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Abstract: The exacerbation of climate change impacts within metropolitan areas is a well-

documented phenomenon, often leading to severe consequences that pose significant risks to 

human populations. The impact of urban vegetation and planting design on these factors can 

be observed. However, it is worth mentioning that while there is an extensive body of literature 

on the consequences of climate change, there is a relatively small number of studies specifically 

focused on examining the role of vegetation as a mitigating factor in urban environments. This 

review paper aims to critically examine existing studies pertaining to the role of urban 

vegetation in mitigating the detrimental effects of the urban environment. The objective is to 

offer practical recommendations that can be implemented by city planners. By conducting a 

comprehensive examination of the literature available in Scopus, Web of Science, and Google 

Scholar, employing specific keywords pertaining to urban vegetation and climate change, we 

have identified five prominent concerns pertaining to the urban environment. These concerns 

encompass particulate matter, gaseous pollution, noise pollution, water runoff, and the urban 

heat island effect. The present analysis highlights that the impact of urban vegetation on the 

negative consequences of climate change cannot be unequivocally classified as either positive 

or negative. This is due to the fact that the influence of urban greenery is intricately connected 

to factors such as the arrangement, makeup, and dispersion of vegetation, as well as the specific 

management criteria employed. Hence, this research has the potential to enhance 

comprehension of the multifaceted nature of urban green spaces and establish a solid 

groundwork for subsequent investigations. 
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mitigation 

1. Introduction 

The acceleration of urbanization on a worldwide scale, along with the occurrence 
of severe weather events, is intensifying the consequences of environmental hazards 
such as floods, tropical cyclones, and heat waves, which are frequently linked to 
periods of drought [1–4]. Cities worldwide are compelled to acquire knowledge 
regarding optimal governance and planning solutions to effectively tackle challenges 
related to equity, livability, and sustainability due to the substantial physical density 
and population of urban areas, which frequently lead to significant human and 
financial losses [5–9]. Urban green spaces are now widely recognized and 
implemented as a genuine public amenity in contemporary society. They are regarded 
as vital infrastructure, akin to aqueducts, schools, sewers, and highways, as they play 
a crucial role in enhancing the whole quality of life for individuals, encompassing both 
their mental and physical well-being [10–13]. Urban vegetation offers numerous 
ecosystem services, which can be described as the benefits that individuals derive from 
an ecosystem [14–17]. An illustration of this phenomenon is the role of trees in urban 
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environments, wherein they effectively regulate temperatures through the provision of 
shade and the cooling of air via transpiration. Consequently, this ecological function 
serves to mitigate the potential hazards of heat-related illnesses for those residing in 
cities [18–22]. In addition, it should be noted that trees serve as carbon dioxide (CO2) 
sinks through the processes of photosynthesis and the accumulation of biomass [23–
29]. 

Furthermore, aside from the direct processes of carbon assimilation and storage, 
urban planting has the potential to indirectly contribute to carbon emissions reduction 
[7,8]. The net carbon emissions savings achieved per tree by urban planting can reach 
up to 18 kg CO2/year. The aforementioned advantage aligns with the findings of a 
study conducted in Los Angeles, which compared urban trees to forest trees of 
comparable size and health [9,10]. The research indicated that urban trees contribute 
significantly to the sequestration of CO2, consequently contributing to the mitigation 
of global warming [11,12]. Vegetation barriers and green roofs have been found to 
possess the capacity to mitigate noise levels, offer windbreak protection for structures, 
and intercept as well as filter stormwater runoff [30]. Green areas play a critical role 
in improving human well-being and mitigating climate change due to their decisive 
function in combating air pollution [31–35]. Consequently, urban planning initiatives 
are progressively including not just economic and environmental considerations but 
also public health goals. Consequently, urban areas are embracing agendas that place 
a growing emphasis on the interplay between urban landscapes, natural resources, and 
human well-being. Figure 1 presents the different roles of green vegetation in 
improving the environmental quality of urban areas. 

 
Figure 1. The different roles of green vegetation to improve the environmental 
quality in urban areas. 

Nevertheless, despite the abundance of literature concerning the impacts of 
climate change, there exists a limited amount of research that expressly concentrates 
on investigating the contribution of vegetation as a means of alleviating the effects of 
climate change in urban settings. The primary objective of this review study is to 
provide a comprehensive analysis of current research papers that investigate the 
significance of urban vegetation in alleviating the adverse impacts of urban 
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environments. This study aims to analyze the role of vegetation as a mitigating element 
in urban environments and offer practical advice for city planners to implement. This 
research specifically examines the significant challenges that posed a danger to the 
overall welfare of human populations in urban areas across the globe during the 
Anthropocene era. These challenges include solid, gaseous, and noise pollution, water 
runoff, and the urban heat island effect. The primary objective of this study is to 
provide a concise overview of the capacity of plants to mitigate the aforementioned 
stresses. This study has the potential to expand understanding of the complex 
characteristics of urban green spaces and lay a strong foundation for future research 
endeavors. 

