acupoints are usually located in the depressions of the skull or the pores where 
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muscles and bones meet and are widely distributed on the surface of the body. 
Hence, we believe that using facial acupoints as facial landmarks can not only 
describe the shape of the human face but also have the accuracy of the skull structure 
of the human face. So that visual tasks and medical tasks can have a unified 
landmarks framework. 

We selected 37 facial acupoints as landmarks and labeled them on the 846 
neutral face triangle meshes of the FaceScape dataset [9] (see Table 3 basic 
information about acupoint landmarks, and Figure 3). The selected facial acupoints 
are evenly distributed on the face and are distributed in both flat and complex parts. 
These landmarks are symmetrically distributed with the midline of the face as the 
axis (5 landmarks are distributed along the midline). 

Table 3. Basic information about acupoint landmarks. 

Index Label Name 

0 (M) GV24  Yintang 

1 (M) GV25 Suliao 

2 (M) GV26 Shuigou 

3 (M) GV27 Duiduan 

4 (M) CV24 Chengjiang 

5/6 (L/R) GB14 Yangbai 

7/8 (L/R) TE23 Sizhukong 

9/10 (L/R) BL2 Zanzhu 

11/12 (L/R) EX-HN5 Temple 

13/14 (L/R) GB1 Tongziliao 

15/16 (L/R) BL1 Jingming 

17/18 (L/R) ST1 Chengqi 

19/20 (L/R) ST2 Sibai 

21/22 (L/R) ST7 Xiaguan 

23/24 (L/R) LI20 Yingxiang 

25/26 (L/R) SI18 Quanliao 

27/28 (L/R) ST3 Juliao 

29/30 (L/R) LI19 Kouheliao 

31/32 (L/R) ST6 Jiache 

33/34 (L/R) ST4 Dicang 

35/36 (L/R) ST5 Daying 

 
Figure 3. The 37 acupoint landmarks. (a) Left front view; (b) Front view. 
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3.2. Sample points processing 

We use 𝑀 = (𝑉, 𝐸, 𝐹)  to describe a triangle mesh with 𝑚  vertices 

{𝑣 , 𝑣 , ⋯ , 𝑣 }. To describe the local feature of a given landmark 𝑣 , we improve 
the framework proposed by Wang et al. [41] by finding all the neighbors of the 

landmarks within the radius 𝑟 as sample points S. The whole method is shown in 

Figure 4. If the number of vertices within 𝑟 is less than a threshold, then the 2-ring 
vertices of the landmarks are picked as sample points. 

S = 𝑣 ∈ 𝑉: |𝑣 − 𝑣 | < 𝑟 or{𝑣 ∈ 2 − ring(𝑣 )} (1)

After obtaining the sample points 𝑆 , we retrieve the unit normal 𝑛  of the 

landmark 𝑣 , and project these points onto the tangent plane of the landmarks. 

Considering a point 𝑝 ∈ 𝑆, the signed distance from 𝑝 to the tangent plane of 𝑣  is 
calculated according to the equation: 

𝑑𝑖𝑠 = (𝑝 − 𝑣 )𝑛  (2)

and then the projection 𝑝′ on the tangent plane can be obtained by: 

𝑝 = 𝑝 − 𝑑𝑖𝑠 ⋅ 𝑛  (3)

 
Figure 4. Flowchart of training and landmarks prediction. 

All points in 𝑆 are projected onto the tangent plane of the landmarks through the 

above processing to obtain 𝑆 . 

To use these sampling points to produce a regular image grid, we rotate 𝑆  so 

that the tangent plane of 𝑣  after rotation is perpendicular to the z-axis. We first 

calculate the rotation matrix 𝑅  from the landmark’s unit normal 𝑛  to the z-axis 

denoted as 𝑢 = (0,0,1). Considering arbitrary unit normal vector 𝑢 = (𝑎, 𝑏, 𝑐) as 

shown in Figure 5 starting from the origin, we first construct the rotation matrix 𝑅  

of 𝑢 bout the x-axis. Let 𝑢′ = (0, 𝑏, 𝑐) be the projection of 𝑢 on the 𝑦𝑜𝑧 plane, then: 

𝑅 (𝛼) =

⎣
⎢
⎢
⎢
⎢
⎡

1 0 0

0
𝑐

𝑑
−

𝑏

𝑑

0
𝑏

𝑑

𝑐

𝑑
⎦
⎥
⎥
⎥
⎥
⎤

 (4)

where 𝛼 denotes the rotation angle corresponding to 𝑢 rotating around x-axis to the 

