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Abstract: A concise review of the main current natural sources used to produce chitin—the 

starting material to produce chitooligosaccharides (COS)—is presented, including algae, 

arthropods, birds, fish, fungi, mollusks, and, possibly, plants. The principal approaches 

addressed to produce COSs, grouped as physical, chemical, and biological processes, are also 

outlined. Subsequently, the COS more relevant applications related to agriculture are briefly 

outlined, i.e., induction of innate immunity in plants, growth biostimulation, soil amending, 

biocidal activity, etc. Some interesting findings of this review are: (a) A clear relationship has 

been undoubtedly established between the low molecular weights (MWs) of these chitinous 

materials and their striking bioactivities (b) There is no universal consensus about the limit 

MW below which a substance can be considered a COS and some of the proposed limit values 

are supported in works that have not proposed them (c) The preparation and application of COS 

is an active field of research due to the accessibility of chitin sources anywhere and the variety 

of preparation methods available, as well as the multiple possibilities of modification that these 

materials offer for the preparation of bioactive derivatives (d) The chemical modification of 

the great number of existing COS, by a wide range of agents and approaches, including 

computer simulation studies, is a virgin field that could generate products with powerful elicitor 

proper-ties (e) Biocidal activities of COSs, advantaged with their greater water solubilities than 

chitin and chitosan, are remarkably attractive due to the possibility of replacing, partial or 

completely, injurious synthetic products currently in use. Similarly, this review makes it 

possible to appreciate that the preparation and separation of COS with well-defined structures 

could boost the discovery of the specific regulatory mechanisms that each oligomer species 

can activate (or repress), that is, defense mechanisms in plants. 
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1. Introduction 

Chitin, a biopolymer presents in a wide range of organisms such as insects, 

crustaceans, mollusks, fungi, fish, algae, etc. [1], has a wide range of biological 

properties that include antioxidant and antimicrobial activity, which have been used 

in agricultural applications, especially as a soil amendment agent [2]. Chitosan, its 

main derivative, which is usually obtained through its chemical or enzymatic 

deacetylation, has been more widely studied due to its greater processability because 

it is soluble in an acidic aqueous medium. In such a sense, its use has currently 

extended to many areas of science and technology, in applications ranging from the 

wound and burn healer [3], seed treatments [4], manufacturing of biofilms for food 

preservation [5], formulation of smart hydrogels for applications in medicine [6], 

preparation of nano-fertilizers [7], encapsulation of bioactive species, including live 
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microorganisms that promote better soil health and increase crop productivity [8], 

manufacturing of food nanosensors [9], just to name a few. 

Likewise, it has been firmly demonstrated that there is a strong dependence on 

the properties of these biopolymers on their degree of polymerization and 

deacetylation degrees (DP and DD, respectively), and acetylation pattern (PA) [10–

12]. Chitinous materials are homo- or hetero-copolymers made up of glucosamine 

(GlcN) and N-acetyl-glucosamine (GlcNAc) units, which are usually distributed 

randomly in the latter. Those with a fraction of glucosamine units greater than 0.50, 

that is, having a DD (Figure 1a) greater than 0.50, are considered chitosan because 

they usually solubilize in aqueous acid medium when DD  0.50 [13,14]. 

 
Figure 1. (a) General chemical structure of chitinous materials illustrating its composition as a function of the DD; (b) 

Partial chemical structure of the QCOS showing the quaternized moiety. 

On the other hand, it is known that most of the properties of chitosan, such as 

those related to its biological activity, i.e., antibacterial, antifungal, plant bio-stimulant, 

antitumor, immuno-regulatory, antioxidant, and anti-inflammatory, etc., are enhanced 

when it contains appreciable amounts of oligomeric species [15–17], which are usually 

known as low molecular weight chitosan (LMWC). Furthermore, the success of some 

of these LMWCs has generated interest in the production and purification of a type of 

such materials, from both chitin and chitosan, which are known by the generic name 

of chito-oligosaccharides (COS) [17]. These materials can be defined, in a general way, 

as the degradation products of chitin and chitosan obtained under different approaches, 

i.e., by using physical, chemical, and biological procedures, or a combination of them. 

