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ABSTRACT 

Because it contains pathological characteristics such as changes in myocardial tissue characteristics, the deformation 

and dynamic characteristics of human left ventricle have become an important basis for clinical diagnosis of heart disease. 

Based on BP neural network method, this study carries out the identification of left ventricular myocardial tissue 

parameters through the inversion of left ventricular clinical diagnosis data. Firstly, the image recognition program is 

written in MATLAB language to extract the location points of inner and outer membranes in human left ventricular CT 

image, establish the real geometric model of left ventricle in solidworks software, and establish the finite element analysis 

model of left ventricle through ABAQUS software. Secondly, Mooney Rivlin hyperelastic model is used to simulate the 

characteristics of myocardial tissue, ABAQUS finite element software is used to conduct dynamic numerical analysis on 

the left ventricular finite element model, and 45 groups of input target vectors of BP neural network corresponding to 

three characteristic moments are obtained. Finally, the BP neural network program is written in MATLAB language to 

train the input target vector, and establish the nonlinear mapping relationship between left ventricular diagnostic data and 

myocardial tissue parameters. The analysis results of examples show that BP neural network can be well used for 

myocardial tissue parameter inversion based on clinical data, and is expected to become an effective method for clinical 

diagnosis of left ventricular lesions caused by changes in myocardial tissue characteristics. 
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1. Introduction 

In recent years, with the deepening of cardiac mechanics research, the tissue characteristics of human 

myocardium have gradually become an important indicator of heart health[1,2]. Research shows that compared 

with healthy people, the myocardial hardness of patients with diastolic heart failure or myocardial infarction 

is much higher[3–5]. Therefore, the study of myocardial tissue characteristics is of great significance for the 

clinical diagnosis of heart disease. 

ARTICLE INFO 

Received: 10 February 2021 | Accepted: 20 March 2021 | Available online: 7 April 2021 

CITATION 

Zhang Q, Yang K, Li L. Research on inversion method of left ventricular myocardial tissue parameters based on BP neural network. Cardiac and 

Cardiovascular Research 2021; 2(1): 1894. doi: 10.54517/ccr.v2i1.1894 

COPYRIGHT 

Copyright © 2021 by author(s). Cardiac and Cardiovascular Research is published by Asia Pacific Academy of Science Pte. Ltd. This is an 

Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), 

permitting distribution and reproduction in any medium, provided the original work is cited. 



Cardiac and Cardiovascular Research | doi: 10.54517/ccr.v2i1.1894 

2 

Limited to the difficulty of obtaining human myocardial tissue specimens[6,7], the researchers mainly rely 

on animal experimental models to study the characteristics of myocardial tissue, that is, assuming that the 

characteristics of myocardial tissue conform to a specific constitutive relationship, obtain the stress-strain 

curve through uniaxial tensile, biaxial tensile or shear tests of specimens, and determine the material 

parameters in the constitutive equation[8–10]. Although this method can quantitatively analyze the tissue 

characteristics of myocardium, there is an obvious difference between the measured results of isolated 

inactivated myocardium and the real myocardial characteristics with blood flow characteristics[3]. In addition, 

there are differences between animal myocardial tissue and human myocardial tissue, and the referentiality of 

the results has been controversial[5]. 

In view of the difficulties in obtaining the characteristics of myocardial tissue, this study proposes an 

inversion method based on intelligent optimization algorithm. The BP (back propagation) neural network 

structure of parameter inversion is established by using left ventricular dynamic response data to map the 

nonlinear relationship between left ventricular dynamic response and myocardial tissue parameters. Input the 

clinical non-invasive left ventricular diagnostic data of individual patients into the trained BP neural network 

to inverse the myocardial tissue parameters of the tester. The inversion method based on BP neural network 

can not only obtain the characteristics of myocardial tissue, but also meet the rapid time response requirements 

of clinical heart disease detection. 

2. Finite element modeling of left ventricle 

2.1. Geometric model of left ventricle 

 
Figure 1. CT Image of LV sections. 
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The geometric model in this study comes from the CT scanning data of the inner and outer membrane of 

the human left ventricle (LV). First, perform equally spaced (5mm) scanning along the left ventricular axis to 

obtain 12 left ventricular CT images of different sections, as shown in Figure 1a–L. 