𝑥𝑜𝑧 plane, and 𝑑 = |𝑢′| = √𝑏 + 𝑐 . Next, let 𝑢″ = (𝑎, 0, 𝑑) be the vector after 𝑢 

rotates around x-axis, then the rotation matrix 𝑅  of 𝑢″ around y-axis is: 
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𝑅 (𝛽) =

𝑑 0 −𝑎
0 1 0
𝑎 0 𝑑

 (5)

 
Figure 5. Rotation of a unit vector aligned to the z-axis. 

With 𝑅  and 𝑅 , we can rotate any unit normal vector onto the 𝑢 . Apply 𝑅 =

𝑅 (𝛽)𝑅 (𝛼) transformation on 𝑆 , we can get final sample points 𝑆  located on the 

plane perpendicular to the z-axis as shown in Figure 6c. 

3.3. Local feature descriptor 

After obtaining the sampling points 𝑆 , we can generate a set of points in a 

squared grid with resolution 𝑅  and the maximum area centered at the landmark 

based on these points. For a given landmark 𝑣 = (𝑥, 𝑦, 𝑧) and the corresponding 𝑆 , 

we first calculate the half-side length 𝑎 of the grid: 

𝑎 = min min(𝑥max − 𝑥, 𝑥 − 𝑥min),min(𝑦max − 𝑦, 𝑦 − 𝑦min)  (6)

where 𝑥 , 𝑥 , 𝑦 , 𝑦  represent the boundaries of the axis-aligned bounding 

box of 𝑆 . To generate a grid with resolution 𝑅, the unit length ℎ of the grid is: 

ℎ =
2a

(𝑅 − 1)
 (7)

Then the point set 𝐺  on the square grid of given landmarks 𝑣  is: 

𝐺 = {(𝑥  + 𝚤̇ ⋅ ℎ, 𝑦 + 𝑗 ⋅ ℎ|𝑖, 𝑗 = 0,1, ⋯ , 𝑅 − 1} (8)

Next, we rotate 𝐺  back to the tangent plane of 𝑣  through 𝑅  and get 𝐺  as 

shown in Figure 6f. The whole process of sample point processing and square grid 
generation is show in the Figure 6. We cast two rays along the normal in both 
directions of 𝑣  originating at the points in 𝐺  and find the signed distance from the 

grid point to the surface of the mesh as the local feature. This feature represents the 
signed distances from points near the landmark to its tangent plane, forming a pattern 
image. 
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Figure 6. The processing of sample points ultimately generates a square grid used to 

calculate the local features of landmarks; (a) sampling points 𝑆 are composed of 

vertices within the radius 𝑟 of each landmark or the 2-ring neighbors; (b) sampling 

points 𝑆 projected onto the tangent plane of each landmark, denote as 𝑆 ; (c) 

sampling points 𝑆  are rotated to the plane perpendicular to the z-axis with the 

landmark as the origin, denote as 𝑆 ; (d) generate 𝑅 × 𝑅 grid points (𝑅 = 9) in the 

bounding box of 𝑆 ; (e) grid points without occlusion; (f) the grid points that rotate 
back to the landmark’s tangent plane are used to calculate the final features. 
The red dots represent landmarks, the green dots represent the vertices near the landmarks and 
processed, the blue dots represent the points in the generated square grid, each point is ultimately 
represented as an image pixel, and the orange box represents the Axis-Aligned Bounding Box. 

3.4. Coarse-to-fine localization 

We define the landmark localization problem as searching for vertices with the 
most similar local feature descriptors mentioned above. First, we extract the local 
feature pattern image of each landmark for all meshes on the training set, and 
calculate the average feature patterns as a guide for prediction refinement. 

A template mesh 𝑀  is selected from the training set. For each target mesh 𝑀  

in the test set, we first use the ICP algorithm to align the 𝑀  mesh with 𝑀 . For each 

landmark of 𝑀 , Knn is used to search the nearest vertex in 𝑀  as the coarse location 

of landmarks in 𝑀 . For each coarsely located landmark, we search the vertices 

within radius 𝑟 of the landmark or the 2-ring neighbors, the same as the generation of 

the sampling points 𝑆 . 