2. Particulate matter 

Air pollution levels are concerning, especially in urban areas, leading to 
background contamination [36]. Particulate matter (PMx) is an important pollutant 
because it has different effects on human health depending on its size, which makes it 
more complex than gaseous pollutants [37]. Studies have shown a link between 
increased mortality rates and exposure to PM in both developed and developing 
nations, but there is no specific threshold established for when exposure becomes 
harmless [38,39]. The World Health Organization (WHO) reported 4.2 million 
premature deaths due to PM in 2019 [40]. The figure could reach 6.6 million by 2050, 
with the biggest increase in Asia. Previous research has found links between daily 
changes in health outcomes, like daily mortality, and daily changes in ambient PM 
concentrations. Studies often use indicators like total suspended particulate matter 
(TSP) or PM10 [41]. 

PM, emitted by vehicles, factories, power plants, and heating systems, includes 
solid and liquid particles categorized as PM10, PM2.5, PM1, and PM0.1 based on their 
sizes (smaller than 10 µm, 5 µm, 1 µm, and 0.1 µm, respectively). PM concentrations 
in many cities exceed health standards. Over 85% of the urban population in the EU 
is currently exposed to PM levels that exceed the thresholds set by the WHO in 2005. 
PM concentrations are highest in China, India, and Southeast Asia [42]. Fine-
particulate air pollution is a growing concern for human health. Several studies have 
shown a link between PM2.5 exposure and an increased risk of hospitalization for 
cardiovascular and respiratory disorders [43,44]. PMx contamination is linked to 
COVID-19 transmission. Conticini et al. [45] found that high pollution levels in 
Northern Italy may have contributed to the high fatality rate in the region. Thandra et 
al. [46] showed a link between PM exposure and lung cancer, specifically 
adenocarcinoma, in Europe. This finding increased the need for epidemiological 
investigations. PM2.5 particles are linked to accelerated atherosclerosis and 
Alzheimer’s disease [47]. 

The US Environmental Protection Agency (EPA) regulations have improved air 
quality in the past decade. PM2.5 levels decreased by an average of 11% from 2000 to 
2007. Reduced rates of premature mortality have been linked to this decline in the 
United States. Fine particulates cause around 130,000 deaths each year in the country, 
as per existing literature. Despite recent declines in PM2.5 levels, there is still a need 
to further improve air quality to address health concerns. Pollutant concentrations can 
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be reduced by implementing emission control measures and improving dispersion and 
deposition rates [48]. Insufficient emphasis has been placed on this approach to 
pollution management. 

Vegetation in urban areas removes pollutants [49–55]. Studies have investigated 
PM composition and accumulation on leaves. Urban green spaces can help reduce PM 
pollution. Turbulent particles contact a leaf and adhere to its surface through dry 
deposition. Meo et al. [36] found that 1 m2 of leaf surface can assimilate PM ranging 
from 70 mg to 2.8 g per year. Multiple models were developed for a project in Chicago, 
USA. 1 hectare with 11% tree coverage removed 9.7 kilograms of pollution in a year. 
The main pollutant targeted was PM smaller than 10 µm, accounting for about 3.5 
kilograms. The removal rate was extrapolated to the entire city area of approximately 
600 km2, resulting in an estimated total pollution removal of 591 tons. Yang et al. [56] 
found that trees in central Beijing reduced PM levels by removing 1241 tons in 2002. 
Most of the removed PM was PM10, totaling about 772 tons. Nowak et al. [57] found 
a correlation between reducing PM2.5 through tree vegetation in ten US cities and its 
impact on public health. PM2.5 elimination by trees varies across locations, from 4.7 
tons in Syracuse (NY) to 64.5 tons in Atlanta (GA). Syracuse generates $1.1 million, 
and New York City yields $60.1 million from this annual removal. Most of these 
values come from the impacts of reduced human mortality. Death rate decreases vary 
by city, averaging around 1 person per year. The figure for New York City is 7.6 
individuals per year. Similar models in Europe have also shown that trees are effective 
at removing PM compared to other types of vegetation and surfaces. McDonald et al. 
[58] found that increasing tree coverage by up to 54% could reduce PMx concentration 
by 26% in the West Midlands region of the UK. Approximately 200 metric tons of PM 
would be removed annually. In Glasgow, increasing tree coverage from 3.6% to 8% 
would decrease concentration levels by 2%. 

