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Abstract: Climate change is becoming a global threat to human well-being and the 

sustainability of the planet Earth. The central cores of urban centers are significantly 

observed warmer than their surrounding outskirts or rural areas, which is identified as the 

urban heat island (UHI) effect fueled by massive Land Use Land Cover (LULC) change. The 

main research aim was to examine the Spatio-temporal variation of UHI dynamics based on 

the land surface temperature (LST), Normalized Difference Vegetation Index (NDVI) and 

built-up density in the urban centers (Jimma, Bedelle, Bonga, and Sokorru) landscape using 

techniques of remote sensing. In this study, Landsat thematic mapper (TM) for 1987 and 

Landsat Operational Imagery (OLI) for 2018 in the extraction of LST were used for 

examining UHI. Also, LULC, NDVI and built-up density of the urban centers were analyzed. 

The results of the study showed that the urban core had greater LST and UHI values, due to 

an increase of built-up density and a decline of green space. The result of LST mean value 

range rose from 20.1 ℃ (Bonga) to 23.3 ℃ (Sokorru) in 1987 and 22.67 ℃ (Bedelle) to 

24.74 ℃ (Bonga), and 24.72 ℃ (Sokorru) in 2018, while the maximum observed LST value 

range from 28.97 ℃ (Jimma) in 1987 to 32.61 ℃ (Bonga) in 2018. The maximum range of 

UHI mean value was from 11.23 ℃ (1987) to 14.04 ℃ (2018), while the maximum observed 

UHI value ranged from 19.63 ℃ in 1987 to 23.32 ℃ in 2018 over Jimma city. The computed 

correlation at 5% significance results showed LULC change has a significant association with 

surface air temperature (r = 0.621, Sig. (2-tailed) = 0.031) accompanied by UHI impacts. We 

recommended urban authorities, policymakers, and urban planners should consider the 

effects of LST and UHI in urban planning to realize climate-smart urban centers of tomorrow 

in urban centers of southwest Ethiopia. 

Keywords: urban heat island; land surface temperature; land use; urbanization; NDVI; and 

built-up density  

1. Introduction 

Most studies define the term “urbanization” as an increase in the population 

proportion living in cities and the physical expansion of previously existing urban 

centers [1]. According to the reports of world urbanization prospect 2018, which 

predicted that 68% of the world population would reside in the urban areas by the 

year 2050 [2]. Africa has a low level of urbanization with 37.1% compared to other 

developed ones like North America (79%) and Europe (72.7%) as reported [1]. 

While the less urbanized country Ethiopia from Africa is currently only 20% of the 

population living in urban areas, urbanization is increasing at a rate of 4.4% [2,3]. 

The most frequent occurrence that raises a city’s surface temperature in 

comparison to its periphery is known as the “urban heat island (UHI)” [4]. Most 
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scholars reported that a higher LST in urban centers than in the nearby fringe 

suburban or rural areas is an urban heat island [5–7]. This phenomenon is triggered 

by an environmental effect of urbanization and industrialization turning the natural 

landscapes of urban areas into impervious or impermeable surfaces [8]. Urbanization 

alters natural into built impervious surfaces, imposing a significant impact on the 

city’s thermal environment [4,9]. There are more artificial surfaces in urban areas 

than natural or green ones. Once the heat is retained by these man-made surfaces, the 

land surface temperature (LST) rises and moves upward into the atmosphere and 

downward into the subsurface layers, heating the surface, the subsurface, and the 

atmosphere together to create an urban heat island [10]. Observations have shown 

that the temperatures of urban centers can be up to 12 ℃ higher than neighboring 

outskirts [11].  

Anthropogenic heat emissions are also higher in cities. The surface energy 

balance at the surface and the layer of boundary structure in and around cities’ local 

UHI circulation systems are altered by these variations in radiation, warm air, and 

vibrant features [12]. When the rural and urban areas are subjected to the same 

climate, some of the greatest reported canopy layer-UHI (CL-UHI) are recorded in 

the summer under clear skies, low wind, and 2–3 h after sunset [12,13]. Some 

patterns do, however, exist [14] for a variety of reasons: (1) averaging over longer 

periods with different synoptic conditions within one season or longer; (2) rural and 

urban areas are not exposed to the same regional climate (i.e., combined effects—not 

just urban processes); and (3) in some regions, the role of anthropogenic heat flux 

emissions during winter may be significant. 

Increased urban temperatures typically have negative local, regional, and global 

effects on the economy, health and ecology. These consequences increased the need 

for air conditioning, increased pollution, altered urban thermal conditions, and 

caused a rise in the frequency of heat-related illnesses due to persistently high 

temperatures, which is thermal pollution brought by human activity triggering local 

microclimate change [15]. The previous study confirmed that local microclimate 

change is exacerbated by LULC change [16,17]. The occurrence of UHI in urban 

centers affects the resident’s comfortability and their health [18–21]. An increasing 

trend in UHI impacts the well-being and health of people which contributes to the 

rising rates of energy consumption, neurological system disorders (such as 

sleeplessness, irritability, sadness, and memory loss), heart attacks, hyperthermia, 

diseases of the digestive system, and even violent episodes of high death rates in 

urban centers [22]. However, the spatio-temporal formation of UHIs phenomena is 

associated with high intensity of LST caused by the dynamics of LULC [23]. While 

understanding urban climates and providing integrated urban services is aided by an 

analysis of urban center UHI [24]. 