For each candidate point 𝑣  of landmark 𝑣 , we calculate the local features of 

𝑣  and generate a pattern image. We then calculate the MS-SSIM [42] similarity 

between the pattern and the average feature pattern and use the candidate point with 
the maximum similarity as the final optimized landmark. 
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4. Experiments 

4.1. Data and parameters 

Unlike deep learning methodologies that heavily rely on randomized 
partitioning techniques to ensure model generalization, our method operates on a 
different paradigm. Our method, rooted in local geometric pattern image matching, 
does not necessitate an identical training process akin to deep learning models. 
Instead, it focuses on capturing sufficient information from the training dataset to 
effectively represent local geometric features. Consequently, random partitioning 
techniques become unnecessary, as the method’s efficacy stems from its ability to 
discern and leverage local geometric patterns without extensive training data. 
Therefore, we used a simple division of training set and test set in the experiments. 

In our experiment, we used the neutral face mesh No.1–40 in the FaceScape 
dataset as the training set to extract the local feature of each acupoint landmark. In 

the process of extracting features, we construct the sample points 𝑆  with the search 

radius 𝑟 = 4, the minimum neighbor threshold is 5, and the feature pattern resolution 

𝑅 = 9. The odd resolution can ensure that the center of each pattern represents the 

distance of 0. The average patterns of the final extracted feature points are shown in 
Figure 7. 

 
Figure 7. The 9 × 9 resolution average feature patterns of 37 acupoint landmarks in 
the training set. 

4.2. Implement detail 

We use the Python version of Open3D [43] to build a landmark labeling 
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program, which is used to label acupoint landmarks on a 3D face mesh. To obtain 
higher efficiency, our automatic landmark labeling algorithm is implemented in C++. 

To facilitate the representation and visualization of feature patterns, during the 
feature extraction process, we perform special normalization processing on the 
distance represented by the features. We map the positive and negative distance 

values to [0, 0.5] and [−0.5, 0] respectively, thus ensuring that the distance value 
represented by the middle of the pattern is 0 (odd resolution). 

Each pixel represents the signed distance from a certain position near the 
landmark to the tangent plane, red represents the positive distance, and the 
corresponding grid point on the tangent plane is located outside the face, while the 
blue distance is negative and the corresponding grid point is located inside the face. 
The middle column represents the patterns of the acupoints located on the midline of 
the face, and the left and right sides represent the patterns of the right and left faces, 
respectively. 

4.3. Automatic labeling results 

We tested on two subsets of the FaceScape dataset, with a small subset 
containing 20 models (No.41–60), and a large subset containing 806 models except 
for the training data and No.832 (the mesh was missing in the dataset version used), 
and the MSE of each acupoint is shown in Table 4. 

Table 4. Acupoint landmark prediction results. 

Index Label MSE1 (mm) MSE2 (mm) Index Label MSE1 (mm) MSE2 (mm) Index Label MSE1 (mm) MSE2 (mm) 

0 GV24  3.33761 4.16259 13 GB1L 2.86373 6.36939 25 SI18L 14.9271 9.27154 

1 GV25 2.71117 2.86771 14 GB1R 5.5479 9.55427 26 SI18R 12.8831 13.383 

2 GV26 4.39703 3.28801 15 BL1L 4.20445 9.51578 27 ST3L 6.23471 4.71092 

3 GV27 3.33836 2.28356 16 BL1R 3.59924 9.82582 28 ST3R 4.82106 5.37582 

4 CV24 3.89653 6.46715 17 ST1L 6.76117 3.93621 29 LI19L 5.19442 6.2019 

5 GB14L 8.73421 6.70675 18 ST1R 5.1002 3.57489 30 LI19R 5.46766 9.24654 

6 GB14R 8.26157 8.27526 19 ST2L 9.91773 4.49015 31 ST6L 7.95975 11.9356 

7 TE23L 4.73751 5.11096 20 ST2R 7.6565 4.50048 32 ST6R 9.92264 9.77193 

8 TE23R 5.12839 5.85634 21 ST7L 10.7996 15.0106 33 ST4L 3.2399 4.94159 

9 BL2L 3.48487 4.50023 22 ST7R 11.5619 17.3381 34 ST4R 2.95033 3.86951 

10 BL2R 3.70636 7.64659 23 LI20L 2.06342 3.13582 35 ST5L 9.37778 18.148 

11 EX-HN5L 11.1605 5.02405 24 LI20R 2.47917 2.90459 36 ST5R 8.47732 18.4812 

12 EX-HN5R 10.8742 5.81509         

MSE represents the mean square error between the ground-truth (manually labeled points) and the 
automatically labeled points. MSE1 and MSE2 are the results of the test set containing 20 and 806 
models, respectively. 