PM deposition occurs on various surfaces and is influenced by factors such as 
particle size, surface characteristics, wind speed, precipitation, and pollutant content 
[59]. Tree leaves can capture and retain polluting particles, acting as a “sink” for 
suspended PM [60]. Lindén et al. [61] found higher deposition rates on vegetation than 
on metallic and constructed surfaces. Particles deposit on leaves through mechanisms 
such as sedimentation, Brownian diffusion, interception, inertial impaction, and 
turbulent impaction [62]. PMx can take two routes: assimilation through leaf stomata, 
or accumulation on the leaf’s exterior, and subsequent transport to the ground or 
reintroduction into the air. Absorption is lower than accumulation, especially for 
smaller particles. 

Research has explored factors affecting PM adsorption and accumulation on 
leaves. Leaf anatomy and canopy architecture are the main plant attributes that affect 
this process [63]. Leaf characteristics, like trichomes and epicuticular waxes, can 
enhance air filtration. Coarse-textured deciduous trees are better at trapping PMx than 
smooth-textured ones. Elaeagnus is more effective than smooth-leaved species like 
Ligustrum. Elaeagnus has hairy and waxy leaves. A study in Poland found differences 
in trapping effectiveness among four shrub and climber species. Forsythia x 
intermedia and Spiraea japonica were more effective at catching tiny particles than 
Physocarpus opulifolius and Hedera helix. Diverse outcomes were observed with 
larger particles. Hedera helix was more effective at capturing PM than Forsythia x 
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intermedia. 
Leaf stickiness enhances retention efficiency [64]. Some tree species, like Tilia 

platyphyllos (lime) and Betula pendula (birch), often have a sticky honeydew layer 
due to aphid infestation. This phenomenon enhances pollutant particle adherence on 
trees. Acer campestre and other species can exude honeydew. Conifers’ needles have 
a layer of epicuticular wax on their outer surface. Conifer leaves accumulate more PMx 
than broadleaf leaves, especially in winter when pollution levels are high and broadleaf 
trees have no leaves [65]. Needles in most plants last longer than leaves in deciduous 
trees, which reduces the potential for recycling PMx annually. Evergreen conifers may 
not be as effective as deciduous species, despite their efficiency in PMx scavenging. 
Conifers should not be used in highly polluted areas due to their susceptibility to 
pollutant-related injuries [65]. Canopy architecture and leaf area density also affect 
deposition. The canopy’s structure creates vortices and air streams due to disruptions 
in smooth flow caused by surfaces without aerodynamic qualities. These phenomena 
are strongly associated with PM deposition on tree foliage. Complex canopies increase 
the probability of microturbulence generation. Young plants with compound leaves, 
like Aesculus and Fraxinus, perform better in this regard. 

Particle deposition increases with leaf area density until a threshold is reached. 
Excessively dense canopies decline. The decline is due to suppressed turbulence in 
dense canopies, resulting in reduced deposition [66]. Jin et al. [67] introduced the 
concept of the particulate matter attenuation coefficient (PMAC) and identified key 
characteristics affecting it. They found that canopy density, leaf area index (LAI), and 
rate of change in wind speed were the most influential predictors of PMAC. Further 
analysis showed that the optimal canopy density for aesthetically pleasing and 
ecologically beneficial tree-lined roads is between 50% and 60%, with a LAI of 1.5 to 
2.0. Compact and perennial plants may not yield the expected results and could worsen 
pollutant accumulation. Most absorbed particles in trees can be dislodged by wind or 
washed away by rain. Particles are deposited on the ground. Organic constituents 
decompose, while inorganic constituents accumulate in the soil and soil solution [68]. 
PM deposition on plants helps remove particles from the atmosphere and reduce 
pollution levels. However, some of the trapped PM can be re-suspended by the wind. 
Minimal scholarly investigation has been done on the health concerns of inhaling 
resuspended particles. There is a lack of research on resuspension mechanisms in 
different species and urban micro-climates [69]. Wash-off refers to the transfer of PM 
from vegetation to soil during precipitation [70]. There is a lack of research on the 
resuspension and wash-off processes of PM by plants, specifically regarding different 
plant species and the impact of leaf features [71]. To accurately assess the impact of 
vegetation on air quality, more data on the resuspension and wash-off processes of 
adsorbed PM is needed [61]. Studying simulated rain and using in situ monitoring can 
provide valuable information on PM accumulation on leaves. 

