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Abstract: The timely acquisition of agricultural information is fundamental to smart 

agriculture, providing a basis for decision-making in agricultural production and ensuring 

protection against risks. With advancements in computer vision and machine learning, 3D 

reconstruction, the process of generating detailed digital models, has demonstrated substantial 

potential for mining and recording crucial information from objects, including geometry, 

structural attributes, visual appearance and other properties. This paper summarizes the 

applications of 3D reconstruction and measurement in the field of agricultural information 

acquisition based on prior research. It first reviews the 3D reconstruction and its related 

techniques and algorithms, then conducts a comprehensive analysis of the applications of 3D 

reconstruction and measurement in crop cultivation, animal husbandry, aquaculture and post-

harvest products. It can be concluded that compared to traditional two-dimensional imagery, 

3D reconstruction and measurement offer richer and more comprehensive information for 

agricultural practices, showing better performance in tasks such as organ segmentation, 

geometry measurement, health monitoring and simulation analysis. Future works can be 

launched from keeping up with the latest reconstruction technology, accelerating the 3D 

reconstruction, fusing multi-sensor data and combining 3D reconstruction with other 

information acquisition technologies. 

Keywords: crop cultivation; animal husbandry; 3D phenotyping; computer vision; trait 

measurement; optical sensors 

1. Introduction 

Agriculture is indispensable to human life, serving as the primary source of 

nutrition and energy for the global population [1]. These products encompass a broad 

range of plant and animal-derived foods, which play a critical role in providing 

nutrients, sustaining health, and supporting human development [2]. Agriculture also 

has economic and social significance, contributing to global livelihoods and 

economies by providing income for farmers and ensuring food security [3]. However, 

increasing population and consumption are placing unprecedented demands on 

agricultural products [4]. While taking effort to improve agricultural production 

efficiency, it should be concerned that exhaustive and destructive agricultural 

expansion could causes harm to the ecological environment and human health [5]. 

International consensus has emerged to transform agrifood systems for realizing the 

2030 Agenda for Sustainable Development by increasing efficiency, inclusiveness, 

resilience, and sustainability [6].  
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Acquiring agricultural information is of paramount importance in such transform, 

as it enables farmers, experts, and researchers to make informed decisions that can 

optimize productivity and resource management. In recent years, the rise of Smart 

Agriculture, which integrates advanced technologies such as the Internet of Things 

(IoT) [7], big data [8], and artificial intelligence (AI) [9], has further amplified the role 

of agricultural information [10]. These technologies allow for real-time monitoring of 

field environment, crop status and potential threats, offering precise and actionable 

insights that can significantly improve yields, reduce resource wastage, ensuring food 

security and keeping the long-term sustainability of agricultural systems. Moreover, 

acquiring timely and accurate agricultural information will be a key measure in 

development of smart agriculture as it helps build resilience under the context of 

climate change by taking adaptive farming practices [11].  

With the rapid development of computer vision technologies over the past few 

decades, machine vision has played an increasingly important role in acquiring 

agricultural information [12–14]. Through advanced image processing techniques, 

machine vision can precisely and automatically monitor crops, livestock, and 

aquaculture products. Moreover, machine vision is the primary method by which 

robotic platforms, such as drones and autonomous vehicles, perceive the agricultural 

scenes, making it an indispensable technology for smart agricultural machinery 

[12,15]. However, traditional computer vision techniques are predominantly 

constrained to the acquisition and processing of 2D images. It should be aware that 

agricultural products have their complexity in nature, possessing intricate structures 

that present significant challenges for comprehensive analysis. Consequently, relying 

solely on 2D imagery risks omitting critical information necessary for accurate 

assessment from complex structures. Three-dimensional (3D) reconstruction 

technology enables the collection of more comprehensive agricultural information by 

creating detailed 3D models of crops, livestock, and farming environments. Analysis 

and measurement on these 3D models help capture precise spatial and structural data 

that goes beyond traditional 2D imagery, providing a deeper understanding of factors 

such as crop growth patterns and livestock behavior [16,17]. Therefore, 3D 

reconstruction starts to play a pivotal role in building digital twin models, i.e., virtual 

replicas of physical assets, allowing for real-time monitoring, simulation, and analysis 

of farm operations, making it easier for robots and automated systems to perform 

complex tasks such as precision planting, fertilizing and harvesting [9,18,19]. 

It is noteworthy that the rapid evolution of deep learning in recent years have 

injected considerable innovation and dynamism into the ongoing research and 

development in computer vision tasks including 3D reconstruction [20]. For instance, 

the progression has been evident in the shift from classical Convolutional Neural 

Networks (CNNs) to more advanced architectures such as Vision Transformers (ViTs), 

alongside other emerging models [21–23]. Furthermore, there has been a notable 

progress in multi-source data fusion, moving from reliance on single-source data to 

the integration of multimodal learning [24,25]. These technological advancements 

have ushered in a new era to 3D reconstruction techniques, demonstrating impressive 

performance in various related tasks [26]. 

Different from other industries, the complexity of agricultural objects themselves 

and the variability of the environment place great challenges to vision tasks including 
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3D reconstruction, requiring high robustness of reconstruction methods and 

algorithms. Despite all the hardships, researchers have made successful practices of 

introducing 3D reconstruction to acquire agricultural information after unremitting 

attempts and explorations. The aim of this review is to present these successful cases 

in recent 10 years in crop cultivation, livestock husbandry and fisheries and quality 

checking. Although recent reviews of 3D reconstruction in agricultural subdomains 

such as plant phenotyping [27], fruit production [28] and animal husbandry [29] have 

been made, there lacks a birds-eye view of application of 3D reconstruction in the 

entire agricultural domains. Moreover, this work will organize researches by 

agricultural subdomains rather than specific methods [27] and algorithms [30]. This 

work seeks to provide relevant researchers with a comprehensive understanding of the 

current state of 3D reconstruction applications in agriculture, expecting to inspire 

researchers by drawing insights from advancements across different subfields, thereby 

promoting further interdisciplinary innovation. 

This review will first introduce 3D reconstruction with its principles, processing 

algorithms and data types, followed by a categorization of their application, and a 

conclusion with future prospects, revealing how 3D reconstruction and measurement 

empower better perception for smart systems and enhancing productivity, resilience 

and sustainability of future agriculture. 

2. Three-Dimensional reconstruction techniques 

2.1. Three-Dimensional reconstruction 

3D reconstruction technology was born with the development of computer 

graphics. In the 1960s, computer graphics pioneers such as Ivan Sutherland laid 

foundational work for 3D modeling, enabling the first digital 3D representation [31]. 

While the first 3D scanner took place in 1960s, the 1980s and 1990s saw significant 

strides in 3D scanning and photogrammetry with the advances in computational power 

and algorithms [32]. In recent years, machine learning has revolutionized 3D 

reconstruction, allowing for more accurate and complex models from limited data 

sources, transforming fields from medical imaging to virtual reality. 

2.2. Reconstruction principles 

 

Figure 1. Category of 3D reconstruction principles utilized in acquiring agricultural 

information. 
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Investigation of research papers focusing on 3D agricultural information was 

conducted, leading to a conclusion about the reconstruction principles utilized in 

experimental setups as shown in Figure 1. These principles can be categorized into 

active reconstruction and passive reconstruction, depending how the sensors interact 

with the object or the scene to capture 3D data. Active 3D reconstruction involves 

projecting light onto the object or scene or emitting penetrating energy (X-Ray, MRI, 

etc.) to actively measure distances, depths, or shapes. Meanwhile, passive 3D 

reconstruction only relies on ambient information, typically images from cameras. 