According to IUPAC-IUB Joint Commission on Biochemical Nomenclature, 

Recommendations [18], an oligosaccharide is a molecule containing a small number 

(2 to about 10) of monosaccharide residues, connected by glycosidic linkages; 

however, in the case of the COSs, there is no universal consensus on this matter and 

some limits have been advanced to define its maximum molecular weight, being 3900 

Da and 10,000 Da the normally stated values. The molecular weight choice as a 

criterion for this definition does not seem the most appropriate because some 

oligomers with the same molecular weight could have a different number of repetitive 

units, depending on their DD, making the comparison of the structural effects of COS 

more complicated. Additionally, some works indicating the value of 3900 Da [19–21] 

are based on other works, which in turn establish that it was proposed by Muzzarelli 

[22], although no limits for the molecular weight of chito-oligomers are mentioned in 

the cited Muzzarelli ś paper. Similarly, the mentioned 10,000 Da limit value [23] is 

also supported by an article that does not establish it [24]. Thus, greater, and more 

systematic work seems necessary so that the COSs can be better defined in this regard. 

Concerning its use in areas related to agriculture, different studies are currently 
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being developed, including the computational simulation, to establish the relationships 

of their structural characteristics, i.e., DP, DD, PA, etc., on the mechanisms by which 

COS favors some processes directly related to the growth of plants as well as other 

related, such as soil remediation mechanisms, biocidal activity, among others. Table 

1 presents a few examples to illustrate the type of research already underway on this 

topic. 

Table 1. Some illustrative studies on the effect of structure on the properties of COS. 

Studied system Findings 

COS with DP ranging from 2 to 12 was prepared and five 
fractions were separated from the prepared COS by CM 

Sephadex C-25 column. 

The COS with low DP showed a better effect of scavenging hydroxyl radicals 
and reducing power. The superoxide radical scavenging activity of all the tested 

COSs increased with DP [25] 

Arabidopsis seeds treatment with a quaternized COS with 

glycidyl trimethylammonium (QCOS) 

Obtained QCOS possess better elicitor properties than the original COS and 

QCOS stimulate plant protection against B. cinerea attack [26] 

Treatment of Arabidopsis seedlings with chitin oligomers 

and a mixture of chitin oligomers (DP 2–4)  

Oligomer with DP = 4 activated a transcriptional response in genes principally 

related to plant development [27] 

COSs with determined DPs were applied to explore the 

relationship between the DP and the growth of wheat 
seedlings under salt stress 

Chitohexaose, chitoheptaose, and chitooctaose exhibited stronger activity 

compared with other COS samples, suggesting a close relationship between 
their activities with the DP [28] 

COSs with DP = 4–12 were tested for elicitor and priming 
activities in rice cells. 

Both activities were influenced by DP. An apparent DA-dependent priming 
activity was also observed. The closer the acetyl group is to the non-reducing 
end, the higher the priming activity is. Neither fully nor partially deacetylated 
(D) tetramers with an acetyl group (A) at or close to the reducing end (DDDD, 
DDDA, DDAD, DAAA, ADAA, AADA) were active [29] 

The growth-promoting effect of chitin oligomers, 
(GlcNAc)2–6, was studied by measuring the content of 
inorganic elements and global gene expression in tomato 
plants grown hydroponically at ultra-low nutrient 
concentrations. 

Significant increases in the biomass of aerial parts and concentration of 

chlorophyll following treatment with chitin nanofibers CNF or short-chain 
chitin oligomers were observed. Concentrations of nitrogen and carbon 
significantly increased [30] 

The preparation of COS with different structural 
characteristics and findings on its antioxidant, anti-
inflammatory, anti-obesity, bacteriostatic, and antitumor 

activity are summarized. 

The correlation between the molecular structure and bioactivities of COSs is 
described, and new insights into their structure-activity relationship are provided 
[31] 

Enzymatic preparation of single COS, spanning protein 

engineering, enzymatic membrane bioreactors, and 
transglycosylation reactions, is reviewed. 