Urban centers are more conducive to the establishment of UHIs due to a 

number of factors, including the loss of flora, the high-water impermeability of 

structures, and the materials used to pave roadways. Furthermore, the characteristics 

of construction materials combined with the daily activities of the occupants could 

lead to reduced wind speeds, air pollution, and anthropogenic heat [25]. The built-up 

and vegetation index showed a substantial link in the study on the ecological 

assessment of UHI occurrences in Chicago [26]. An empirical verification, 
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evaluation, and forecasting conducted over Cumilla showed Bangladesh’s seasonal 

urban thermal field variance index (UTFVI) and UHI [27]. The origins, impacts, and 

remedies for UHI effects were also expounded [28]. Another study examined the 

effects of terrain and building or construction materials in a thorough analysis of the 

UHI intensity effects in East African metropolitan cities [29].  

The previously conducted research in Ethiopia by [30], carried out 

investigations on the factors that cause UHI in Hawassa city, which tried to mention 

the role of geological processes basically resulting from hot rocks near the city. Also, 

another study carried out by [31], which assessed the UHI dynamics over Jimma city 

due to LULC change. Another study conducted over the four fast-growing cities in 

Ethiopia (Adama, Addis Ababa, Hawassa and Bahir Dar) that associates green space 

dynamics with LST intensity [32]. Also, another study in Mekelle city pointed out 

UHI variation and its impact over the city for 30 years by using the remote sensing 

techniques [33]. 

Extensive and measurable data are needed to comprehend what was/is 

happening and predict the scenario in the near future because urbanization spurred 

the UHI occurrence and repercussions on human well-being. The harshness of the 

urban climate, however, received less attention in the past and little research has 

been done to determine how urbanization alters surface temperature and UHI as well 

as its impact on the local microclimate of urban centers of southwest Ethiopia. 

Therefore, the main purpose of this research was to examine the spatiotemporal 

variation and trends of UHI, LST, NDVI, and built-up density nexus using remote 

sensing techniques on four urban centers of southwest Ethiopia (Jimma, Bedelle, 

Bonga and Sokorru) from 1987–2018. These urban centers have social and economic 

importance for the region and are growing rapidly, with Jimma as the central hub 

and the others nearly located at 100 km horizontal ground distance, which was 

selected purposively. The area is considered the wettest part of the country, due to 

unplanned urban development without consideration of urban planning, the urban 

centers environmental challenges and climate change footprints impacts becoming 

evident as reported by previous studies. These study findings will alert the urban 

actors to consider the climate change issues for sustainable urban development 

planning to reverse the problems ahead. As research gaps, the four urban centers less 

studied using GIS and remote sensing-based satellite images or data with particular 

urban landscapes setting. The previous research focuses on major cities more than 

the middle emerging ones and the lack of up-to-date land use land cover. Satellite & 

GIS data at the town/city level limits the study, which needs intensive data to carry 

out in-depth analysis, making insufficient studies. 

Furthermore, this study will play a pivotal role in providing baseline 

information for urban actors (urban planners, urban authorities, policy makers, 

residents and researchers) that curbs scant literature in this regard. This complements 

the finding of adaptation and mitigation climate actions that enable sustainable, 

climate-smart urban centers of the future and motivate researchers to conduct future 

research on urban problems. In addition, these study findings can be relevant to other 

cities with comparable socioeconomic and demographic features. 
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2. Materials and methods 

2.1. Study area description 

This study was conducted in the southwest Ethiopia’s urban area, which lies 

between 7°22′ N to 8°45′ N and 36°23′ E to 37°40′ E representing a grid box of 1° × 

1°. The urban centers located in the Oromia Regional State are Jimma, Bedelle, and 

Sokorru, while Bonga is in the Southern Nations Nationalities and Peoples (SNNP), 

as depicted in Figure 1. The altitude ranges from 600 to over 2000 m while the 

altitude of Jimma City ranges from 1720 m above sea level (m.a.s.l) at Airport 

(Kitto) to the maximum 2010 m.a.s.l of Jiren at Abba Jifar Palace (Masara). 

Whereas, Bonga (1779), Bedelle (2011), and Sokorru (1928) m.a.s.l. elevation 

(Figure 1) [16,34,35]. According to the City’s revised master plan 2019, the total 

land area of Jimma City is about 10,200 hectares, while that of Bonga is 8846, 

Bedelle is 2878, and Sokorru is 300 hectares. 

 
Figure 1. The study area location map. 

The total populations living in study urban centers are in Jimma City (265,000), 

Bonga 44,046 (by 2024); Bedelle (40,500) and that of Sokorru (25,617) in the year 

2024 [36,37].  

Climatically, the annual temperature mean was between 19–20 ℃ and the 

annual mean rainfall ranges from 1700–2000 mm (Figure 2). The highest monthly 

mean temperature was experienced at 21.5 ℃ on Sokorru in March and the lowest 
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17.7 ℃ on Bedelle in July from 1990–2020 (Figure 2). The area is experienced with 

a mono-modal rainfall type, with the main rainy season—from the middle of March 

to October—and the small rainy season—February to April (Figure 2). 

Comparatively, Bedelle receives the highest annual rainfall total, followed by 

Jimma, Bonga, and the lowest in Sokorru, with 1931, 1844, 1809, and 1379 mm, 

respectively, from observed meteorological data computed from 1990–2020 (Figure 

2). Whereas the driest months are November, December, and January, the highest 

mean temperature is observed in March and April due to the proximity of the 

location near the tropics (Figure 2). The southwest of Ethiopia is the uppermost 

rainfall-receiving and the wettest corridor in the country, as documented by many 

studies [38,39]. 