2.2.1. Active reconstruction 

Structured light scanning usually utilizes a system consist of projectors and 

receivers. The projectors cast specific patterns, e.g., stripe, grid, or spots, onto the 

surface of measured objects. The receivers, usually are 1 or more cameras, then capture 

how the patterns distort across the surface, and algorithms are utilized to compute the 

object's 3D shape based on the distortions. 

Time-of-Flight (ToF) uses infrared light pulses or modulated light and measure 

the time delay between when the light is emitted and when it reflects back from the 

object. This time delay is then converted into a depth value for each pixel. ToF sensors 

typically focuses on capturing depth information for each pixel of an image, offering 

real-time 3D data over shorter distances, making them widely used to achieve depth 

information on consumer-grade products such as smartphones and UAVs. 

Similar to ToF sensors, Light Detection and Ranging (LiDAR) also measures the 

time it takes for the light to return after hitting an object to calculate depth. However, 

LiDAR sensors use laser pulse, making it capable to measure distance with higher 

frequency and longer range. LiDAR systems are usually more expensive and complex 

due to the need for laser emitters and precise measurement equipment.  

Tomography-based 3D reconstruction, such as X-ray computed tomography 

(CT), magnetic resonance imaging (MRI), and electrical impedance tomography (EIT), 

offer unique advantages for agricultural applications. These techniques allow for the 

non-invasive imaging of internal structures of objects, enabling the visualization of 

hollow areas or the distribution of different materials within crops. For instance, CT 

scans can reveal the internal quality of fruits, such as detecting cavities or internal 

defects, while MRI and EIT can be used to study the moisture content and composition 

of plant tissues. The potential to acquire such detailed internal information makes these 

methods valuable for agricultural research, particularly in crop breeding, quality 

control, and post-harvest monitoring [33,34]. 

2.2.2. Passive reconstruction 

Learning from the way human eyes perceive depth, Binocular Vision (BV) 

systems use two cameras placed a certain distance apart and obtain depth information 

based on the disparity between two images captured from slightly different viewpoints. 

When both cameras capture images of the same scene, the corresponding points in 

each image appear slightly shifted relative to each other due to their different 

perspectives. The difference in the position of these corresponding points is referred 

to as disparity (or parallax). By calculating the disparity, it is possible to determine the 

depth of each point in the scene using triangulation. Thus, binocular vision offers a 

cost-effective and straightforward approach to 3D reconstruction, providing real-time 
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depth perception without the need for complex equipment. However, binocular vision 

is dependent on stereo matching, leading to bad accuracy in low-texture scenes. 

Literally, multiview 3D reconstruction literally recover 3D structure from 

multiview imagery such as the image collection in Figure 2. SfM-MVS is a notable 

solution in photogrammetry, which consists of two parts: Structure from Motion (SfM) 

and Multiview Stereo (MVS). SfM identifies common feature points among images 

and simultaneously solves for the spatial positions of these points and the 

corresponding camera intrinsic and extrinsic of each photo through optimization. Then 

MVS algorithm calculates dense point clouds of 3D objects based on photo-

consistency. Recent advances in novel view synthesis, for instance, NeRF, Instant-

NGP and 3DGS, outperformed traditional MVS algorithms and have boosted the 

quality of multiview 3D reconstruction [35–37]. In addition to SfM-MVS framework, 

algorithms like Shape from Silhouette and end-to-end neural networks also have 

ability of outputting 3D models [38,39]. 

 

Figure 2. A plant canopy reconstructed from a multiview dataset which consist of 

multiple photos taken from different viewpoints [40].  

With multiple image pairs, multiview-based algorithms can better resolve 

ambiguities in depth estimation, making them versatile for 3D reconstruction in 

environments with varying surface textures and complexities. Compared to binocular 

vision, the setback is that multiview-based algorithms require significantly more 

computational resources and data processing. multiview-based algorithms also require 

precise camera intrinsic and extrinsic to avoid errors in reconstruction. 

2.2.3. Composite reconstruction solutions 

Modern commercial 3D sensors often combine multiple 3D reconstruction 

techniques to leverage their strengths and achieve better performance. For example, 

commercial structured light scanners typically integrate structured light technology 

with stereo vision to enhance depth accuracy and surface details. Similarly, several 

integrated depth cameras, such as OAK-D-Pro, utilize a combination of structure light 

and stereo vision to provide more precise and robust 3D data, making them available 

in dynamic or complex environments [41]. In addition, smart systems in automotive 

also make use of composite solutions by integrating various 3D sensing technologies, 

such as LiDAR, ToF, and camera-based vision, to enhance sensing ability for 
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autonomous driving. These multi-sensor approaches ensure a more comprehensive 

and reliable understanding of the surroundings, contributing to improved safety and 

performance in diverse conditions [42].  

2.3. Processing algorithms 

In order to analyze 3D data and measure valuable information, 3D data 

processing is a necessary procedure. Commonly used 3D data processing methods 

include but are not limited to Filtering, meshing, resampling, shape fitting, registration, 

segmentation and skeletonization. 

Due to various limitation of the sensors, the raw point cloud data retrieved from 

sensors inevitably contain noise points or artifacts. Filtering helps in eliminating 

unwanted outliers or artifacts which distort further analysis. Statistical Outlier 

Removal (SOR) is a commonly used algorithms for filter outliers. Filtering of point 

clouds can also be achieved through clustering or segmentation methods to remove 

region of no interest. 

Meshing recovers surface representation from point clouds, voxels or implicit 

neural fields. Poisson Surface Reconstruction and Delaunay Triangulation are typical 

algorithms to reconstruct mesh from point clouds, while Marching Cube algorithm is 

used to extract mesh from volumetric representations. 

Resampling of 3D data helps in task adaptation by making a trade-off between 

model resolution and processing speed. Subsampling of 3D data mitigates the 

computational cost and storage occupancy, while upsampling can enhance details in 

3D models. 

Registration is a basic step to obtain complete 3D model by integrating multiple 

frames of data collected from sensors. Registration also allows for the fusion of data 

from different sources and provides the basis for geometric alignment in measurement. 

Typically, registration is a two-stage process which can be divided into coarse 

registration and fine registration. Coarse registration usually approximates the relative 

position by key points or global features, e.g., SIFT [43], SURF [44], RANSAC [45] 

and PCA [46]. Fine registration further refines the alignment, minimizing the 

difference between corresponding models. Fine registration algorithms can hardly 

produce correct solution without coarse registration. Iterative Closest Point (ICP) and 

its variants [47] are the most widely used fine registration algorithms. 

Segmentation is the basis for many important tasks such as automatic fruit and 

branch counting. Typical segmentation algorithms include clustering, Region 

Growing, Supervoxel Segmentation and deep learning. Among these segmentation 

algorithms, semantic segmentation algorithms can simultaneously provide semantic 

information, which means not only segmenting objects by parts but also classifying 

each part. A classic clustering method in handling point clouds is Density-based spatial 

clustering of applications with noise (DBSCAN) [48], which is also popular in 

statistical analysis. Deep learning models automatically capture the spatial features of 

3D structures. In recent years, deep learning-based 3D segmentation has seen 

significant advancements. A series of 3D segmentation algorithms used for different 

3D data structures have been proposed, including but not limited to PointNet++ [49], 
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MeshCNN [50], PVCNN [51] and PTv3 [52]. Additionally, 3D segmentation can also 

be performed by projecting 2D segmentation result to 3D data.  