COS’s bioactivities, i.e., anti-tumor, antioxidant, antibacterial, anti-

inflammatory, and plant defense induction, exhibit close associations with DP 
values [32] 

This work presents a concise review of the different sources and methodologies 

employed to produce COSs and their main agricultural applications. The general 

objectives of the work are to provide an overview of the main sources and methods 

for obtaining these materials, especially those with well-defined structural properties, 

which could help to establish more precisely the relationships with their striking 

bioactivities, as well as highlight their significant achievements in these applications. 

2. Methodologies used in COS production 

2.1. Main sources of chitinous materials 

The production of COS is strongly influenced by its starting materials, i.e., chitin 

and chitosan. In this regard, natural sources containing chitin are very varied, including 

the exoskeleton of insects as abundant as cockroaches [33] and crickets [34], cell walls 

of fungi such as Mucor rouxii [35], algae [36], and finding in the shells of a variety of 
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crustaceans the traditional source for its current production [37]; furthermore, the 

scales of some fish [38], the chicken feet [39] and, presumably, the “esponjilla” plant 

(Luffa cylindrica) [40–42] have also been recently added to the extensive list of 

potential sources of chitin, which broaden the horizon of suitable materials to produce 

these biopolymers. Otherwise, the controlled cultivation of microalgae [43] and fungi 

[44] is also being intensively explored in search of chitinous materials whose 

properties do not show variations dependent on factors such as the stage of growth of 

the different species used for their traditional production, or the seasonality of their 

captures; furthermore, this type of material should have better qualities regarding 

allergen and metal contents [45]. Figure 2 shows a diagram of the main stages 

involved in the production and application of COS in agriculture, including the main 

natural sources for obtaining chitin and chitosan. 

 
Figure 2. General sources and stages involved in COS production and its main 

applications in agriculture. 

2.2. Methods for obtaining COS 

The preparation of COS can be conducted in two ways: (i) through synthesis of 

oligomers, or oligomerization, starting from its structural units, GlcN and GlcNAc (ii) 

through the degradation or depolymerization of chitin and chitosan to obtain the 

desired values of molecular weight. Although the chemical oligomerization processes 

can generate COS highly pure and with well-defined chemical structures, it often 

involves different protection and deprotection steps of the intermediate products, 

including sometimes its purification, which increases the production costs of these 

materials, thereby discouraging their massive use. Furthermore, the COS biochemical 

synthesis starting from GlcN and GlcNAc is also possible by using a combination of 

enzymes, i.e., chitin synthases and chitin deacetylases [46]; however, the current 

availability and excessive costs of suitable enzymes may limit the COS produced by 

this way although this could change soon. 
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On the other hand, the situation of chitinous material degradation or 

depolymerization is completely different because COS preparation can be addressed 

by a wide range of approaches [15,46–48]. Below, the main procedures employed to 

obtain COS are briefly presented: 

1) Physical: Among the methods that allow obtaining LMWC and COS with 

controlled properties through physical degradation/depolymerization of chitinous 

materials are the plasma treatment [49]; use of electromagnetic radiation, i.e., UV 

[50], gamma- and X-rays [51,52], microwave [53]; milling [54]; sonication [55]; 

etc. 

2) Chemical: The main approaches for the chemical degradation of chitinous 

materials are based on the application of hydrolytic processes that usually lead to 

the split of the polymer chains into smaller species. Some of these processes 

allow largely to preserve the integrity of the internal GlcN and GlcNAc units 

during the formation of the smaller chains, i.e., X-ray irradiation [52]; there are 

also depolymerization processes where the chemical structures of these units are 

altered by the occurrence of uncontrolled deacetylation reactions of the GlcNAc 

units, the formation of undesirable reducing sugars impurities, like 5- 

hydroxymethylfurfural [56], among others. Thus, it often becomes difficult to 

obtain chitinous materials of different molecular weights and the same degree of 

acetylation, and vice versa, even starting from the same initial sample, a situation 

that can become more complex when considering the different PA that can occur. 

Among the simplest chemical hydrolytic agents used to obtain COS, oxidizing 

agents, such as hydrogen peroxide [57] and potassium persulfate [58], and strong 

acids, i.e., nitrous acid [59], and hydrochloric acids [60], and acid mixtures [61], 

can be mentioned. 