 
(a) 

 
(b) 

Figure 2. Computed study urban centers’ (a) monthly mean temperature; (b) monthly rainfall totals from 1990–2020.  

The significant business activity is contributed by local urban-rural exchanges. 

Commerce is the basic economic action with small manufacturing enterprises. Also, 

the livelihood of households depends on surrounding natural resources and urban 

agriculture as well as labor employments in different enterprises like small-scale 

cottage industries. Concerning the infrastructure development, the towns are 

interconnected by a highway asphalt road that runs from Addis Ababa to Sokorru-

Jimma-Bonga via the Mizzen route and from Jimma-Agaro-Bedelle, which runs to 
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the Metu-Gambella or Nekemte route. Comparatively, Jimma city has a well-

developed infrastructure, and Sokorru is less developed with respect to others. Bonga 

and Bedelle have gotten administration special attention as well. 

2.2. Data sources 

The Landsat Thematic Mappers (TMs) of 1987 and Landsat Operational Land 

Imager (OLI) of 2018 images of the dry period were downloaded from the USGS 

website via (http://earthexplorer.usgs.gov) at a resolution of 30 m, which was cloud-

free (Table 1). The months were selected based on the availability of the finest 

cloud-free/minimum satellite imagery for thermal LST assessment and spectral index 

analysis. The image analyses were conducted using ERDAS software version of 

2015, and change analysis was conducted using supervised classification maximum 

likelihood algorithms following change detection procedures. For climate data 

sources, long years of data series for air temperature (1987–2018) were collected 

from the Ethiopian Meteorological Institute (EMI). Linear regression analysis and 

the Mann-Kendall test were conducted as well using relevant analytical tools. 

Table 1. Data source description. 

S/No. 
Urban 

center 
Source 

Acquisition Year 

Path/Row Resolution (m) Software used 1987 Landsat 

(TM) 

2018 Landsat 

(OLI) 

1 Jimma USGS 22/11/1987 27/11/2018 169/055 30 

ERDAS 2015, Arc GIS10.5 for 

LU/LCC, LST, UHI, NDVI and, built-

up map analysis, SPSS version 23 

2 Sokorru USGS 24/12/1987 24/12/2018 170/054 30 

3 Bedelle USGS 15/11/1987 20/11/2018 170/055 30 

4 Bonga USGS 15/11/1987 20/11/2018 169/055 30 

2.3. Land surface temperature analysis 

There are several well-developed algorithms used for the retrieval of LSTs 

from Landsat TM and OLI/TIRAS data, including mono-window algorithms 

[40] and split-window algorithms [41]. Alternatively, image-based single-band 

split-window algorithms were used to retrieve LST values from Landsat images 

thermal bands because the method is less sensitive to uncertainties in the optical 

properties of the atmosphere, which was analytically efficient [42]. It uses the 

brightness temperature of band 10 of thermal infrared (TIR), the mean, and the 

difference in land surface emissivity to estimate the surface temperature  [43]. 

Before retrieval of the LST, a quadratic model was utilized to change the 

digital number of Landsat thermal bands because every object emits thermal 

electromagnetic energy as its temperature is above absolute zero (k). Based on 

this principle, the signal received by the thermal sensors (TM and OLI/TIRS) 

was converted to the sensor radiance (Lλ). The spectral radiance was calculated 

using the following equation [44]. Moreover, LST retrieval was conducted using 

Landsat 8 OLI can be analyzed using the following procedures: 

2.3.1. Procedure 1: Conversion of digital number into radiance 

In radiometric calibration, pixel values, which were represented by Q in remote 

sensing and unprocessed image data, were thereby changed into absolute radiance 
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values. Digital numbers are manually changed to at-sensor radiances, then to 

brightness temperature [45]. The TM and ETM+ DN values range between 0 and 

255 (for Landsat 5 and 7). For Landsat 8 OLI using Equation (1):  

𝐿𝜆 = 𝑀𝐿 × 𝑄𝑐𝑎𝑙 + 𝐴𝐿 − 𝑂𝑖 (1) 

𝐿𝜆 = 0.0003342 × 𝐵𝑎𝑛𝑑10 + 0.10000 − 0.29, 

where: 

Lλ—Top of Atmosphere (TOA) spectral radiance (Wm−2 sr−1 μm−1).  

ML-Band-specific multiplicative rescaling factor from the metadata 

(RADIANCE_MULT_BAND_x, where x is the band number).  

AL—Band-specific additive rescaling factor from the metadata 

(RADIANCE_ADD_BAND_x, where x is the band number).  

Qcal—Quantized and calibrated standard product pixel values (DN). 

Oi—Correction value for band 10, i.e., 0.29. 

2.3.2. Procedure 2: Conversion of radiance to brightness temperature 

The TM Band 6 imagery could be transformed from spectral radiance (as 

described above) to a more physically useful variable. The effective temperature at 

the satellite of the observed Earth-atmosphere system was computed under uniform 

emissivity using the constants from pre-launch calibration. The conversion formula 

is using Equation (2): 

𝑇 =
𝐾2

ln (
𝐾1
𝐿𝜆

+ 1)
 (2) 

T—Effective at-satellite temperature in Kelvin. 