Urban green spaces are important for using plants to improve air quality [72]. 
Other factors, besides plant features, affect leaf deposition. Factors influencing 
adsorption coefficient and air quality include season, pollutant concentration, wind 
speed, rainfall, and site geometry [73]. The adsorption coefficient is determined by 
calculating the percentage of trapped particles compared to those that contact the leaf 
surface. These factors affect the quality of the air. Beckett et al. [74] studied this 
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phenomenon in four locations in and around London. Sites were chosen based on 
differences in vegetation, pollution sources, and proximity to the source. Particle 
capture and retention effectiveness depended on location. Significant variations were 
seen among different species in the same location. In a 10-hectare park in Brighton, 
near a busy road, a 21-meter-tall English elm tree (Ulmus procera) absorbed 1071 kg 
of suspended PM in one season. The amount is 475 milligrams per square meter. A 12-
meter lime tree absorbed 192 milligrams per square meter of particles in a similar 
location. In contrast, a plant with the same characteristics but in a different location (a 
2-hectare city park) reduced pollutants by 488 milligrams per square meter. Poor park 
design can harm air quality by using inappropriate plantings, leading to the use of 
heavily polluted areas [75]. A well-designed park can mitigate health consequences. 
Therefore, it is important to integrate studies on air quality in parks with planning and 
design to establish new green spaces. Research studies suggest that roadside 
vegetation barriers can help reduce air pollution near highways [76]. Vegetation 
barriers must be dense for optimal effectiveness and to provide a large surface area for 
deposition. The barriers must be porous to allow air flow instead of deflecting it. 

Few studies have explored how vegetation affects air quality in street canyons, 
which are streets surrounded by buildings. In these environments, people may be 
exposed to pollutant levels that exceed limits set by the WHO. Street canyons greatly 
affect air quality [77]. Pugh et al. [78] found that dense tree vegetation in street 
canyons can increase PM concentrations by up to 60%. Reduced air turbulence in 
congested road canyons hampers the dispersion of PM particles. Plants can hinder air 
flow, reducing air exchange compared to areas without vegetation. Jeanjean et al. [79] 
showed that trees improve air quality locally and regionally. Due to increased 
turbulence, pollutant concentrations decreased by approximately 7% at pedestrian 
height. Linden et al. [61] recommend using shrub vegetation in urban canyons to 
improve air quality by promoting pollution deposition and maintaining efficient air 
exchange. It’s important to carefully select the height and density of vegetation based 
on the site’s micro-climatic variables to improve air quality. Shrubs are important in 
this context [80]. Buccolieri et al. [30] found that placing vegetation along the roadside 
edge and increasing plant density can effectively reduce pollutant concentrations. This 
limits the spread of pollutants in the surrounding areas. Research in Italy and other 
countries has shown positive results for evergreen species, especially those found in 
the Mediterranean habitat [81]. Barwise and Kumar [82] found that plant species and 
site architecture affect urban vegetation’s ability to filter PM pollution. 

3. Gaseous pollutants 

Urban environments primarily focus on gaseous air pollutants, including sulfur 
oxides (SOx), nitrogen oxides (NOx), and carbon monoxide (CO). These pollutants are 
categorized as primary pollutants and are emitted directly into the atmosphere from 
human activities [83–87]. Secondary pollutants are formed through chemical reactions 
involving primary pollutants like ozone, H2SO4, and peroxyacyl nitrates. Ozone is 
mainly formed in the lower troposphere through photochemical reactions involving 
NOx and various volatile organic compounds (VOCs) [88]. Hydrocarbon combustion 
produces nitrogen oxides, sulfur oxides, and carbon monoxide [89]. These substances 
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threaten human health and contribute to climate change [90–93]. Evaporative and 
exhaust gas emissions from car engines, specifically NOx, are harmful to the local 
microclimate. Chen et al. [94] found that NO2 is about 40 times more effective than 
CO2 at retaining long-wave radiation reflected from the Earth’s surface. 

Plants primarily eliminate gaseous contaminants through stomatal absorption 
[95]. Stomatal uptake is influenced by photosynthetic activity and turgor pressure, 
which fluctuate based on environmental conditions. The plant’s water-use strategy 
affects stomatal uptake. Anisohydric species can keep stomata open for longer periods 
of time. These species are more efficient at taking in gaseous pollutants compared to 
isohydric species, which close their stomata earlier in response to less water. 
Anisohydric species like Populus or deciduous oaks take in more gaseous pollutants 
through stomata compared to isohydric species like Pinus or Platanus [96]. Absorption 
through stomata increases when chemicals are quickly removed from intercellular 
spaces. O3 and NO2 quickly metabolize, leading to absorption that correlates with 
external concentrations. The relationship is valid if the pollutant inflow doesn’t harm 
photosynthesis or membrane permeability. Leaf defense mechanisms influence the 
elimination of gaseous pollutants. The apoplast’s detoxifying potential is the main 
mechanism for O3 and NOx [96]. For SO2, important factors include transport 
resistance inside cells and the ability to neutralize pH variations. 