3) Biological: Among the available methods, enzymatic preparation stands out as a 

viable and environmentally friendly approach for COS synthesis due to the better 

control that can be exercised in the generation of dangerous byproducts and for 

being carried out in moderate conditions [46]. Besides the chitinases [62] and 

chitosanases [63], different non-specific enzymes, i.e., glycosidases such as 

proteases [64], lipases [65], cellulases [66], etc., have been assessed to produce 

COS. Furthermore, the production of chitosan with controlled acetylation 

patterns, using N-acetylases, has also been recently reported [67], which seems 

to open new horizons for these materials, where the preparation of COS with 

more specific PA has a place.  

Table 2 presents a few examples where the preparation of COS and its 

application in agriculture-related research are briefly described. 

Table 2. A few works related to methods for preparing chitinous oligomers and the results of their application in 

research related to agriculture. 

COS preparation method Reported observations 

Chemical depolymerization of chitosan using 
KIO4 

A markedly superior effect was found only for the chitosan sample containing a higher fraction 
of oligomeric chains in the germination of zucchini seeds [14]. 

Combination of COS-C/secondary 
metabolites of Streptomyces spp. and COS-

C/hydrolyzed gluten 

Prepared combinations were effective in controlling powdery mildew during Grapevine field 
studies [68]. 
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Table 2. (Continued). 

COS preparation method Reported observations 

Chitosan depolymerization using a 
heterogeneously expressed chitosanase 
derived from Aspergillus fumigato  

Obtained COS significantly inhibited the mycelium growth of phytopathogenic fungi such as 
Botrytis cinerea, Fusarium graminearum, Alternaria alternate, Magnaporthe grisea, Erysiphe 
cichoracearum, and Alternaria solani [69]. 

Chemical modification of N-chitosan 
oligosaccharide with dithiocarbamate 

Modified COS possess multiple activities, including high nematocidal and egg-hatching 
inhibitory activities, plant growth regulating effects, low cell toxicities, and phytotoxicities [70]. 

Gamma-irradiation of chitosan 
Chitosan and oligo-chitosan were applied on potato plants. Improvement in shoot height and 
number of nodes was observed after foliar spray at 50–75 mg/L [51]. 

Carboxymethyl chitosan’s (CMC) 
degradation by gamma rays 

CMCs with lower Mw had a good effect on delaying spoilage and decreasing the 
malondialdehyde (MDA) content of peach fruits [71]. 

Gamma Co-60 irradiation of chitosan in 
solution. 

COS foliar spraying of the chili plant attained a noticeable increase in fresh weight (71.5%) and 
dry weight (184%) of the shoot [72]. 

COSs synthesized by gamma-ray irradiation 
were used to prepare nano-silica mixtures.  

Foliar application of COS and COS-nano silica increased soybean seed yield increased 10.5 and 
17.0%, respectively [73]. 

COS with well-defined DPs were separated 
from a mixture of fully deacetylated COS by 
CM Sepharose column 

The results of the growth and photosynthesis parameters of wheat seedlings evidenced a close 
relationship between the DP of COS and its bioactivities. ADP > 3 is needed for significant 
promotion of growth and photosynthesis [74]. 

COS (MW < 2000 Da) were obtained using 
an enzymatic and ultrasonic combined 
treatment. 

By using the conjugate complexes prepared with COS and bioactive compounds from 
Streptomyces spp. as coating, table grapes were found to maintain the turgor and delay the 
appearance of the pathogen (Botrytis cinerea) by 10−15 days [75]. 

3. Agricultural applications of COS 

The bioactivity of COSs depends strongly on its chemical structures, i.e., DP, DD, 

and GlcN-GlcNAc distribution pattern, which define its physicochemical properties; 

furthermore, the dosage, application method, pH, and temperature of the medium, 

among other factors, would modify the bioactivity of the COSs molecules [74]. 

Diverse bioactivities of COSs have been exploited in agriculture-related applications 

[46,76–78], as briefly it is shown below. 