K2—Calibration constant two.  

K1—Calibration constant one.  

L—Spectral radiance in watts/(meter squared × ster × μm). 

For Landsat TM and ETM+, the thermal band calibration constants are: 

Constant 1-K1watts/(meter squared × ster × μm) is 607.76 for Landsat 5. Constant 2-

K2 in kelvin is 1260.56 Landsat 5 (Landsat Handbook). The process of analyzing 

LST values follows the conversion of thermal infrared Digital Numbers (DNs) of 

Bands 10 to radiance Top of Atmosphere (TOA) and at-satellite brightness 

temperature. Plank’s function was used to examine the effective at-sensor brightness 

temperature (TB), also known as black body temperature, using the spectral 

radiance. 

In this study, the LST was calculated using the mono-window algorithm [46]. 

To comprehend the amount of temperature recorded, brightness temperature was 

approximated [47,48]. In order to comprehend the mean land surface emissivity and 

subsequently estimate the LST, the brightness temperatures of Landsat 8 (band 10) 

were estimated [49]. Equation (5) was used to calculate the split-window algorithm’s 

conversion of radiance to temperature [50] was calculated using Equation (5). Using 

pre-launch calibration constants for the Landsat 8 OLI sensor, spectral radiance 

readings for band 10 were translated to radiant surface temperature under the 

presumption of uniform emissivity. The raw digital numbers of the thermal bands are 



Eco Cities 2025, 6(1), 2976. 
 

8 

converted to Top of Atmosphere (TOA) brightness temperatures, which are the 

effective temperatures seen by the satellite under the assumption of emissivity, after 

spectral radiance is converted to radiance [51] using Planck’s equation. Top of 

Atmosphere Spectral Radiance was calculated using Equation (3).  

𝐵𝑇 =
𝐾2

𝑙𝑛 (
𝐾1
𝐿𝜆

+ 1)
 (3) 

where; 

BT—effective at-sensor brightness temperature (K); 

K2—calibration constant 2 (K); 

K1—calibration constant 1 (W/(m2 × sr × μm));  

Lλ—spectral radiance at the sensor’s aperture (W/(m2 × sr × μm)); and, 

ln—a natural logarithm. 

2.3.3. Procedure 3: Land surface emissivity estimation 

To calculate the LSE, it is crucial to identify the inherent features of the earth’s 

surface and the thermal radiance energy change throughout calculating LST [50,52]. 

According to [52], the emissivity value for this study was calculated using the 

following Equation (4). 

ε = 0.004 × PV + 0.986 (4) 

While PV is the vegetation proportion computed using the proceeding formula; 

PV = [
NDVImax − NDVImin

NDVImax − NDVImin
]
2

 (5) 

The computed radiant surface temperatures were corrected for emissivity as 

used by [53] using Equation (6): 

𝐿𝑆𝑇 =
𝑇𝐵

1(𝜆𝑇𝐵/𝑃)𝐼𝑛𝜀
 (6) 

where; 

LST—land surface temperature (in Kelvin), TB—radiant surface temperature (in 

Kelvin).  

λ—the wavelength of emitted radiance (11.5 μm), ρ—h × c ÷ σ (1.438 × 10−2 

mK).  

h—Planck’s constant (6.26 × 10−34 J∙s), c: is the velocity of light (2.998 × 108 

m/s).  

σ—Stefan Boltzmann’s constant (1.38 × 10−23 J∙K−1), and ε—land surface 

emissivity. 

To convert land surface temperature value from the kelvin unit to degrees 

Celsius. 

LST (0celsius) = LST (Kelvin) − 273.15  (7) 

2.4. Validation of LST retrieved  

The validation process was done by using the LST value being extracted 

using zonal statistics from Landsat LST. Finally, land surface temperature values 
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from Landsat 5 TM and Landsat 8 OLI were verified using meteorological 

temperature data. Therefore, meteorological temperature data was used from the 

station located in the study urban centers.  

2.5. Analysis of UHI dynamics in urban centers landscape 

To identify the UHI crucial areas determined by the distribution of LST and the 

amount of vegetation cover, LST was measured using an equation developed by 

[53,54]. Also, to compare UHI variation for different times, normalization methods 

of LST were performed following [55] and [27] by using where urban heat was 

characterized using the following Equation (8) formula:  

𝑈𝐻𝐼 = 𝑇𝑠 − 𝑇𝑚/𝑆𝑑 (8) 

Ts—Land surface temperature. 

Tm—The mean of LST. 

Sd—The standard deviation of LST. 

2.6. Normalized difference vegetation index (NDVI) extraction 

The green spaces of urban spatial distribution in the study urban centers were 

extracted and computed based on NDVI value. The NDVI value generally ranges 

between −1 and +1. The −1 value implies the absence of vegetation, while +1 values 

the presence of dense vegetation. While NDVI values are feasible for the 

computation of change detection analysis, with NDVI low value (0.1 and below) 

showing barren areas of sand, rock, or snow [56]. The NDVI value is further 

categorized as no-vegetation (for the value < 0), unhealthy vegetation (0.02–0.03), 

and bush and grasses represent moderate values (0.2 to 0.3), while a high NDVI 

value shows dense vegetation ranging from 0.6 to 0.8 [57]. NDVI was acquired from 

spectral measurements of reflectance in the visible (Red) and near-infrared regions 

(NIR) in the ArcGIS environment. OLI’s visible, near-infrared, and short-wave 

infrared bands were used to compute the NDVI of the four urban centers, each using 

the formula: 

NDVI =
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 (9) 

where: NIR—pixel digital number (DN) of TM Band 4 and Band 5 (for Landsat 7 

and 8, respectively) as well as R—DN of TM Band 3 and Band 4 (for Landsat7 and 8 

respectively) [58]. 