About 16% of hydrocarbon emissions come from evaporation during daytime 
heating in stationary car fuel supply systems [97]. Urban vegetation can reduce the 
emission of anthropogenic VOCs by lowering the air temperature through shadowing 
[98]. Trees can lower the air temperature by up to 5–7 ℃ on hot summer days. 
Temperature moderation affects emissions of volatile hydrocarbons from stationary 
vehicles. Certain plants release biogenic volatile organic compounds (BVOCs), which 
have been extensively studied and are known to serve as important chemical 
messengers, aiding in plant reproduction and environmental survival [99]. Plants 
release chemicals that repel pests. These compounds may attract certain insects, 
including pollinators and predators of plant-eating insects [100]. Due to their 
molecular properties, BVOCs quickly interact with atmospheric components like 
ozone, hydroxyl radicals, and anthropogenic molecules such as NOx, especially in 
urban areas [101]. Ghirardo et al. [102] found that terpene oxidation with O3, OH, and 
NOx produces secondary aerosols, PM, and organic acids. These byproducts can 
increase acid deposition and air pollution. BVOC emissions may cancel out or exceed 
the benefits of reducing gaseous pollution on air quality. 

To address these drawbacks, careful species selection is crucial [82]. BVOCs 
come from urban trees like Populus, Platanus, and Salix (which emit isoprene) and 
Malus, Pinus, and Quercus (which release monoterpenes). In addition, BVOC 
emissions can vary among different species [82]. Donovan et al. [103] created a quality 
score to measure how well urban trees reduce gaseous pollutants compared to their 
emission of BVOCs. The species with the highest scores among those tested were Acer 
campestre, Acer platanoides, Alnus glutinosa, Betula pendula, Chamaecyparis 
lawsoniana, Crataegus monogyna, Larix decidua, Prunus laurocerasus, and Pinus 
nigra. Categorizing a plant species as advantageous based on its emission of BVOCs 
is challenging. The challenges come from species variability and the atmospheric 
reactions of BVOCs in different environments [104]. Integrating plant aspects into air 
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chemistry models can help understand the BVOC-NOx-O3 relationship at different 
scales. This understanding can help city planners and landscape architects choose 
suitable vegetation for urban areas with high pollution levels, known as “hotspots”. 

4. Noise pollution 

Living in a peaceful environment improves well-being. Studies compare the 
quality of life in peaceful and noisy environments. Living in peaceful environments 
like rural areas or green spaces is associated with a better quality of life [22]. Urban 
vegetation can help reduce noise from human activities, improving acoustic well-being 
[7]. Sound waves dissipate energy as they travel through the air due to particle 
displacement, resulting in degradation through the conversion of mechanical energy 
into thermal energy via friction. The obstacle course includes pathways in soil, plant 
structures, and holes in man-made barriers. Impediments affect energy attenuation 
across frequencies. Green building elements can absorb approximately 50% of 
incident sound energy [105]. Plant barriers and green roofs reduce sound intensity due 
to factors like composition, morphology, structure, arrangement, and phytosanitary 
issues. 

Noise reduction varies near the road margin with different types of barriers. 
Beyond distances of 100–150 m, noise reduction barriers are ineffective. Individuals 
engage in an action within a confined geographical setting [106]. Noise reduction can 
reach 10–12 dB for bands deeper than 100 m [106]. Attenuation depends on factors 
such as species, barrier structure, and proximity to the detection point. Remember the 
barrier’s behavior with different noise frequencies? Research shows that vegetation is 
effective in a frequency range of 0.5 kHz to 2 kHz and becomes effective again at 
higher frequencies (5 kHz to 8 kHz). Increased vegetation efficacy reduces human ear 
sensitivity between 2 kHz and 5 kHz. Car sounds mainly occur between 0.25 and 2 
kHz and are not fully reduced by vegetation. 

Vegetation is only an effective noise barrier if it is thick [107]. To achieve the 
same noise reduction as a 1.5-meter conventional noise barrier, plant vegetation that 
is at least 15 meters thick, with a planting distance of 1 to 3 meters. The impact of 
trees and shrubs on noise reduction is cumulative. Pluri-stratified vegetation belts are 
more effective at reducing noise than single-layer vegetation belts. Choose shrub 
layers that are either less than 0.5 m or greater than 2 m in height to reduce noise. 
Rectangular planting plans are better than square or triangle layouts when designed 
properly. Rectangular designs with meticulous planning have shorter planting 
distances parallel to the traffic source than perpendicular to it. Biocca et al. [108] 
recommend planting the vegetation belt near the noise source for better attenuation. 
Moreover, adding soil to vegetation can enhance noise reduction more effectively than 
vegetation alone, as vegetation alone has a limited impact on reducing low-frequency 
sounds [109]. It is recommended to strategically incorporate green spaces, like 
embankments, alongside roadways to reduce noise pollution. This approach is useful 
in areas with limited space for vegetation barriers. Recent reports suggest that 
vegetation in urban areas can indirectly reduce noise. The effects include plant 
restoration, natural sounds, and visual noise concealment. These factors improve how 
people perceive noise and have a similar effect on well-being as reducing noise 
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intensity by 10 dB [110]. 