3.1. Induction by COSs of innate immunity in plants 

Plants can detect pathogen-associated molecular patterns, which are chemical 

species that have been conserved throughout evolution and are collectively called 

PAMPs. These act as general elicitors to activate immune responses, in a process 

known as PAMP-triggered immunity (PTI). Chitin oligomers are well-recognized 

PAMPs, and chitin oligosaccharides (COS-CHs) are the most frequently encountered 

PAMPs related to pathogen fungi [79]. Chitosan- and quaternized chitosan-oligomers 

(COS-C and QCOS, respectively) have also been reported as effective elicitors [26,80]. 

Thus, when transplanted blackberry plants were sprayed weekly with a soluble 

bioprocessed COS-C (cross-linked with ascorbic, 4 g/L−1 of water) a significantly 

higher total soluble phenolic at 4, 6, and 7 weeks was obtained, which can be 

associated with a subsequent improved resilience against abiotic and biotic stresses 

after transplanting [81], as observed previously during creeping bent grass COS 

treatment [82]. 

Interestingly, the QCOS prepared by reacting COS-C with glycidyl-trimethyl 

ammonium chloride (Figure 1b) induces hydrogen peroxide accumulation and callose 

deposition in Arabidopsis seedlings and significantly increases the peptidyl-arginine 

deiminase 3 expression (more than 5-fold by QCOS as compared to COS), a previous 
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step to induce resistance of Arabidopsis to the necrotrophic fungus Botrytis cinerea 

[26]. In this sense, these QCOSs can be considered better protectors against B. cinerea 

attack on Arabidopsis than the original COS-C. 

Thus, it becomes clear that the chemical modification of the wide variety of 

existing COS [20], through the infinite range of agents and methods of modification 

and application of the resulting product (see Table 3 for a few examples), is a virgin 

field that could generate derivatives with, for example, greater eliciting properties than 

the starting compounds [83]. In that sense, computer simulation studies have also been 

reported to optimize the performance of COS-based systems [84]. 

Table 3. A few studies on the preparation of derivatized COSs and their bioactivities. 

Proposed structure of the derivatized repetitive unit COS properties Observations 

 
1-Aminoetthyl-O-COS 

MWCOS = 800–3000 Da 

MWDCOS = 800–4765 Da 

n = NR 

SD = NR 

Aminoethyl chitooligosaccharides inhibit the activity 

of the angiotensin-converting enzyme. IC50 = 0.8017 

μg/mL [85]. 

 
Glycidyltrimethylammonium chloride-N-COS 

MWCOS = 2000 Da 

MWDCOS = NR 

n = NR 

SD  90% 

QCOS-induced Arabidopsis resistance to the 

necrotrophic fungus Botrytis cinerea. It possesses 

better elicitor properties than the original COS to 

stimulate plant protection against B. cinerea attack 

[26]. 

 
1,3-Dithio cyclobutane-N-COS 

MWCOS = 1500 Da 

MWDCOS = NR 

n = NR 

DD = 46.19% 

SD = 21.79% 

This COS showed notorious nematocidal activities 

(LC50/72h = 1.23 mg/mL) against Meloidogyne 

incognita second-stage juveniles as well as egg-

hatching inhibitory activity [70]. 

 
Aminourea-COS 

MWCOS = 2200 Da 

MWDCOS = NR 

n = NR 

DD = NR 

SD = 23.09% 

The COS-derivative had remarkable inhibitory 

efficiencies against three plant pathogen fungi than 

initial COS, exhibiting inhibition rates of 60.12%, 

82.95%, and 85.23% against Fusarium solani, 

Verticillium albo-atrum, and Phytophthora capsici, 

respectively [86]. 

 
Sulfated-COS 

MWDCOS = 1600 Da 

Sulfate content of is 

48.5%. 

Sulfated-COS alleviates the damage of salt stress on 

wheat seedlings by adjusting the antioxidant enzyme 

activities of plant. Its effect on photochemical 

efficiency was closely related with the sulfate group 

[87]. 

SD = Substitution degree; n = average number of repetitive units; 

MWCOS = MW of the initial COS; MWDCOS = MW of the derivatized COS. 