LST, which is the radiative temperature over the surface of land influenced by 

albedo, soil moisture, and the vegetation covers, was measured by remote sensing, 

whereas air temperature is measured 1–2 m above the ground using instrumentation 

techniques. The intricate interactions of turbulent heat transfers are generated by 

surrounding hot surfaces, resulting in the temperature of the air close to the surface 

[58]. Generally, for LST, UHI, NDVI and built-up data analysis for each of the four 

urban centers, the software used were ArcGIS 10.5 for analyzing and visualizing 

spatial data, ERDAS 2015 for image classification and accuracy assessment, Google 

Earth Pro and GPS for LULC accuracy assessment, and SPSS V23 for regression 

and correlation analysis.  
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3. Results 

3.1. Spatio-temporal analyzed result of LST over urban centers 

To create a distribution of thermal patterns for each of the four urban centers on 

the map, LST distribution was categorized into the proper ranges and color-coded. 

The findings showed that study urban centers have different LST values due to 

differences in the LULC classes. The highest computed minimum and maximum 

land surface temperature increase in 1987 and 2018 was observed in Bonga, which 

ranges from 4–5 ℃, followed by Jimma with 2.6–2.8 ℃, Sokorru 1.3–1.6 ℃, and 

the least in Bedelle 0.5–1.2 ℃ (Table 2).  

The highest LST values were observed in open areas (vacant spaces) and built-

up areas with a drastic increase of impervious structure surfaces during the past 

thirty years as a result of urban growth in urban areas. The detail summary value of 

LST for each urban center’s minimum versus maximum LST for the 1987 and 2018 

years is depicted in Table 2. The varied trends of LST are connected to the thermal 

properties of different types of LULC classes. The thermal signature of each kind of 

land cover was obtained by superimposing a land surface temperature image with a 

land use and land cover map from 1987 and 2018 to better understand how urban 

growth affects land surface temperatures (Figure 3, Table 2). 

The findings of the analyzed LST for the four urban centers revealed that the 

lowest minimum and the highest maximum LST values rose from 12.7 ℃ (Bonga) 

and 29 ℃ (Jimma) in the year 1987 to 15.6 ℃ (Jimma) and 23.3 ℃ (Bonga) in the 

year 2018, respectively (Figure 3, Table 2).  

Table 2. Computed results of LST, UHI and NDVI values of urban centers in 1987 

and 2018. 

Urban centers 
Landsat TM 1987 LST values (℃) Landsat OLI 2018 LST values (℃) 

Minimum Maximum Mean Minimum Maximum Mean  

Jimma 12.84 28.97 20.91 15.64 31.64 23.64 

Sokorru 18.28 28.26 23.30 19.85 29.59 24.72 

Bedelle 16.90 26.90 21.90 17.42 27.92 22.67 

Bonga 12.67 27.51 20.10 16.86 32.61 24.74 

Urban centers 
Landsat TM 1987 UHI values (℃) Landsat OLI 2018 UHI values (℃) 

Minimum Maximum Mean Minimum Maximum Mean  

Jimma 3.62 19.63 11.23 4.76 23.32 14.04 

Sokorru 4.44 14.75 10.20 9.02 17.47 13.23 

Bedelle 2.24 12.60 7.42 2.42 13.21 7.93 

Bonga 2.41 13.34 8.00 3.38 23.31 13.35 

Urban centers 
Landsat TM 1987 NDVI values  Landsat OLI 2018 NDVI values 

Minimum Maximum Mean Minimum Maximum Mean  

Jimma −0.33 0.73 0.30 −0.06 0.58 0.26 

Sokorru 0.08 0.65 0.37 0.07 0.47 0.27 

Bedelle 0.04 0.65 0.35 0.06 0.42 0.24 

Bonga 0.03 0.69 0.36 0.04 0.61 0.33 
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(a) (b) 

  
(c) (d) 

Figure 3. Land surface temperature map of (a) Jimma; (b) Sokorru; (c) Bedelle; (d) Bonga in 1987 and 2018. 

3.2. Spatial analysis of urban heat island variation in urban centers 

landscape 

The findings revealed that the lowest minimum and the highest maximum UHI 

rose from 2.2 ℃ (Bedelle) and 19.6 ℃ (Jimma) in the year 1987 to 2.4 ℃ (Bedelle) 

and 23.3 ℃ (Jimma) in the year 2018, respectively (Table 2; Figure 4). The primary 

cause of the change was the substitution of impervious or impermeable surfaces for 

green space. The highest value of UHI was seen in parts with a high concentration of 

complex buildings and construction and low vegetation cover (Table 2; Figure 4). 