Then, the image recognition program is written in MATLAB language to extract the location points of 

left ventricular epicardium in CT image, as shown in Figure 2a,b. 

 
Figure 2. The LV CT Data recognized by Matlab. 

Further, the geometric model of left ventricle is established through solidworks software, as shown in 

Figure 3. 

 
Figure 3. CT image based geometric model of the LV. 
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2.2. Finite element model of left ventricle 

After calculating the CT images of 12 different sections in Figure 1, the average thickness of left 

ventricular myocardium is 5.65 mm, and the average thickness of 8 sections in layers 5~12 is about 6 mm. 

Based on the geometric model of the left ventricle in Figure 3, the middle surface is extracted to form the shell 

structure of the left ventricle, and 6 mm is taken as the thickness of the shell. Using the automatic meshing 

function of ABAQUS software to control the boundary seed density and mesh attributes of the left ventricular 

model, the shell structure finite element mesh shown in Figure 4 is obtained, with a total of 4084 S4R shell 

elements and 60 s3r shell elements, and a total of 4150 nodes. 

 
Figure 4. Finite element model of the LV. 

3. Establishment method of BP inversion data 

BP neural network can map any complex nonlinear function relationship[11,12]. In this study, BP neural 

network technology is used to retrieve the performance parameters of myocardial tissue. Therefore, we first 

conduct dynamic finite element analysis on the left ventricle to obtain the training data of BP neural network. 

3.1. Myocardial tissue characteristics 

Human myocardium is a super elastic and incompressible natural biomaterial with specific properties. 

Based on the different characteristics of myocardial performance, many scholars have established the 

description method of myocardial tissue performance, but so far there is still no widely recognized expression 

form. This study focuses on the research of inversion method, which regards the myocardium as isotropic 

hyperelastic material. For the actual anisotropic myocardial tissue, this research method will still be applicable 

after increasing the number of parameters and the amount of inversion calculation. 

For isotropic hyperelastic materials, we select the most commonly used incompressible Mooney Rivlin 

model[13], and the expression of its energy density function is: 









−+








−= 33

~

2

~

110 IICW  (1) 

where W is the strain energy density function, 𝐼1 and 𝐼2 are the first and second invariants of deformation 

tensor bias, and 𝐶10 and 𝐶011 are the two performance parameters of myocardial tissue. 

3.2. Load analysis 

The periodic contraction and expansion of the heart come from two factors, one is the active force 

generated by the cardiac muscle stimulated by ECG, and the other is the passive force generated by the reaction 

of heart deformation by internal blood pressure[14]. The active force can be through myocardial excitation σ. 
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The change with excitation time t is expressed as[14]: 
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Among τ Is the propagation sequence at different times, Te is the excitation cycle, σmax works hard for the 

muscle bar. This study takes the same parameters as literature[15], i.e σmax = 53.3 kpa and Te = 0.353 s. Excitation 

sequence τ It is generally difficult to determine[15], which is taken as 0 in this study. The left ventricle is powered 

indirectly by arterial pressure[7,15]. The load change of left ventricle in a cardiac cycle is shown in Figure 5. 

 
Figure 5. Variation of loading with time for the LV[15,16]. 

3.3. Acquisition of BP input data 

Given the myocardial tissue parameters (i.e., The target vector of BP neural network), the fixation 

constraint is applied to the heart bottom position of the left ventricular finite element model, and the evenly 

distributed radial passive force and circumferential active force in Figure 5 are applied to the inner and outer 

surfaces respectively. The deformation process of the left ventricle within 0.8 s of a cardiac cycle is analyzed 

by using the explicit solver of ABAQUS software[15], and the deformation process shown in Figure 6 is 

obtained. It can be seen that at different times in a cardiac cycle, the left ventricle has obvious systolic 

deformation, which is very similar to the real left ventricular movement process. 

 
(a) t = 0.2s (initial contraction). (b) t = 0.4s (mid-systolic). (c) t = 0.6s (end-systolic). 

Figure 6. Geometric variation of the LV during a period of contraction. 