Skeletonization is the key step in skeleton extraction and analysis which facilitate 

recording and analysis of the topological structure of 3D objects such as plant canopy. 

For instance, Laplacian Contraction [53] and L1-medial skeleton construction 

algorithm [54] can extract skeleton from point clouds. 

2.4. Data types 

Structured 3D data is the foundation for data storage and applying machine 

learning algorithms in analysis. It provides the organized format needed for algorithms 

to process, interpret, and extract valuable insights, enabling accurate predictions and 

informed decision-making in various applications. Recent research on 3D 

reconstruction and measurement of agricultural information has explored the usage of 

various 3D data types, including point clouds, meshes, voxel grids, density fields and 

distance fields. These data structures can be divided into explicit representation and 

implicit representation, as shown in Figure 3.  

 

Figure 3. 3D Data types used in acquiring agricultural information, including 

explicit and implicit representations. 

Point clouds are collections of data points with positions (usually in Cartesian 

coordinates) and additional information like colors or surface normals. Such simplicity 

makes them efficient for real-time processing and mathematical computations, which 

explains their widespread use as the primary output format for most 3D sensors. In 

robotics and autonomous driving, point clouds enable real-time tasks such as 

navigation, mapping, and object detection. The simplicity also results in their great 

compatibility of deep learning, facilitating faster deep neural network inference and 

training and simplify data preprocessing [55]. Various 3D datasets are contributed 

with point clouds, playing vital role in computer vision, 3D modeling, robotics, 

autonomous driving, and geospatial analysis. However, the fidelity of point clouds is 

highly dependent on the density and accuracy. Perceive from point clouds with low 

density or strong noise are challenging task for machine learning, while point clouds 

with too high density require large memory and slow down the calculation. Therefore, 

trade-off between fidelity and processing speed should be considered.  
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Unlike point clouds, meshes offer a more structured representation of surfaces, 

providing inherent connectivity between the points. Meshes are efficient in 

representing objects because it focuses on fitting the surface and defining the shape 

with polygons, which reduces the amount of data needed compared to a dense point 

cloud. However, constructing A mesh from unstructured raw data can be challenging, 

requiring algorithms to ensure smooth surface reconstruction sand proper connectivity. 

A voxel grid is a 3D array where each voxel represents the smallest unit in a 3D 

space, containing properties like color or density. Voxel grids are useful in 

applications like medical imaging (e.g., MRI and CT scans) and photorealistic volume 

rendering, but high-resolution grids incur significant storage occupancy and 

computational cost. To ensure processing efficiency, simplified structures like sparse 

voxel octrees are introduced. 

While explicit representations directly describe the object's geometry, implicit 

3D representations store information about a 3D object through implicit mathematical 

functions. Density Fields is a typical implicit representation of 3D model. Implicit 

means that instead of constant values stored in the voxel, the density and color of 

specific spatial coordinate in the scene are inferred from implicit functions such as 

parametric equations. Since neural networks are capable for universal approximation 

of unknown mappings, implicit density fields can also be fitted by specific neural 

networks [56]. Such inspiration gave birth to Neural Radiance Field (NeRF), which 

uses implicit functions to efficiently represent and render photorealistic 3D scenes 

with fewer parameters [35]. 

Similar to Density Fields, Distance fields are mappings between spatial 

coordinates and distances from surfaces. Signed Distance Fields (SDF) use negative 

values to indicate interior positions, enabling smooth, continuous surfaces. Previous 

works such as DeepSDF and NeuS have utilized neural networks to learn SDF and 

output smooth and intact shape of 3D objects [57,58]. 

3. Application of 3D reconstruction in modern agriculture 

In the following, this article will systematically review the specific uses of 3D 

reconstruction technology based on different agricultural objects. These studies not 

only successfully reconstructed complex objects involved in agriculture, but carried 

out measurements on the generated 3D models to obtain valuable data as well. Some 

typical successful cases conducted on crops are shown in Figure 4.  

 

Figure 4. Typical successful application cases of 3D reconstruction on crops: (a) 3D 

reconstruction maize canopy at 48 days after sowing [59]; (b) Representation of 

skeleton tree graph as a curve tree via quotient graph [60]; (c) Visualization of wheat 

3D reconstruction and organ segmentation results [61]; (d) Spatial distribution of 
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illness of grapevine trunk [62]; (e) Point cloud of field and corresponding yield 

estimation map [63]. 

3.1. Application of 3D reconstruction on cereal crops 

Cereal crops provide essential energy, carbohydrates and proteins for human life 

and livestock production [1]. Table 1 summarizes recent research on 3D 

reconstruction of cereal crops and their applications, categorized as canopy 

reconstruction, organ segmentation, threat assessment and yield estimation.  

3D crop canopy data can provide tremendous potential to analyze phenotypic 

traits and archive digital model for future analysis [40]. However, obtaining high-

quality 3D crop canopy data is a challenging 3D reconstruction task because of the 

complicated structure. A pipeline that consists of SuperGlue matching network, 

feature key point adjustment, bundle adjustments and self-supervised RepC-MVSNet 

model for point cloud generation and 3D reconstruction of wheat canopy has been 

proposed by Liu et al. [64] with a dense reconstruction speed of 5 minutes per plant. 

Skeleton and morphological structure of maize plant was derived from high-precision 

point clouds by 3D laser scanners [65]. Arshad et al. [66] have evaluated different 

Neural Radiance Field (NeRF) techniques for the 3D geometry reconstruction of 

various plants in both indoor and outdoor environments. In the most realistic maize 

field scene, the models from NeRF achieve a 74.6% F1 score comparing the result 

from terrestrial laser scanner. 

To realize the measurement of organ-level crop phenotypic traits, classification 

and segmentation of crop organs is an essential step when handling 3D data. 

McCormick et al. developed a phenotyping platform that generates 3D plant meshes 

representing shoot architecture in sorghum and manually segmented the meshes into 

a shoot cylinder, leaves, and an inflorescence [67]. Then experiments have been 

conducted to reveal several QTLs related to organ-level traits measured from 3D data. 

Nevertheless, handling segmentation on huge quantities of 3D data could be time and 

labor intensive, and various techniques of automatic segmentation of plant organs 

were explored. A 3D point cloud convolutional neural network (CNN) model which 

outperformed PointNet with a segmentation accuracy of 93.4% was designed to 

segment rice ears from stalks in panicle phenotyping [68]. Another low-cost 3D-

modeling method for rice plant based on deep learning, shape from silhouette, and 

supervoxel clustering has been proposed to segment out panicles [69]. When using 90 

panicle-segmented images, the proposed method in [69] could finish 3D panicle 

segmentation within 6 minutes, reaching a mean accuracy of 0.95. Chang et al. have 

developed a method for detecting individual sorghum panicles in a 3D point cloud 

derived from field UAV imagery, and characterize the length and width of panicles 

using shape fitting [70]. MVS-Pheno platform has been used to acquire high-quality 

multi-view stereo dataset of various crops, and a pipeline named DeepSeg3DMaize 

has been developed to segment organ instances and extract organ-level phenotypes 

traits such as stem height, leaf size and inclination [71]. The proposed 

DeepSeg3DMaize pipeline has reached the means of precision, recall, and F1-score of 

0.94, 0.92, 0.93 respectively in organ instance segmentation task. 
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Table 1. Overview of application of 3D reconstruction and measurement on cereal crops. 