The analysis of the UHI in the four urban centers revealed that the highest UHI 

was from 3.6 to 19.6 ℃ in Jimma for the minimum and highest maximum values, 

respectively, whereas the lowest UHI was observed from 2.2 to 12.6 ℃ in Bedelle 

for the minimum and maximum values, respectively, in the year of 1987. Also, the 

computed result revealed that the highest UHI was from 4.8 to 23.3 ℃ in Jimma, 

respectively for the minimum and maximum values, whereas the lowest UHI was 

observed from 2.4 to 13.2 ℃ in Bedelle, for minimum and maximum values, 

respectively, in the year 2018 (Table 2; Figure 4). The detail summary value of UHI 

for each urban center’s minimum versus maximum in the 1987 and 2018 years is 

depicted in Table 2. 
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(a) (b) 

  
(c) (d) 

Figure 4. Urban heat island (UHI) map of (a) Jimma; (b) Sokorru; (c) Bedelle; (d) Bonga in the year 1987 and 2018. 

3.3. Analyzed result of normalized difference of vegetation index (NDVI)  

According to the computed results of the NDVI of study urban centers for both 

the years 1987 and 2018, the greater NDVI value was experienced in the highest 

vegetation coverage in the study of 4 urban centers and vice versa. The highest 

NDVI value was observed in the patches of forests, riverbanks, and wetlands, with 

vegetation in the surrounding peripheries (Figure 5). The analysis of NDVI revealed 

that both the NDVI minimum and maximum values declined from 1987 to 2018 in 

the recent past 30 years (Tables 2 and 3; Figure 5). The computed findings revealed 

that the decline of NDVI value from 1987, which implies the vegetation coverage 

reduced in the year 2018. The decline of vegetation complements the upsurge or 

increase of LST and UHI effects in urban centers. Thus, the reduction of vegetation 

cover results in temperature increase due to reduction in cooling effect, which in turn 

means NDVI is negatively correlated with LST as well (Table 3). The urban centers 

local communities and administrations have to emphasize the green spaces 

development in their urban landscape jurisdiction. 
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(a) (b) 

  
(c) (d) 

Figure 5. Normalized difference vegetation index map for (a) Jimma; (b) Sokorru; (c) Bedelle; (d) Bonga in 1987 and 

2018. 

Table 3. Computed correlation analysis between vegetation cover change and microclimate changes inducing LST in 

urban landscapes. 

Correlationsa 

 Rain fall in mm TempMax TempMi Tmean in oC LULCC in Ha 

Rain fall in mm 

Pearson Correlation 1 −1.000** −1.000** −1.000** 0.153 

Sig. (2-tailed)  0.000 0.000 0.000 0.717 

N 8 8 8 8 8 

TempMax 

Pearson Correlation −1.000** 1 1.000** 1.000** −0.153 

Sig. (2-tailed) 0.000  0.000 0.000 0.717 

N 8 8 8 8 8 

TempMin 

Pearson Correlation −1.000** 1.000** 1 1.000** −0.153 

Sig. (2-tailed) 0.000 0.000  0.000 0.717 

N 8 8 8 8 8 

Tmean in oC 

Pearson Correlation −1.000** 1.000** 1.000** 1 −0.153 

Sig. (2-tailed) 0.000 0.000 0.000  0.717 

N 8 8 8 8 8 

LULCC in Ha 

Pearson Correlation 0.153 −0.153 −0.153 −0.153 1 

Sig. (2-tailed) 0.717 0.717 0.717 0.717  

N 8 8 8 8 8 

**. Correlation is significant at the 0.01 level (2-tailed). 
a. LULC type = vegetation, LULCC- Land Use Land Cover Change. 
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3.4. Spatio-temporal analysis of built-up dynamics in urban centers 

landscape 

Concerning the built-up density, the 4 urban centers built up significantly 

increased from the years 1957/58/67, 1987, and 2018 with respect to individual 

urban land size (Table 4; Figure 6). Comparatively, the Jimma city built-up area 

increased from 220 ha (2%) in the past 1957 to 2580 ha (23%) in 2018; in Sokorru 

the built-up area increased from 20 ha (6%) in 1957 to 116 ha (36%) in 2018; in 

Bedelle the area of built-up enlarged from 43 ha (5%) in 1958 to 325 ha (38%) in 

2018; and in Bonga the increase of built-up area from 54 ha (4%) in 1957 to 297 ha 

(22%) in 2018 (Table 4; Figure 6). Although, due to the absence of shortwave 

infrared in 1957/58/67 and 1987, the NDBI was not generated, rather than the 

increase of built-up trend density from 1957–2018 was depicted using the table 

below (Table 4; Figure 6). 

The non-parametric correlation analysis implied that there is a significant 

relationship between LULCC in Ha with RF and Tmin, which shows that as LULCC 

in Ha increases, RF and Tmin may increase moderately (r = 0.621, p = 0.031); 

however, there is no statistical association between LULCC in Ha with other climate 

variables (Tables 4 and 5). Also, the regression analysis in all urban centers shows 

that the surface temperature increases as urbanization increases during the recent 

past of 30 years due to built-up increase at the expense of vegetation reduction 

(Tables 4–6). Thus, the higher the vegetation cover depicted, the higher the value of 

NDVI, which showed a negative association between LST and NDVI. 

Table 4. LULC change and type of (ha, %) of a) Jimma, b) Sokorru, c) Bedelle, and d) Bonga from the 1950s to the 

2010s. 