5. Water runoff 

Urbanization has led to land use changes, including the construction of buildings 
and transportation system expansion [7]. Soil sealing and impermeabilization 
negatively affect gas exchanges between the soil and the atmosphere. It indirectly 
affects soil fertility. Tree lifespan may not be limited by these factors [111]. Soil 
sealing can worsen the urban heat island effect and increase temperatures in cities. 
Managing water extremes is a growing concern due to impermeable terrain. 
Impermeable materials, such as soil cover, limit water infiltration, causing more 
surface runoff. This can have both direct and indirect effects. In recent years, there has 
been a significant increase in flood events, especially flash floods, in different regions 
worldwide [112]. 

Enhancing vegetation can help reduce impermeable soil. Trees, shrubs, and lawns 
help delay rainwater outflow by intercepting it [113]. It can be eliminated through 
surface lamination, draining ducts, or absorption into the soil. Trees and other 
vegetation create an underground network that helps with infiltration. Plant foliage 
and natural mulching help reduce the negative impacts of heavy rainfall [114]. This 
reduces soil erosion and maintains fertility. Urban trees can reduce stormwater runoff 
by intercepting 15% to 27% of annual rainfall [113]. Tree precipitation can be divided 
into throughfall, stemflow, and interception [115]. 

Throughfall is the precipitation that goes through the canopy and falls from leaves 
and branches. Stemflow is the portion of precipitation caught by the canopy that then 
travels down the stems and branches to the ground. Interception is the portion of 
precipitation that is caught by the canopy and does not reach the ground, thus not 
contributing to surface runoff [113,114]. Nytch et al. [116] found significant variability 
in rainfall interception among different tree species. Asadian and Weiler [117] studied 
throughfall losses from urban coniferous trees in Vancouver. Researchers found 
variations in average canopy interception among different species. The range for 
Pseudotsuga menziesii is 20.4 mm, and for Thuja plicata, it is 32.3 mm. Xiao and 
McPherson [113] studied the interception losses of 20 urban trees in central 
California’s Mediterranean environment. The surface storage capacities varied among 
the trees mentioned. Lagerstroemia indica had a capacity of 0.59 mm, and Picea 
pungens had a capacity of 1.81 mm. Papierowska et al. [118] found that species with 
high leaf surface storage have low hydrophobicity and water droplet retention. 
Consider leaf roughness, shape, and slope. Bark characteristics and branch 
arrangement affect water retention capabilities in different species [113]. Dowtin et al. 
[119] reported a disparity in bark water storage capacity between Quercus rubra and 
Betula lenta. An example can illustrate this. The former has tripled the attribute 
compared to the latter. 

Measuring rainfall interception accurately is difficult because it depends on 
various factors, including climate conditions like rainfall intensity and wind speed 
[120]. Trees intercept and retain rainfall, reducing the amount of water that reaches the 
soil. Trees can change how rainwater is distributed in their canopy. There are variations 
in this phenomenon among different tree species. Human interventions and extreme 
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weather events can disrupt rainfall interception by trees, such as through defoliation. 
Vegetated regions have a significant impact on water quality in aquifers. Vegetation is 
better at removing pollution compared to unvegetated soil, especially when it comes 
to stormwater. Biofiltration and simple filtration can reduce pollutants and 
sedimentation in rainfall [120]. Biofiltration uses plants to remove impurities, while 
simple filtration mechanically reduces impurities from soil. 

These mechanisms use engineered green areas to reduce erosion and prevent flash 
flooding, which can cause significant damage and endanger lives. Soil beneath 
impermeable pavements has higher moisture levels than bare soil, especially without 
trees [121]. Impermeable pavements accelerate infiltration, leading to increased 
moisture content in sealed soils by restricting evaporation. This phenomenon reduces 
latent heat dissipation and increases perceptible heat in sealed soil compared to 
unsealed soil. Sealed soil reduces evaporation, leading to higher soil temperatures, 
especially in summer when unsealed soil experiences evaporation due to high air and 
soil temperatures [122]. Limited research attention has been given to the impact of 
deep soil layer warming on surface energy flux and its role in influencing regional 
climate variation over extended periods of time. This creates a “sub-surface urban heat 
island”. Mitigating stormwater runoff through rainfall interception is becoming more 
important [120]. Climate change will lead to more annual precipitation, but in fewer 
events. Urban vegetation reduces runoff caused by intense precipitation events. Tree 
planting reduced impervious surface area by 35% and runoff by 18% in a parking lot 
[123]. There is a lack of scholarly understanding of the best species, planting 
techniques, costs, and benefits of urban vegetation in regulating water runoff. 