Target Application Objects Principle1 Method details Information Reference 

Canopy 

Reconstruction 

High quality point 

cloud 

reconstruction 

potted 

wheat plant 
MVS 

SuperPoint + SuperGlue + 

FKA + FBA, RepC-MVSNet 

depth map, dense point 

cloud 
[64] 

  

Phenotyping 

parameters 

extraction 

corn plant SLS 

Laplacian Point Cloud 

Contraction, Adative 

sampling, skeleton calibration 

skeletons and 

morphological structure of 

plant 

[65] 

  
Canopy geometry 

reconstruction 

maize and 

other plants 
MVS 

Instant-NGP, NeRFacto, 

TensoRF 

Canopy point cloud, 

reconstruction error, 

PSNR, SSIM, LPIPS 

[66] 

Organ 

Segmentation 

Organ level traits 

measurement 

sorghum 

plants 
ToF 

Frame registration, polygon 

approximation  

leaf size, leaf area, plant 

height, shoot cylinder 

height, leaf angle 

[67] 

  

morphological 

indicators 

measurement 

maize 

plants 
MVS 

MVS-Pheno platform, 

DeepSeg3DMaize network 

Stem-leaf segmentation, 

leaf instance segmentation, 

stem height, leaf size, leaf 

inclination 

[71] 

  
3D panicle 

segmentation 
rice panicle SLS 

DLP Structure Light, SE-

Inception-PointConv, Panicle-

3D network 

segmentation between rice 

stalks and ears 
[68] 

  
3D plant 

segmentation 
rice plant MVS 

SegNet, shape-from-

silhouette, supervoxel 

clustering 

segmentation of rice 

panicles 
[69] 

  
3D panicle 

segmentation 

sorghum 

plants 
MVS 

Photogrammetry, color ratio 

threshold, shape fitting 

panicle count, geometry 

and volume 
[70] 

Threat assessment 

drought-resistant 

varieties 

identification 

Maize LiDAR 
Distance-based clustering, 

voxelization 

Plant height, plant area 

density, plant area index, 

projected leaf area 

[72] 

 
Water stress 

detection 
Maize ToF 

Multi-source image 

registration, Delaunay 

triangulation-based 

interpolation 

Spatial distribution of 

canopy temperature and 

CWSI 

[73] 

Yield Estimation 

Prediction of 

above-ground 

biomass 

corn field MVS SfM-MVS, Regression 
Crop surface model (crop 

height distribution) 
[74] 

 
above-ground 

biomass estimation 
corn field 

MVS, 

LiDAR 

SfM-MVS, OLS, RF, BP, 

SVM 

Prediction of above-

ground biomass 
[63] 

 
high yield variety 

breeding 
rice MVS 

channel thresholding, 

OpenSFM 

Regression of the number 

of matured grains and 

yield 

[75] 

 
high yield variety 

breeding 
wheat 

MVS, 

LiDAR 

SfM-MVS, DSM-based point 

cloud fusion 

3D spatial distribution of 

photosynthetic parameters, 

yield prediction 

[76] 

 

Yield and grain 

protein content 

prediction 

wheat LiDAR 
2-to-2 deep learning 

prediction model 

Time-series data of yield 

and grain protein content 
[77] 

1 MVS: Multiview Stereo, SLS: Structured light scanning, ToF: Time-of-Flight, LiDAR: Light 

Detection And Ranging. 

Threat assessment proactively warn risks such as pests, diseases, or 

environmental stress before they escalate into more severe problems, empowering 

ability to act timely and targeted interventions, minimize crop loss, optimize resource 

use, and improve overall farm productivity in precision agriculture. Terrestrial LiDAR 

has been employed to collect phenotypic traits of maize under drought stress and plant 
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height, plant area index and projected leaf area were chosen as key indicators to detect 

drought-resistant varieties. Plant height, plant area index and projected leaf area were 

chosen as key indicators to detect drought-resistant varieties, and the estimated values 

from LiDAR data have reached the accuracy of 96%, 70%, and 92%, respectively [72]. 

Qiu et al. [73] have extracted maize canopy cloud with spatial distribution of 

temperature and crop water stress index (CWSI) from Microsoft Kinect v2 and thermal 

cameras, making contribution to crop water stress detection and analysis.  

Yield estimation is an important issue in precision agriculture, which is directly 

related to profit estimation and agricultural resource scheduling, and helps breeders 

select high-yield varieties as well. Compared to traditional remote sensing techniques, 

3D field data provides elevation data of crop canopy, therefore it can effectively 

improve the prediction. Gilliot et al. [74] have used SenseFly® eBee UAS platform to 

take photos of maize fields with GNSS positions and constructed crop surface model 

by photogrammetric 3D reconstruction. Sampling and regression on crop surface 

model outperformed manual sub-plot sampling in above- ground biomass estimation 

with 15% higher accuracy. Zhu et al. [63] have collected multi-source point clouds by 

an UAV platform with 3 sensors at different resolution and generate datasets to 

estimate aboveground biomass by multiple machine learning models, and the best 

model reached R2 of 0.83 and 0.81 for fresh and dry above-ground biomass. Okamoto 

et al. [75] have explored relationship between reconstructed 3D points of rice field and 

evaluation indices of yield. Gu et al. [76] fused LiDAR point clouds and multispectral 

imagery of wheat field and collected 3D photosynthetic phenotype data with 

significant vertical distribution patterns, making estimation of the photosynthetic 

parameters of wheats with R2 between 0.75 and 0.84. Derived from 3D photosynthetic 

data, two new 3D metrics have been developed to predict yield with higher accuracy 

and greater robustness than tradition methods. A 2-to-2 deep learning model has been 

designed to predict wheat yield and grain protein content of wheat simultaneously with 

field LiDAR and multispectral data as input [77]. 

3.2. Application of 3D reconstruction on profit crops 

Profit crops are another important part in cultivation as they enrich human 

material life and bring the majority of income for small farms [78]. Table 2 

summarizes recent research on 3D reconstruction on profit crops and their applications, 

categorized as canopy reconstruction, skeletal analysis, organ segmentation, threat 

assessment and post-harvest measurement. 

Table 2. Overview of application of 3D reconstruction and measurement on profit crops. 

Target Application Objects Principle Method details Information Reference 

Canopy 

Reconstruction 

Occlusing canopy 

prediction 
Sugarbeet root MVS 

Bundle Adjustment, PF-SGD, 

3D template matching 

Reconstructed canopy 

mesh 
[79] 

 
Orchard Scene 

Recosntruction 

strawberry 

orchard 
MVS 

NeRF-Ag, Environmental factor 

embedding 

Neural Density Field of 

Multiscale Orchard 

Scenes, rendered pictures 

from novel views 

[80] 

 

Orchard scene 

reconstruction and 

understanding 

Pepper MVS 
panoptic segmentation, PAg-

NeRF 
3D Panoptic field map [81] 
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Table 2. (Continued). 