 LULC Type 

Share of LULC from the total area of each urban center LULC change in hectare (ha) 

1957/58/67 1987 2018 1957/58/67–1987 1987–2018 1957–2018  

ha % ha % ha % ha ha ha 

a) Jimma (1957) 

Cropland 3036 29  2774 27 2566 22  −262 −208 −470 

Vegetation 4307 41  4644 44  2880 25  337 −1764 −1427 

Wetland 2901 28 2674 26 3438 30 −227 764 537 

Built-up 220 2  372 3  2580 23 152 2208 2360 

b) Sokorru (1957)  

Cropland 129 41 119 37 82 26 −10 −37 −47 

Vegetation 98 31 83 26 66 21 −15 −17 −32 

Wetland 71 22 67 21 54 17 −4 −13 −17 

Built-up 20 6 49 16 116 36 29 67 96 

c) Bedelle (1958)  

Cropland 265 31 238 28 189 22 −27 −49 −67 

Vegetation 436 51 352 41 251 29 −84 −101 −185 

Wetland 108 13 106 13 87 10 −2 −19 −21 

Built-up 43 5 156 18 325 38 113 169 282 

d) Bonga (1967) 

Cropland 463 34 443 32 395 29 −20 −48 −68 

Vegetation 664 49 589 43 548 40 −75 −59 −116 

Wetland 187 14 145 11 128 9 −42 −17 −59 

Built-up 54 4 191 14 297 22 137 106 243 
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Table 5. Computed correlation analysis between LULCC and microclimate changes in urban landscapes. 

Correlations 

 LULCC in Ha Rainfall Tmax Tmin Tmean 

Spearman’s rho 

LULCC in Ha 
Correlation Coefficient 1.000 0.621* −0.355 0.621* 0.266 

Sig. (2-tailed)  0.031 0.258 0.031 0.403 

RF 
Correlation Coefficient 0.621* 1.000 −0.500 1.000** 0.500 

Sig. (2-tailed) 0.031  0.098  0.098 

Tmax 
Correlation Coefficient −0.355 −0.500 1.000 −0.500 0.500 

Sig. (2-tailed) 0.258 0.098  0.098 0.098 

Tmin 
Correlation Coefficient 0.621* 1.000** −0.500 1.000 0.500 

Sig. (2-tailed) 0.031  0.098  0.098 

Tmean 
Correlation Coefficient 0.266 0.500 0.500 0.500 1.000 

Sig. (2-tailed) 0.403 0.098 0.098 0.098  

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed), bold stands for correlation and significant 

values. 

The regression analysis and Mann-Kendall test results showed over four urban 

centers under study the temperature change observed, which was a consequence of 

urbanization that leads to LULCC. Thus, especially the NDVI is negatively 

correlated with LST and positively associated with built-up area increase, but the 

change varies spatio-temporally among urban centers (Tables 4 and 6).  

Table 6. Linear regression and Mann-Kendall test of temperature results (1967–

2018) in urban centers of southwest Ethiopia at a 95% confidence interval. 

S/N Attribute Jimma Bedelle Bonga Sokorru 

I 

Minimum Temperature     

change of temp (℃/year) 0.028 0.057 −0.002 0.021 

change of temp (℃/decade) 0.28 0.57 −0.02 0.21 

R2 0.393 0.533 0.000 0.178 

Z-value 2.35 2.34 1.43 2.32 

Sen’s slope 0.014 0.027 0.010 0.035 

II 

Maximum temperature     

change of temp (℃/year) 0.037 0.013 0.076 0.012 

change of temp (℃/decade) 0.37 0.13 0.76 0.12 

R2 0.67 0.062 0.66 0.000 

Z-value 2.17 3.28 1.63 2.37 

Sen’s slope 0.023 0.160 0.000 0.031 

III Mean temperature 0.032 (℃/year) 0.32 (℃/decade), R2 = 0.705 
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(a) (b) 

 
 

(c) (d) 

Figure 6. Built-up areas map of (a) Jimma; (b) Sokorru; (c) Bedelle; (d) Bonga in 1957/58/67, 1987 and 2018. 

4. Discussion 

The computed study findings implied that the urban central core of the study 

towns had greater LST and UHI values, which are associated with the extent of built-

up area density and LULC spatial coverage of specific urban centers, which was 

consistent with the studies of previous works [2] and impervious surface coverage 

[59,60]. The computed result of LST mean value range rose from 20.1 ℃ (Bonga) to 

23.3 ℃ (Sokorru) in 1987 and 22.67 ℃ (Bedelle) to 24.74 ℃ (Bonga) and 24.72 ℃ 

(Sokorru) in 2018, while the maximum observed LST value ranged from 28.97 ℃ 

(Jimma) in 1987 to 32.61 ℃ (Bonga) in 2018 (Table 2; Figures 3 and 4). The 

findings show that the UHI maximum mean value range was from 11.23 ℃ (1987) 

to 14.04 ℃ (2018) experienced, while the maximum observed UHI value range was 

from 19.63 ℃ in 1987 to 23.32 ℃ in 2018 over Jimma city (Table 2; Figures 3 and 

4). The primary cause of the change was the substitution of impervious or 

impermeable surfaces like wetlands, cropland and green space to other land uses of 

the urban centers under study. Over Delhi city, similar findings have been recorded 

[61]. 
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The highest value of UHI is seen in a high concentration of complex buildings 

and construction areas in the urban core with less coverage of vegetation (Tables 2 

and 3; Figures 4–6). This finding is comparable with other studies conducted in 

Jimma city [31] and over Mekelle city [33] which assessed UHI dynamics associated 

with LULC. This finding agreed with the assertion made by [47] that the LST 

decreases when the NDVI increases and vice versa. Similar studies disclosed that the 

opposite association between LST and NDVI has been documented [62–66]. The 

lack of greenery or vegetation coverage in the city is linked to lower NDVI values in 

the city of Bahir Dar, Ethiopia [47] which complements our study findings. Also, our 

findings were consistent with a study on the green space-LST nexus in the four fast-

growing major cities in Ethiopia [32], which focus on green spaces role in reducing 

UHI effects of warming and vice versa, where surface temperature and UHI effect 

were high in the urban core of study urban centers. In addition, changes in LULC 

fueled by urbanization affect the local microclimate of study urban centers which 

varies spatially and temporally, as coined in previous works (Tables 2 and 3) [16]. 