Through the finite element analysis of the left ventricle, the deformation of any position of the left 

ventricle can also be obtained. In this study, four typical cross-sectional positions of left ventricle z = 8, 20, 32 



Cardiac and Cardiovascular Research | doi: 10.54517/ccr.v2i1.1894 

6 

and 44 mm (see Figure 7) are selected, and the radial displacement value at some time in the cardiac cycle is 

used as the input vector of BP neural grid. 

 
Figure 7. Distribution of sampling points in LV structure. 

4. Inversion of myocardial tissue parameters based on BP neural network 

4.1. Basic idea of 1bp neural grid inversion 

BP neural network is a multilayer feedforward network trained by error back propagation algorithm. It is 

one of the most widely used neural network models[17] BP neural network is composed of input layer, hidden 

layer and output layer. Without limiting the nodes of hidden layer, the three-layer neural network can approach 

any nonlinear function relationship in theory[18], as shown in Figure 8. 

 
Figure 8. The topologic structure of BP neural network. 

Parameter inversion based on BP neural network is to establish the nonlinear relationship between 

response and parameters, including the following basic steps[19]: 

1) Determine the value range of parameters to be inversed; 

2) Evenly disperse the values within the parameter range to obtain the target vector; 

3) Obtain the input vector through the response; 

4) Input the input and target vectors into BP neural network for training; 

5) Using the mapping relationship between input and output of BP neural network, the human left ventricular 

diagnostic data is input into the neural network inversion parameters. 
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The above five steps can be summarized as the establishment of BP neural network (including steps (1)–

(4)) and parameter inversion (i.e., Step (5)), which will be studied separately below. 

4.2. Establishment of BP neural network 

(1) Establishment of input vector and target vector according to literature[20], the normal left ventricular 

myocardial tissue parameters represented by Mooney Rivlin model are C10 = 0.178 mpa and C01 = 3.989 mpa 

respectively, and the density is 1.370 × 103 kg/m3. Accordingly, the possible value ranges are determined as 

0.100 ≤ C10 ≤ 0.300 and 3.000 ≤ C01 ≤ 5.000; based on the orthogonal experimental design method, the two 

parameters are combined, taking C10 = 0.100, 0.150, 0.200, 0.250, 0.300, C01 = 3.000, 3.250, 3.500, 3.750, 

4.000, 4.250, 4.500, 4.750, 5.000 as the target vector of BP neural network training. 

The radial displacement on four typical sections of the left ventricle at three characteristic times of t = 0.2 

s (initial systole), t = 0.4 s (middle systole) and t = 0.6 s (end systole) in the cardiac cycle is taken as the input 

vector of BP neural network. Take 12 points at equal intervals on each section, a total of 48 points. The left 

ventricular model under different myocardial tissue parameters corresponds to different radial displacement, 

forming 45 groups of training samples. Under three characteristic moments, 45 groups of training samples at 

corresponding moments are obtained, as shown in Tables 1–3 respectively. 

Table 1. Radial displacements at the LV from different myocardial tissue parameters (at t = 0.2 s). 

Number of layers Serial number Circumferential position (mm) Group 1 Group 2 … Group 20 … Group 45 

1st floor 1 0.00 0.036 0.052 … 0.050 … 0.035 

2 9.22 0.048 0.048 … 0.048 … 0.037 

        

12 86.98 0.035 0.053 … 0.051 … 0.035 

         

4th floor 1 0.00 0.051 0.071 … 0.068 … 0.046 

2 30.96 0.077 0.098 … 0.096 … 0.092 

        

12 172.52 0.046 0.066 … 0.063 … 0.043 

Table 2. Radial displacements at the LV from different myocardial tissue parameters (at t = 0.4 s). 

Number of layers Serial number Circumferential position (mm) Group 1 Group 2 … Group 20 … Group 45 

1st floor 1 0.00 3.180 4.162 … 3.961 … 2.968 

2 9.22 3.098 4.093 … 3.891 … 2.876 

        

12 86.98 3.123 4.091 … 3.892  2.916 

         

4th floor 1 0.00 0.665 0.863 … 0.827  0.612 

2 30.96 0.638 0.845 … 0.806  0.585 

        

12 172.52 0.610 0.790 … 0.757 … 0.561 
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Table 3. Radial displacements at the LV from different myocardial tissue parameters (at t = 0.6 s). 