Target Application Objects Principle Method details Information Reference 

 
Orchard Scene 

Mapping 

strawberry and 

pepper rows 
MVS 

ORB-SLAM, Target-Aware 

Implicit Mapping 

Implicit mapping of 

canopy and fruits 
[82] 

 
3D reflectance 

spectrum analysis 

tomato, perilla, 

rapeseed 
MVS 

Next best-view planning, NeREF, 

radiometric calibration 

3D multispectral point 

clouds, EWT, SPAD 

values 

[83] 

Skeleton 

Analysis 
Skeleton extraction 

cherry and 

begonia trees 
SLS 

space colonization algorithm, 

DBSCAN branch identification 

skeleton, branch angle, 

branch length  
[84] 

 
Skeleton reasoning 

with occlusion 

oak, apple and 

walnut trees 

BV1, 

MVS 

likelihood map, Mask-RCNN 

segmentation 
tree skeleton [85] 

 Growth Monitoring Tomato SLS 
Iterative non-rigid registration, 

hidden Markov model 

Skeletal 

Correspondences, 

Temporal interpolation 

[86] 

 
Main stalk and node 

detection 
Cotton LiDAR Laplacian contraction 

Main stalk length, node 

number, canopy graph 
[87] 

Organ 

segmentation 

3D branch 

segmentation and 

pruning 

Jujube Tree ToF 
Laplacian-based contraction, 

SPGNet, DBSCAN 

skeleton extraction, 

branch length and 

diameter 

[88] 

 
Legume 

Segmentaion 
Rape SLS Plant Segmentation Transformer 

number of siliques, 

instance segmentation  
[89] 

 Fruit segmentation Apple Trees LiDAR DBSCAN Clustering 
reflectance intensity, 

geometric factors 
[90] 

 Yield estimation strawberry field BV, SLS 
VINS-RGBD, PP-LiteSeg-T, 

Voxblox 

Sematic Mapping of 

strawberry field, fruit 

count 

[91] 

 Yield estimation Cotton Field MVS 

SfM-MVS, Super-voxel 

clustering, deep forest 

classification 

cotton boll count and 

volume  
[92] 

 
Pod Counting and 

Meausrement 
Peanut MVS Nerfacto/frustum PVCNN  

pointclouds with instance 

segmentation of peanut 

pods 

[93] 

Threat 

Assessment 

salinity stress 

detection 

Cucumber 

leaves 
MVS Photogrammetry 

dimension of cucumber 

leaves 
[94] 

 
seedling abnormality 

detection 

Tomato 

seedlings 
MVS 

shape-from-silhouette, 

AutoEncoder + PointNet, semi-

supervised learning 

autoencoder features, 

abnormality classification 
[38] 

 wilting measurement cotton plants MVS 
PointSegAt, Active Boundary 

Segmentation, Edge Erosion 

organ segmentation, 

organ size, wilting degree 
[95] 

 
Clubroot disease 

identification 
Oilseed Rapes MRI Marching Cubes, Regression 

lateral root number, root 

geometry, root volume 
[96] 

 Disease assessment grapevine trunks 
CT, 

MRI1 

multimodal machine learning, 

random forest, voxel 

classification 

Spatial distribution of 

trunk lesions and defects 
[62] 

1 BV: Binocular Vision. CT: X-ray Computed Tomography, MRI: Magnetic Resonance Imaging. 

Several canopy reconstruction studies on profit crops based on multiview stereo 

have been carried out. Marks et al. [79] have presented an approach to precisely 

reconstruct sugar beet plants with occlusion in field conditions via UAV Imagery and 

3D template matching, with a precision of 81.65 comparing to laser scanned 3D 

models. NeRF-Ag [80], a modeling strategy of implicit neural density field, has 

improved multi-scale 3D scene reconstruction and rendering of strawberry orchard by 

introducing environmental embeddings. PAg-NeRF [81] is another efficient system 
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that can render novel-vier photo-realistic images and panoptic 3D map from sweet 

pepper field. Similar implicit neural mapping framework, TAIM [82], which 

combined MVS with SLAM-based pose initialization strategy, has achieved robust 

convergence in reconstructing canopy and fruits. Furthermore, researches on plant 

canopy reconstruction are not limited to obtaining structure, color and texture 

information. By introducing view-planning based adaptive data acquisition and Neural 

Reference Field, Xie et al. [83] have fused multispectral imaging data and 3D point 

clouds and have revealed the spatial distribution of canopy equivalent water thickness 

(EWT) and soil and plant analyzer device (SPAD) values, facilitating plant biology 

and genetic studies as well as crop breeding. 

Skeleton extraction and analysis were conducted to analyze plant canopy. Xu et. 

al. [84] have extracted tree skeletons from scanned 3D point clouds by an improved 

space colonization algorithm and have validated the accuracy of estimated branch 

length and angle via the measurement of skeletons. Kim et al. [85] have proposed a 

tree skeleton reasoning method based on multi-view RGB-D images collected from a 

robotic platform with average skeleton precision and recall of 0.98 and 0.59 under 

occlusive scenarios. Mask-RCNN has been employed to segment out and extract 

partial point clouds of branch instances, then the tree skeleton could be repaired in a 

3D likelihood map. In order to analyze temporal plant-traits, Chebrolu et al. [86] have 

taken account of the non-rigidity and the temporal growth of the plan, and proposed a 

novel registration method by finding correspondence of skeleton points over time, 

which outperformed rigid transformation-based registration by obtaining mean 

registration error of 3 mm and a maximum error of 13 mm. Dense cotton plant point 

clouds were obtained by LiDAR and a method combining Laplacian contraction and 

minimum spanning tree has been developed to detect main stalk and nodes [87]. 

Research on organ segmentation of profit crop is not only for organ-level trait 

extraction, but for performing automated tasks such as pruning and harvesting via 

agricultural robots as well. Ma et al. have collected high quality point cloud of a jujube 

tree from RGB-D images using only 2 perspectives, then the branches have been 

segmented out from the trunk using the proposed SPGNet with Intersection-over-

Union (IoU) of trunks and branches of 0.85 and 0.76, providing convenience for 

measuring branches and making pruning decisions [88]. PST [89], a transformer-

powered deep learning network, has been proposed to segment complex rapeseed 

plants point clouds and achieved superior performance in sematic and instance 

segmentation of siliques, raising mean coverage from 86.58% to 89.51% in instance 

segmentation comparing to PointGroup. 

Fruit detection and segmentation is a crucial task in organ segmentation, with 

applications ranging from fruit counting and yield estimation to online spatial 

localization. Such localization provides essential spatial references for in-field harvest 

robots, enhancing their efficiency in navigating and picking operations. Tsoulias et al. 

[90] have developed a LiDAR laser scanning system to locate, count and collect 

radiometric and geometric features of apples with F1-score higher than 76.9% in 

evaluation of apple clusters. Yuan et al. [91] have developed VINS-RGBD, a system 

that integrate semantic segmentation module and simultaneous localization and 

mapping (SLAM) technology, to achieve 3D point cloud reconstruction, sematic 

segmentation and yield estimation of strawberry plants in field. Xiao et al. [92] have 
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employed SfM-MVS algorithm to collect 3D point cloud of cotton bolls in situ from 

UAV imagery and founded that Cross-circling oblique route outperformed traditional 

nadir route when collecting multi-view photos, raising R2 value of cotton boll counting 

from 0.73 to 0.92. Then super-voxel clustering and machine learning methods have 

been used to segment out cotton bolls and an algorithmic process has been proposed 

for extracting boll quantity and volume data. Nerfacto and CNN has been utilized to 

count and measure peanut pods from multi-view images of the whole plant, and the 

precision achieved at the IoU threshold of 0.5 is around 70% in 3D pod detection [93]. 