The experimental results show that the error of acupoint landmarks distributed 
on and near the middle line of the human face is smaller than acupoints far away 
from the middle line. This is because during the face alignment process, the 
registration effect is better in the middle part of the face, and the width of different 
faces causes the closer to the outside of the face, the lower the degree of registration, 
which causes the coarse localization of the landmark far away from the real point, 
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resulting in a larger MSE of the optimized landmarks. This can be improved by 
coarse positioning of the facial landmarks through non-rigid registration. 

4.4. Algorithm comparison 

Due to the particularity of the landmarks we use, it is difficult to compare with 
the accuracy of other methods, so we compare with other methods from an 
algorithmic point of view as shown in Table 5. 

Table 5. Algorithm comparison. 

Methods Template Landmarks Candidate landmarks Final prediction Extensibility 

Perakis P 
et al. 
[40] 

No 8/5 
Using shape index and 
spin image to 
determine candidates. 

Fitting into FLM8/5 
model. 

Poor 

Ingale 
AK et al. 
[44] 

No 16 
Segment mesh, find 
sharp edge vertices as 
candidates. 

The point within the 
specific mesh cluster 
that satisfies certain 
constraints. 

Poor 

Ours Yes 37 

Rigid face registration, 
the nearest neighbor’s 
neighborhood of 
template facial 
landmarks as 
candidates. 

The candidates with 
the highest matching 
degree to the 
template landmark 
patterns. 

Good 

Perakis constructed FLM models for the sets of 8 and 5 landmarks respectively, 
selecting candidate landmarks through shape index and spin image, and searching 
the combination of these candidate points to fit into corresponding FLM. Because a 
different number of landmarks needs to build different FLM models, and with the 
increase of the number of landmarks, the search space size of candidate 
combinations will increase exponentially, so the extensibility of landmarks is poor. 

Ingale et al. [44] first segment the face by the clustering algorithm, and find the 
sharp edge vertices as the candidate vertices in the specific cluster. Finally, the 
candidate points in the specific region are searched for points that satisfy the unique 
constraints of each landmark as the final result. Since each landmark has different 
constraints, this method also difficult to expand the landmarks because new 
constraints need to be defined. 

In our method, we only need to select a template face mesh, and by aligning the 
target face and the template face, we search through the neighborhood of the nearest 
points on the target face of the template landmarks as candidate points to match the 
feature point template pattern. The candidate point with the highest matching degree 
is used as the final result. In our case, the extension of landmarks is very easy, only 
need to calculate an additional template pattern of the target landmark, because the 
positioning of each landmark is independent, resulting in a very good expansion of 
the landmarks. 

5. Conclusions 

In this paper, we selected 37 human facial acupoints as the facial landmarks and 
constructed an annotated dataset containing 846 labeled data on the FaceScape 
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dataset. Based on this annotation data, we propose an automatic labeling algorithm 
of 37 3D facial acupoint landmarks based on local geometric pattern image matching 
of landmarks and achieved good annotation results in the experiments. As we 
discussed in the algorithmic comparison section of the experiment, our automatic 
labeling algorithm is decoupled from the number of landmarks, so this method is a 
general method that can be migrated to any type and number of landmarks and has 
strong extensibility. In addition, the problem of large errors in landmarks far away 
from the middle of the face can be solved by optimizing the coarse positioning 
results through non-rigid registration methods, thereby improving the annotation 
results. 

Since our prediction results are the vertices in the original mesh, thus the 
density of vertices in the face mesh poses a significant challenge in our study. We 
acknowledge that an excessively dense mesh can result in a considerable 
computational burden, while a sparse mesh may compromise the accuracy of our 
method, particularly in regions with fewer vertices, such as the flat areas near the 
cheeks. To address this limitation and enhance the effectiveness of our approach, we 
plane to focus on the following areas in our future work: 1) Exploring novel methods 
for optimizing mesh density and distribution to achieve a more balanced trade-off 
between computational efficiency and accuracy. 2) Introducing traditional Chinese 
medicine acupoint selection methods to assist in the optimization process and results 
evaluation. 
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