6. Urban heat island effect 

Urban areas have concrete and asphalt, which contribute to the urban heat island 
effect. This effect is more noticeable when non-irrigated urban landscapes replace 
previously irrigated agricultural land [124]. This phenomenon causes a temperature 
increase of several degrees (up to 12 ℃ in rare cases) compared to nearby rural areas, 
affecting humidity levels at the same time. The urban heat island effect usually 
increases in larger cities. According to the EPA, many US cities have air temperatures 
5–6 ℃ higher than surrounding non-urban areas. Onishi et al. [125] found similar 
results (up to 7.26 ℃) when studying different parking configurations with and 
without trees in Japan. Urban heat islands are less intense during the day but become 
stronger at night due to heat dissipation from urban infrastructure. The peak timing 
depends on factors like urban and rural surfaces, season, and weather conditions [126]. 
Surface temperatures indirectly affect air temperatures. Air mixing in the Earth’s 
atmosphere affects the correlation between surface temperatures and air temperatures. 
Air temperatures are generally less variable than surface temperatures in a specific 
geographical region [127]. Population and infrastructure in a limited area can create a 
unique microclimate that differs from the surrounding rural regions [128,129]. This 
phenomenon affects meteorological factors, including wind patterns, temperature 
distribution, intensity, and the urban water cycle. Urban heat islands are influenced by 
surface roughness and construction materials. Factors affect surface permeability and 
contribute to energy storage and release as sensible heat. This process reduces energy 



Eco Cities 2024, 5(1), 2387.  

11 

dissipation as latent heat by preventing water evaporation from the ground. Figure 2 
shows the causes of the urban heat island effect. 

 
Figure 2. The key reasons behind the urban heat island effect. 

Extreme weather events due to climate change can have significant impacts on 
cities and their residents [130–138]. Heat waves are a significant concern [139]. The 
effects mentioned in the text are evident through various indicators. The indications 
include more sick days, more emergency calls on hot days, and higher mortality among 
seniors during extreme events [140–149]. One of the major causes of global warming 
and heat waves is the increased use of fossil fuels [150–159]. Thermal comfort in 
urban settings is crucial for the well-being of people. Green spaces with comfortable 
temperatures have a positive effect on public health [160]. Surface air moist static 
energy is an alternative method for assessing heat stress by combining temperature 
and humidity. Low humidity can reduce the severity of certain heat waves. 
Understanding the urban climate is important for planning future urban development. 
More research is needed to understand the thermal dynamics of urban areas. It 
emphasizes the need to share this knowledge with urban planners and public 
administrations. Stakeholders can use this information to create sustainable and 
healthy urban environments. 

Vegetation can improve the climate and reduce energy consumption [152,161]. 
Vegetation near a building can reduce the impact of solar radiation on the walls. This 
leads to lower energy consumption for air conditioning, reducing overall energy 
demand and the environmental footprint of buildings in the community. Scholarly 
investigations have studied the effects of vegetation and green spaces on urban 
microclimate [162,163]. Contradictory data exists, but green spaces generally reduce 
urban temperatures. This is mainly due to shading and evapotranspiration. These 
mechanisms reduce the conversion of solar radiation into sensible heat, promoting the 
generation of latent heat [164]. In winter, windbreak species on the northern side 
protect buildings from cold winds, reducing the need for excessive heating fuel. 
Planting trees near buildings reduces energy consumption and provides financial 
benefits [165]. 

Lawrence Berkeley National Lab and Sacramento Municipal Utility District 
studied tree coverage’s impact on air conditioning costs. The study found that having 
trees around homes saved energy by 7% to 47%. Trees on the western and 
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southwestern sides of the buildings reduced costs the most. Plant broadleaved species 
3–9 m from the west side of a building for shading in the summer. To prevent shade 
effects in winter, choose trees that lose their leaves early and avoid those that keep dry 
leaves, like hornbeam and oak trees. Some species retain their foliage in late winter or 
just before new leaves emerge in spring, despite being rare. In summary, having 20% 
tree cover can reduce air conditioning needs by 8% to 18% and heating needs by 2% 
to 8%. Trees in urban areas reduce the air temperature by 4.1 ℃ [166]. The pavement 
temperature decreases by 15.9 ℃ and the building wall temperature decreases by 
8.9 ℃. Strategic tree placement near buildings is crucial for reducing incident 
radiation and lowering temperatures. The positive impact on the thermal environment 
can be seen in parks and individual trees, especially when strategically placed. Studies 
have measured the energy benefits of having trees near buildings, mainly due to 
reduced radiation on walls [167]. Shaded walls can lower temperatures by 5 to 20 ℃, 
saving 10% to 35% on air conditioning in the summer. Reductions can reach up to 
80%. These phenomena have macroscopic effects, benefiting regions and beyond, 
leading to significant economic savings. Figure 3 shows the urban heat island effect 
on temperature. 