Threat assessment is also an important part in profit crop cultivation. Moualeu-

Ngangué et al. [94] found out an affordable early detection of salinity stress from 

morphological traits of 3D meshes from cucumber leaves. Autoencoders were 

employed to detect abnormality on large quantities of tomato seedlings with partial 

labeled 3D point clouds data [38]. PointSegAt deep learning network model on 3D 

point clouds was used to perform wilting quantification experiments on two different 

varieties of cotton plants [95]. Tomography based methods are helpful in detecting 

lesions at plant trunk and root system. Feng et al. [96] have extracted grayscale 

histograms and 3D root architecture parameters from MRI images and founded 

method of oilseed rape clubroot detection with a classification accuracy of 95.83% in 

the test dataset. Fernandez et al. [62] have established a multimodal 3D imaging 

workflow that can reconstruct grapevine trunk internal structure via MRI and CT 

images. Machine learning is also employed in the proposed workflow to classify 

degraded tissue or white rot voxels from intact tissues, with an F1-score > 90.5% for 

each class. 

3.3. Application of 3D reconstruction on livestock 

With the emerging demand for animal products in both quantity and quality and 

the advent of large-scale livestock farming techniques, the animal husbandry is 

moving towards industrialization. Highly integrated breeding environment increases 

pressure on livestock monitoring systems. The need for high throughput monitoring 

of animal health, behavior, and welfare has become more critical to ensure effective 

management and maintain optimal production levels. In response, various computer 

vision-based solutions have been employed in precision livestock farming [97]. 3D 

reconstruction and measurement solutions have been shown to outperform 2D image-

based solutions in several tasks, e.g., behavior analysis and body measurement. Table 

3 summarizes application cases of 3D reconstruction on livestock from recent 

researches, and the representative visualization results are shown in Figure 5. 

Traditionally, ear tags or collars embedded with RFID chips were used to identify 

individual in livestock farming. However, these tags may be lost or induce stress and 

need extra cost for management. Zhou et al. [98] managed to train an improved 

PointNet++ LGG model to construct and identify individual feature fingerprints from 

point clouds of pig back with an accuracy of 95.26%. 
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Table 3. Overview of application of 3D reconstruction and measurement on livestock. 

Target Application Objects Principles Method details Information Reference 

Instance 

Identification 

Individual pig 

identification 
Pig ToF PointNet++LGG Point clouds of pig back [98] 

Body Dimension 

Measurement 

3D 

reconstruction 

of pig bodies 

Pig ToF 

Mask-RCNN feature point 

detection, noise filtering, 

ICP registration 

chest girth, and hip width [99] 

 

Automatic 

body size 

measurement 

Pig ToF 
Improved PointNet++ 

segmentation 

Body dimension and circumference of 

different parts 
[100] 

 
3D body shape 

analysis 
Cow SLS 

Poisson surface 

reconstruction  

Heart girth, chest depth, wither height, 

hip width, backside width, ischial width 
[101] 

 
growth 

monitoring 

Dairy 

Cow 
SLS gradient calculation 

Hip distance, height, head size, body 

length, depth and back slope 
[102] 

Health 

monitoring 

Lameness 

Detection 
Cow ToF 

detectron2, IOU-based 

tracking, backbone 

classification 

height curve of backbone [103] 

 
Behavior 

analysis 
Chicken BV 

active contour model, 

region-scalable fitting 

motion parameters (displacement, speed, 

acceleration), behavior classification 
[16] 

 
Feather damage 

detection 
Chicken BV 

adaptive aggregation 

network, heterogeneous 

image registration 

3D body point clouds with depth and 

thermal information, damaged parts and 

damage depth 

[104] 

 

Figure 5. Typical successful application cases of 3D reconstruction on livestock: (a) 

Top view of the point cloud of the pig’s back for instance identification [98]; (b) 

Key point extraction for animal body size measurement [102]; (c) Equipment and 

depth sensor used to monitoring lameness of cows [103]. 

Body measurements of livestock is an important task for accurate assessment of 

growth and production performance. 3D morphological data is more conducive to 

extracting measurement points or accurately segmenting the measurement parts to 

obtain more accurate measurement results. In addition, three-dimensional 

measurement data can serve as an important archive for subsequent morphological 

analysis. Lei et al. [99] developed a non-contact system for perceiving pig body 

measurements using ToF depth cameras, in which Mask-RCNN was used to detect 

measurement reference points, indicating relative errors for chest girth and hip width 

of 3.55% and 2.83%, respectively. An automatic pig body size measurement algorithm 

based on improved PointNet++ segmentation has been developed, which achieved 

good robustness and scalability in measurement of body size and circumference of 

different parts [100]. Through various measurement techniques, e.g., dorsal ridge line 

fitting, the algorithm is capable to measure pig body with non-standard postures. Le 
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Cozler et al. [101] have designed Morpho3D, an automatic tool using laser scanner 

and Poisson surface reconstruction to extract 3D body mesh and morphological 

parameters of Holstein cows. The reproducibility and repeatability coefficients of 

variation for this measurement were reported to be less than 4%. Pezzuolo et al. [102] 

performed uncertainty analysis in shape measurement of daily cows and reported 

reliable metrological performance on measurement of head size, hips distance, withers 

to tail length, chest girth, hips, and withers height by Microsoft Kinect™ v1.  

3D observation also helps researchers assess the health status of livestock from 

parameters of morphology and motion. Tun et al. [103] segmented cow instance using 

Detectron2 and constructed 3D backbone height curves from depth images to detect 

lameness, achieving lameness classification accuracy of 81.1%. Xiao et al. [16] 

proposed an automatic behavior monitoring method with detection accuracy of 

drinking and eating above 94.5% for caged chicken on a binocular vision system, 

utilizing 3D reconstruction to accurately extract the 3D contours of the chicken’s head 

and body. Experimental results have demonstrated that 3D contours outperform 2D 

contours in analysis, which facilitates monitoring the health condition of caged 

chickens in real-time by deriving relevant information from the motion parameters of 

their eating and drinking behaviors. A heterogenous image registration method has 

been employed to acquire 3D body point clouds with depth and thermal information 

from laying hens and the feather damage depth can be measured [104]. Results shown 

3D body point clouds have better performance in damage detection than 2D RGB-

Thermal images, achieving R2 = 0.946 and RMSE = 2.015 mm in prediction of 

damage depth. 

3.4. Application of 3D reconstruction on aquaculture 

3D reconstruction in aquaculture is a challenging task due to the underwater 

environment. Most 3D sensors are not designed to operate effectively in underwater 

scenarios. Additionally, light behaves differently in water, refracting as it passes 

through, which distorts images and complicates depth calculation. The scattering and 

absorption of light further reduce visibility and accuracy, making it difficult to obtain 

precise 3D reconstructions in aquatic settings compared to land-based environments. 

Nevertheless, there are several successful research cases in fish shape reconstruction, 

geometry measurement and motion tracking. Some typical visualized results of these 

researches are given in Figure 6, while detailed information is listed in Table 4. 

 

Figure 6. Typical successful application cases of 3D reconstruction in aquaculture: 

(a) Fish body with coded structured light patterns [105]; (b) Tilapia body length 

measurement considering distance and angle variation [106]. (c) Fish 3D trajectories 

in Cartesian space [107]. 
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Table 4. Overview of application of 3D reconstruction and measurement in aquaculture. 