The highest built-up density values were noted in the urban center’s highest 

density built-up areas, while the lowest built-up density values are observed in the 

lowest built-up density areas. High-density vegetation in urban centers results in 

lower built-up density and vice versa [67,68]. A study that employed GIS data and 

RS images used RS images that outperformed in classifying local climate zones in 

LST and UHI analysis conducted in Guagzhou, China [69]. Similarly, this study 

tried to utilize the mentioned datasets. The other study conducted in the Wuhan 

urban agglomeration of China concludes that human activity shows a significant 

positive correlation, while weather and climate have a negative correlation with the 

LST, highest in winter [70] and LULCC worsened UHI by impacting thermal 

comfort [71]. Even though the study context varies, our findings of the weather and 

climate change are triggered or fueled by human activity of urbanization inducing 

LST and UHI. By lowering perceived temperatures by up to 20% in vegetated and 

shaded zones, green spaces have been shown to improve bioclimatic comfort [72], 

which is similar to our findings of UHI high, where less vegetation cover exists in 

the urban core of urban centers in southwest Ethiopia. 

Moreover, the presence of densely built-up areas results in high built-up density 

values and vice versa. Therefore, urban development has to be adjusted according to 

the variability of changing climate and endorse effective urban planning 

consideration of green spaces in adaptation and mitigation actions ahead to enhance 

the climate-resilient smart urban centers in Southwest Ethiopia in particular and 

urban areas of Ethiopia in general. 

As the limitations of the study, to curb limitations, even if the authors try to 

download the RS satellite images during the dry season and cloud-free to optimize 

the accuracy at that time captured when compared with the current emerged 

technologies with high resolution, there is a limitation. Also, uncertainties due to 

certain GIS administrative datasets may not promptly represent urban formations, 

and due to the rapid rate of unplanned urban expansion, local neighborhoods and 

communities may not be represented by training samples’ coverage locations for 

classification. In addition, associated factors that limit the LST and UHI formation 

have to be considered due to urban landscape changes by human actions. Further 
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studies are suggested to use high spatial resolution satellite data with detailed land 

use by comparing it with ground reality verification and using models that need 

testing before use, as well as different UHI mitigation and urban cooling strategies 

that are studied in urban landscapes.  

5. Conclusion 

The phenomena of urbanization-triggered climate change occurrence calls for 

the urgent need to identify the variables that affect LST and UHI, which burden 

urban actors to curb such ruins in urban centers to implement appropriate adaptation 

and mitigation actions that match the local context to be more resilient and comfort 

residents. This study examines the UHI dynamics versus LST, NDVI and built-up 

density over the recent past 30 years from 1987 to 2018 by GIS and remote sensing 

methods. Also, assessed how UHI dynamics nexuses and major urbanization factors 

influenced LST intensity due to vegetation coverage deterioration, which affects the 

potential cooling intensity of urban centers studied. The urban LULC change 

dynamics reflect substantial increases in built-up coverage, accompanied by 

decreases in wetlands, urban green areas, and urban agriculture coverage. Besides, 

UHI intensity spatial coverage is extensive among urban centers, while computed 

values showed the high temperature was experienced in the epicenter of urban core 

areas. Whereas, by 2018, high temperatures in the outskirt’s suburban areas of each 

study urban center revealed intensified or aggravated conditions comparatively. The 

results implied that rapid urbanization/urban expansion in the four study urban 

centers has contributed to LULC dynamics that triggered UHI effects due to natural 

vegetation alteration to built-up areas. UHI and LST rise of increased built-up areas 

and the decrease of green spaces in all urban centers studied from 1987 to 2018. 

While growing the extent of green space can greatly reduce or mitigate UHI impacts. 

The computed correlation analysis result revealed that LULC change had an 

association with the microclimate change of minimum temperature and rainfall in the 

southwest Ethiopian urban centers. 

Generally, the study findings have practical implications to alert urban actors 

(urban planners and administrations, residents and others) to thereby implement 

environmentally sound development. Urban centers of developing countries’ 

emerged in an unplanned way, and similarly, studying urban center development was 

at the cost of urban environments by impacting their local climate. Therefore, we 

recommend local government authorities should have to devise local strategies that 

promote a sustainable path of urban development by involving all urban actors. 

These strategies could include conservation of green areas in landscape planning that 

mitigate UHI effects, appropriate use of grey or hard infrastructures, and proper 

implementation of urban plans by employing adaptation and mitigation climate 

actions in short- and long-term periods. Finally, urban centers become livable and 

comfortable to their dwellers and become climate-smart, resilient cities of tomorrow 

in the dynamic challenge of climate change. Future research could have to consider 

socioeconomic data, high-resolution satellite images like aerial photography, 

QuickBird, and other recent RS datasets for more detailed information in this regard. 
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