 
Figure 3. The temperature trend due to urban heat island effect. 

Green spaces have permeable surfaces that help water infiltrate the soil. This 
contributes to temperature mitigation through evapotranspiration [168]. Under certain 
circumstances, the maximum air temperature may not vary significantly between 
paved regions and green areas. Avoid choosing herbaceous plant-only parks in 
Mediterranean regions. Parks don’t provide much air temperature relief. They may 
have expenses for upkeep and increased water usage. Using xeric species in hot and 
arid regions can greatly reduce water needs for vegetation. Research on urban parks 
consistently shows lower air temperatures compared to surrounding urban areas. These 
parks also help reduce temperatures in nearby urban areas. The temperature decreases 
the most in the streets near the park, especially downwind. Previous experiments have 
studied the effect of parks on cooling and found temperature reductions of 1 to 5 ℃, 
depending on park size. In Singapore, the temperature difference between a park and 
the outside is about 1.3 ℃. In Mexico City, a large urban park of about 2 km in width 
has been shown to cool the surrounding urban area by 2–3 ℃. The cooling effect 
extends up to 2 km from the park, which matches its width. A study in China shows 
that even small green spaces have a significant impact on temperature and humidity, 
especially in the afternoon and summer. Plant communities significantly affect 
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temperature and humidity compared to non-tree-lined areas. Temperature reduction 
ranged from 2.14 to 5.15 ℃, while humidity increased by 6.21% to 8.30% [169]. 

Vegetation in urban areas helps reduce the heat island effect. To inform city 
planners and administrators effectively, accurate evidence on vegetation species and 
their optimal placement in the urban landscape is crucial [170]. A US statewide project 
could save about $1 billion annually on heating and cooling costs. This would reduce 
fossil fuel consumption and decrease carbon dioxide emissions [171–188]. The urban 
heat island effect can be reduced in new cities by applying the basic urban planning 
principles pointed out below: 

 Optimization of concrete-to-non-concrete urban surface areas through well-
defined simulation models. 

 Optimization of vertical to horizontal expansion of cities or urban areas through 
well-defined simulation models. 

 Urban planning and development of green belts or green covers, considering the 
aerodynamics of the region from the concept stage. 

 Ensuring and maintaining the air ventilation of urban areas. 

 Balancing the albedo effect in urban areas, reducing the albedo factor of asphalt 
by applying high reflectivity coatings to asphalt, and, above all, reducing soil 
sealing wherever possible. 

 Installation of green roofs in buildings in urban areas includes the development of 
plants and vegetation to harness evaporative cooling, thereby restricting heat 
island. 

 Planning and development of green buildings (i.e., a building that, in its design, 
construction, or operation, reduces or eliminates negative impacts and can create 
positive impacts on the climate and natural environment) in the urban area. 

7. Conclusion 

Urban green spaces are a key requirement in the environmental programs of 
major international institutions. Plant selection for urban areas should not only 
prioritize aesthetics but also consider global changes beyond climate change. Consider 
the environmental benefits and maintenance costs of these species. Expanding urban 
vegetation is crucial to mitigating the impact of global change. It is important to 
establish guidelines for planting in specific locations, such as urban parks, peri-urban 
parks, and streets. Consider plant selection, including native or exotic species and 
cultivars, while acknowledging biodiversity. It is important to understand why people 
choose to engage in planting initiatives. Topics to be addressed: climate mitigation 
strategies, pollution reduction, visual concealment, and various planting techniques 
(e.g., concentrated massive plantations, scattered or widespread planting with 
ecological corridors and steppingstones). 

The responsibility for planting and managing green areas involves public 
institutions, volunteers, private owners, and other stakeholders. Options should be 
chosen based on characteristics like pollutant elimination, daily release of volatile 
organic compounds, pollen generation and allergies, impact on mitigating the urban 
heat island effect, and energy efficiency in the surrounding area. Consider the principle 
of “the right plant in the right place and with the right management.” Plants need more 
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than just survival; they should also have desirable traits like high photosynthesis and 
growth rates to make a bigger environmental impact. Carefully selecting plants is 
crucial for sustainable urban programs that promote the well-being and vitality of 
cities. More work needs to be done to determine the best green infrastructure setup in 
cities. There is a lot of information available to take proactive measures against climate 
change. 
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