Target Objects Principles Method details Information Reference 

Fish shape 

reconstruction 
fish BV 

Deep learning-based landmark 

estimation, landmark alignment  

3D fish landmarks, fish point 

cloud model 
[108] 

 
seabream and 

seabass 
SLS coded structure light Depth map and 3D fish model [105] 

 fish MVS 
Silhouettes and key-points extraction, 

shape fitting 
animated fish model [109] 

Fish size 

measurement 
Bluefin tuna BV 

Deformable silhouette modeling and 

fitting, local thresholding 
Snout fork length [110] 

 
Micropterus 

salmoides 
BV 

2-stage key point detection network, 

stereo matching 

Spatial coordinates of fish head 

and tail, body length 
[111] 

 fish  BV 
Mask-RCNN+Grabcut segmentation, 

stereo matching 

Fish point cloud model, length 

and width 
[112] 

 
Red finned fugu, 

filefish 
BV 

Multi-media size regression, YOLOv7 

segmentation 
Body length [113] 

 tilapia BV 
SAM segmentation, mass estimation 

model 

body length, body mass 

estimation 
[106] 

 spotted knifejaw BV Regression on body area fish area, prediction of fish mass [114] 

Fish  

3D tracking 
salmon BV 

YOLOv5 eye detection, stereo 

matching, trajectory analysis 

Spatial trajectory, speed and 

acceleration 
[115] 

 fish BV YoloV7, DeepSORT 
Individual fish ID, position, 

distance to camera, speed 
[116] 

 zebrafish MVS idTracker appearance analysis Fish spatial trajectory and speed [107] 

Based on paired binocular images, a solution named MoFiM that reconstruct the 

fish via 3D landmarks alignment has been proposed, which introduced a chirality-

supervision incorporated hourglass network to increase accuracy of landmark 

extraction and lowered the 3D landmark reprojection error to 1.7229% [108]. Veinidis 

et al. [105] have introduced coded structure light with specially designed pattern to 

reconstruct the shape of seabream and seabass. Wu et al. [109] have developed 

DeepShapeKit and successfully generated smoothed 4D shapes of fish from 

synchronized video frames of front and bottom views with mean key-point errors less 

than 5 pixels.  

Fish size information is an important indicator for monitoring fish biomass and 

health status. However, since fishes are deformable during movement, how to find 

measuring references is a key issue for accurate fish morphology measurement. 

Muñoz-Benavent et al. [110] have deployed an underwater binocular vision system 

inside grow-out cages to sample fish length from binocular video frames, introducing 

an improved geometric model [117] for accurate length measurement with up to 90% 

of the samples bounded in a 3% error margin. Deng et al. [111] have introduced a 

modified 3D reconstruction algorithm for multi-media scenarios and achieved more 

accurate estimation of fish length with the mean relative error of 1.05% ± 3.30% from 

binocular images taken above water surface. SMDMS, another scheme for fish length 

and width estimation, is consist of stereo vision, deep learning-powered fish instance 

segmentation, 3D points cloud extraction and measurement [112]. Gao et al. [113] 

applied Snell’s law to correct the deviations of depth calculation in multi-medium 

scenarios and analyzed the estimation error of fish body length under different depth 
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and imaging angle. Not only limited to fish size, Feng et. al have explored regression 

model from tilapia body length to body mass and found out the quadratic model have 

the best performance among different mass groups with the R2 > 0.91 and a mean 

relative error lower than 5.90% [106]. To acquire fish length from binocular images, 

SAM model has been utilized to fish body segmentation and feature point selection. 

Shi et al. [114] have leveraged fish body area measured from binocular vision to 

estimate fish mass.  

Fish motion tracking in aquaculture farming sites can provide the basis to analyze 

their behaviors, possibly stress levels and animal welfares. Nygård et al. [115] focused 

on 3D tracking of the fish eyes from binocular images therefore calculated their 3D 

position and motion. Saad et al. [116] proposed a novel framework combining 

StereoYolo and DeepSORT to achieve multiple fish identification and motion tracking. 

Audira et al. has established a special apparatus with mirror to simultaneously collect 

the top and side view of fish tank in one photo and restore the 3D position of every 

zebrafish based on open-source idTracker [107,118].  

It can be concluded that these researches predominantly adopt stereo vision-based 

solutions since stereo vision leverages triangulation to obtain true size information 

without reference objects. Some studies have waterproofed sensors for underwater use, 

while others have performed measurements outside of water. Both approaches require 

consideration of corresponding refraction correction models. Machine learning-based 

techniques, such as instance segmentation and stereo matching, are widely applied in 

underwater 3D reconstruction and measurement. However, these studies share a 

common challenge, the difficulty in overcoming the effects of occlusion. This will be 

an issue that should be addressed in future research, particularly when observing in 

scenarios with dense population such as commercial fish ponds. 

3.5. Application of 3D reconstruction on post-harvest products 

 

Figure 7. Typical successful application cases of 3D reconstruction on post-harvest 

products: (a) Fruit images, point clouds and 3D surface model for morphological 

measurement [119]; (b) Device for measuring the 3D electrical impedance of maize 

ears [120]; (c) 17-sphere particle model of buckwheat seeds and simulation test of its 

stacking angle [121]. 

Post-harvest product measurement helps maintain product quality and 

consistency by providing standardized reference of quality evaluation and grading. 

Moreover, the measured indicators are crucial for phenotyping analysis of crops. 
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Based on 3D reconstruction, a series of researches on 3D morphological measurement 

of post-harvest products were carried out for product classification, evaluation, 

recording, grading and breeding. As shown in Figure 7, these researches can be 

categorized into morphological measurement, inner traits measurement and simulation 

analysis, while detailed information is summarized in Table 5. 

Table 5. Overview of application of 3D reconstruction and measurement of post-harvest products. 

Application Objects Principles Method details Information Reference 

Fruit Traits 

Measurement 
Pear ToF ICP, LCCP Stalk Removal Centroid-based perimeters [119] 

 Carrot ToF ICP, Poisson reconstruction 
registration error, 3D meshes, 

dimensions and volume 
[122]  

 Apple BV A-KAZE feature matching, PMVS  Diameter, Height, shape index, volume [123] 

 Apple SLS, BV ICP Registration 
Diameter, Height, Deformity index, 

volume 
[124] 

 navel oranges BV 

Stereo matching, Structural Features 

Extraction, Attention Weights 

Generation 

reconstruction error, surface depth [125] 

 Walnut MVS Instant Neural Density Field 
Color, Length, Width, Height, Surface 

area, Volume 
[126] 

 
plum, fig, date, 

mushroom 

SLS, 

MVS 

Laser scanning, photogrammetry, 

artificial neural network 
volume during shrinkage [127] 

 
Blueberry 

cluster  
MVS 

Photogrammetry, Mask R-CNN 

segmentation projection, sphere fitting 
berry count, volume, and maturity [128] 

 Walnut CT Micro CT 
Length, Width, Height, Shell thickness, 

Kernel Volume, etc. 
[129] 

Inner trait 

measurement 
Corn kernel CT Micro CT, ResNet-50 classification 

mold origin, temporal volume change, 

degree of mold contamination,  
[130] 

 Corn kernel CT Micro CT, CTAN 
Tissue size, tissue volume, cavity 

volume, etc. 
[131] 

 Corn ear EIT1 3D EIT, RFNetEIT conductivity distribution in maize ears [120] 

Simulation 

analysis 
corn seed SLS 

Laser Scanning, automatic ball filling 

and optimization 

irregular 3D particle modeling of corn 

seed 
[132] 

  sorghum seeds SLS 
Laser Scanning, multi-sphere method, 

EDEM 

collision restitution coefficient, static 

friction coefficient, rolling friction 

coefficient 

[133] 

 buckwheat seed CT multi-sphere particle modeling physical parameters, contact parameters [121] 

1 EIT: Electrical Impedance Tomography. 

Wang et al. [119] have used a Kinet v2.0 camera and an electric table to measure 

morphological traits of pears from centroid-based position, and a strategy based on 

locally convex connected patches has been proposed to remove stalk before geometry 

measurement. Xie et al. [122] have also used similar device to extract carrot mesh with 

Poisson Surface Reconstruction and obtain morphological features of carrots, and the 

morphological variables obtained from 3D solid models had a MAPE below 3%. 