Number of layers Serial number Circumferential position (mm) Group 1 Group 2 … Group 20 … Group 45 

1st floor 1 0.00 −0.586 −2.604 … −2.398 … −0.179 

2 9.22 −0.557 −2.383 … −2.204 … −0.178 

        

12 86.98 −0.571 −2.517 … −2.320 … −0.173 

         

4th floor 1 0.00 −0.155 −0.523 … −0.481 … −0.070 

2 30.96 −0.163 −0.522 … −0.489 … −0.078 

        

12 172.52 −0.140 −0.469 … −0.430 … −0.062 

(2) The selection of hidden layer and activation function hidden layer is determined according to 

experience and many experiments. In this study, the number of input units is 48 and the number of output units 

is 2. The range of the number of hidden layer units calculated according to the empirical formula is[7,18]. Then 

the samples are trained by BP neural algorithm, and the optimal number of hidden layer units is determined to 

be 15 by comprehensively considering the error during convergence and the number of iterations. 

The hyperbolic tangent Tansig function is used for the activation function of the input layer and the hidden 

layer, the purelin linear function is used for the output layer, and the negative gradient descending momentum 

BP algorithm is used for the training function Next, use MATLAB software to compile and run the BP neural 

network program to obtain the BP neural network structure of myocardial parameter inversion, as shown in 

Figure 9. 

 
Figure 9. BP neural network model developed via Matlab software. 

4.3. Inversion results and discussion of myocardial parameters 

Clinically, the radial displacement of myocardium at different positions can be obtained through the left 

ventricular marker point method, so in order to verify this research method, it is assumed that the performance 

parameters of myocardial tissue are known. Based on this, the response data of left ventricular structure is 

obtained through finite element analysis, and then the size of myocardial tissue parameters is obtained through 

the inversion of response data through BP neural network, and the error is compared with the assumed 

myocardial tissue parameters. Through the inversion of myocardial tissue parameters of four hypothetical 

examples, the average value of inversion parameters at three characteristic times is obtained. Table 4 shows 

the error between the average value of inversion parameters and the real value. 

It can be seen from Table 4 that the error between the average value of the inversion value and the real 

value of the four examples is within 3.58%, and the overall L2 norm relative error is 0.72%. Compared with 

the common error in the process of clinical medical diagnosis, the inversion accuracy of the parameters in this 

study is higher, which can meet the requirements of clinical diagnosis. At the same time, it shows that the BP 
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neural network established in this study has high reliability. 

Table 4. The inversed results and their errors. 

Serial number C10 C01 

Average value of inversion value real value Error Average value of inversion value real value Error 

Group 1 0.192 0.190 1.12% 4.745 4.750 0.10% 

Group 2 0.207 0.200 3.58% 4.264 4.300 0.85% 

Group 3 0.149 0.150 0.89% 3.684 3.700 0.43% 

Group 4 0.161 0.160 0.65% 3.358 3.400 1.24% 

L2 norm relative error 0.72% 

5. Conclusions 

Based on clinical CT images, the real three-dimensional geometric model of left ventricle was established; 

According to the dynamic finite element analysis results of the left ventricle, the inversion method of left 

ventricular myocardial tissue parameters based on BP neural network is proposed, and the myocardial tissue 

parameters under the Mooney Rivlin hyperelastic model of myocardial tissue are obtained. The average value 

of the inversion value is in good agreement with the real value, which proves the correctness of the inversion 

method of myocardial tissue parameters in this study and provides an effective method for the accurate 

acquisition of human myocardial tissue performance. 

The deformation data of left ventricular marker points obtained in clinic are input into the BP neural 

network trained in this study, and the myocardial tissue parameters are retrieved, which can be used as the 

basis for clinical heart disease diagnosis. The BP neural network algorithm in this study establishes a 

quantitative relationship between the left ventricular image and the intrinsic characteristics of myocardial 

tissue, which can quantitatively describe the health degree of the heart, thus providing a feasible way for the 

efficient and accurate diagnosis of clinical heart diseases. 
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