Binocular vision [123] and structured lights [124] have been used to estimate apple 

phenotypic parameters rapidly. However, reconstructing fruits with dense and highly 

repetitive surface texture, such as navel oranges, is a very challenging task for passive 

3D reconstruction methods. Gao et al. [125] has introduced OrangeStereo, a novel 
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stereo matching algorithm that enhance the performance of depth estimation of fruit 

surfaces with an inference time of only 33 milliseconds and the RMSE of depth 

prediction of 0.81 mm. In addition, implicit neural networks are proved to restore 

surface information, including geometry and color features, of fruit with complicated 

surface such as walnuts [126]. Mollazade et al. [127]. have developed a 3D laser 

imaging system for measuring volumetric shrinkage of multiple horticultural products 

during drying to monitor the drying process and comparative test with 

photogrammetry has been conducted to evaluate the accuracy of the proposed imaging 

system. 3D model of berry fruit bunches has been obtained through 3D 

photogrammetry, and deep learning-based 2D instance segmentation results were 

projected onto the model to segment, count, and estimate morphological harvestability 

traits of individual blueberries efficiently [128]. Experiment showed that the accuracy 

of determining the fruit number in a cluster is 97.3% and the linear regression for 

cluster maturity has a of 0.908 with a RMSE of 0.068. In addition, tomography takes 

a vital role in inner trait measurement. By introducing X-ray CT, Bernard et al. [129] 

have collected 14 traits, including traits previously require destruction to obtain, such 

as shell thickness, kernel volume and filling kernel/nut ratio, and their experiment have 

proved that 50 samples are sufficient to phenotype the fruit quality of one accession.  

Tomography-based 3D reconstruction unveils inner traits of post-harvest 

agricultural products without destructive observation. The development of internal 

mold contamination of maize kernels over time, including the origin and volume 

change, have been unveiled by Micro-CT scanned 3D models [130]. Micro-CT 

reconstruction have also been used to extract phenotypic traits of maize seeds such as 

tissue size, tissue volume, cavity volume, etc. [131]. Zheng et al. [120] have developed 

a module and introduced RFNetEIT framework for the absolute imaging of the 3D 

electrical impedance of maize ears and revealed the conductivity distribution.  

3D reconstruction of post-harvest products is also conducive to promoting the 

design of related automated facilities. Discrete Element Method (DEM) analysis is a 

key tool for granular movement simulation, thus essential in design and optimization 

of agricultural machinery such as seed metering devices and harvesters. By modeling 

real seeds using 3D reconstruction, designers can achieve more realistic simulate result 

and make improvement on machinery performance and reliability. Yan et al. [132] 

have introduced 3D laser scanning system to corn seed simulation modeling, 

exhibiting significantly improved precision and efficiency in analytical experiment of 

seed metering device. Mi et al. [133] also employed 3D laser scanner to extract 

outlines of sorghum seeds to construct simulation model by multi-spherical particle 

model filling and calibrated several physical properties such as friction coefficient 

with high accuracy and reliability. Similarly, Li et al. [121] have obtained 3D 

buckwheat model by CT scanning and conducted static parameter calibration and 

dynamic seed metering simulation test. A 36-sphere particle model was selected and 

was proved to have a good balance between simulation accuracy and computational 

efficiency with relative errors of the coefficients lower than 0.7%. 

4. Discusstion 

It is worthy of our reflection that, compared to other industries, the adoption and 
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widespread application of 3D reconstruction technology within the agricultural 

domain remain relatively limited. In the following discussion, this study will analyze 

the current difficulties and possible future development trends of 3D reconstruction in 

the agricultural field from several perspectives. 

4.1. Scale and efficiency issues 

A significant portion of the current research on 3D reconstruction in agriculture 

has been conducted under relatively ideal laboratory conditions. These experiments 

often focus on specific and controlled scenarios, such as reconstructing individual 

plants or single fruits, which may not fully reflect the complexities of real-world 

agricultural tasks. Unfortunately, few researches on 3D reconstruction in agriculture 

have taken timeliness into attention for actual agricultural tasks. Addressing this gap 

is essential to enhance the practical applicability of these technologies. On the other 

side, some of the reconstruction methods cost hours to a day to reconstruct a scene, 

which is not applicable for real-time usage. An important restriction for not 

introducing 3D reconstruction to agricultural tasks is that the advantage in perception 

did not overwhelm the loss in efficiency compared to 2D image-based methods. 

Introducing state-of-art 3D reconstruction technology or optimizing task-specific 

algorithms are feasible research ideas to promote the implementation of 3D 

reconstruction and measurement in agriculture. Such efforts would not only improve 

the feasibility and efficiency of 3D reconstruction but also facilitate its large-scale 

deployment for agricultural measurement and management tasks. 

4.2. Multimodal 3D reconstruction 

Most researches rely on sensing data from single source, which will result in 

insufficient robustness when working in natural environments. Leveraging research 

experience in fusing multi-source sensor data from domains such as autonomous 

driving and remote sensing could serve as a promising path for future research in 

agricultural applications [24,25,62]. Additionally, the flexible integration of 3D 

reconstruction technology with other perception systems utilized in agricultural 

domains (e.g., spectral imaging) to explore the 3D spatial distribution of multiple traits 

is worthy for further exploration. 

4.3. Inspiration from novel view synthesis 

Although recent revolutionary representations of 3D scene, as mentioned in 

Section 2.2.2, are intermediate product for solving problem of novel view synthesis, 

the 3D reconstruction models obtained from these innovative representations surpass 

traditional multi-view 3D reconstruction algorithms, which has prompted researchers 

to think about improving 3D reconstruction tasks in the agricultural field by 

introducing these methods. It is gratifying that some researchers have already put 

neural radiance field-based methods into actual tasks and have achieved better 

performance [66,81,93,126,134]. However, to the best of our knowledge, there is no 

publication that introduces 3D gaussian splatting, a more state-of-the-art approach to 

agricultural reconstruction tasks. It is foreseeable that 3DGS-driven reconstruction 

will be put into application in the agricultural field in the next few years. 
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5. Conclusion 

The integration of 3D reconstruction and measurement technologies in 

agriculture represents a transformative shift towards more efficient and sustainable 

farming practices. The advancements in computer vision and machine learning, 

particularly the development of deep learning, have significantly enhanced the ability 

to monitor and analyze agricultural systems. This review retrospectively organized 

relevant researches on agricultural application of 3D reconstruction and measurement, 

analyzing the equipment, platform, algorithms, data structure and processing methods 

and other related technologies in these researches summarized according to the 

application scenarios. As demonstrated in this review, these technologies facilitate 

precise assessments of crops, livestock, aquatic animals and post-harvest products, 

enabling better decision-making and resource management. A further discussion of 

current changes and future prospects was carried out to provide suggestions for future 

researches. As human strive to optimize agricultural production while minimizing 

environmental impact, embracing these innovative solutions for obtaining agricultural 

information will be essential in achieving a more sustainable agriculture for 

generations. 
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