3.2. COS as a growth stimulator 

The bio-stimulation of plant growth by COSs has been well documented 

[26,46,88], with different approaches having been considered to explain their 

beneficial effects, i.e., increasing photosynthesis, auxin, and gibberellin content, C and 

N assimilation, etc. [89]; notwithstanding, the molecular mechanism is still unknown 

[27], perhaps in part due to the multiple variety of sources and methods used to 

produce COSs as well as the difficulty in standardizing the characterization of such 

dissimilar samples. Some COSs perhaps mimic the natural lipo-oligosaccharides used 
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by arbuscular mycorrhizal fungi [90] and Rhizobium bacteria [91] to initiate the root 

colonization and symbiotic relationship with plants, respectively, by triggering some 

processes that favor the plant growth and development. In this regard, some COSs 

have been reported to induce genes belonging to functional categories of the plant 

developmental processes [27] and, through metabolomic and proteomic studies, the 

regulation of different key genes in the signaling pathway of plant growth by hetero-

COS have also been observed [92]. 

3.3. COS against phytopathogen 

In addition to their ability to induce plant protection mechanisms against 

pathogens by activating the metabolic pathways of salicylic acid or jasmonic 

acid/ethylene [89], the antifungal activity of COS has been known for a long time, i.e., 

inhibition of Fusarium solani by non-acetylated heptamers [93]. This activity has also 

been related to DP [94], among other factors. Thus, COS prepared by enzymatic 

hydrolysis (DP between 3–9) showed greater antifungal activity than the starting 

chitosan for various phytopathogens, but with more noticeable effects on mycelial 

growth, and on other growth stages, of Phytophthora capsici; interestingly, the 

proposed mechanism of action of COS was not solely related to the cationic character 

of COS [95]. 

Another line of action currently in focus, because of the utilization of naturally 

occurring chemicals, is the derivatization of COSs using essential oils with their 

biocidal activity, seeking to achieve synergistic advantages from the chemical union 

of them, as it has been observed for physical mixtures of COS and 

ethylenediaminetetraacetic acid on the pathogen Fusarium fujikuroi, causing the rice 

bakanae disease [96]. Some studies have shown that such derivatives have the 

potential to control certain pathogens, such as the COS derivatives containing 

cinnamyl moieties which demonstrated enhanced antibacterial activities [97]. As can 

be inferred, the topic of biocidal activity of COSs is quite broad, being of interest to 

different sectors such as agriculture, food, health, environment, etc., and is closely 

related to the chemical structures of these materials [98,99]. Regarding agricultural 

applications, the appropriate use of different COS could help to establish an era of 

sustainable agriculture and avoid the use of chemical or synthetic pesticides, as 

advanced by Karamchandani et al. [100] during the control studies of pokkah boeng 

diseases on sugar cane (also caused by Fusarium fujikuroi). 

3.4. Soil amending and bioremediation 

The ability of LMWC and COS to chelate metal ions, i.e., Fe2+, has been 

demonstrated to be highly dependent on their molecular weights (MWs), with greater 

chelating activity observed for low MWs [101]. Therefore, soil amendment with COS 

could favor the bioavailability of some metals, which facilitates their uptake by plants 

[102]. On the other hand, phytoremediation can take advantage of the COS’s chelating 

ability to mobilize soil heavy metals, as it has been reported for Hylotelephium 

spectabile in Pb-contaminated fields [103]. Further, COS could also stimulate the 

resistance of the phytoremediation plant to the stress conditions generated by 

contaminated soils, as it has been observed for diverse plants [104]; however, in the 
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phytoremediation of metal-contaminated soils assisted by exogenous agents, chitinous 

materials included, it is also important to consider the potential risks of the spread of 

resistant genes, as it has already been observed [105]. 

3.5. Other potential agricultural-related applications of COSs 

In addition to their bioactivities directly related to the agricultural sector, COS 

can be used in other applications close to or overlapping with it, such as the food and 

nutraceutical sectors. Thus, COSs have shown antioxidant activities whereby they 

could be incorporated in foods as a functional ingredient to promote consumers’ health 

and to improve the shelf life of food products by retarding lipid oxidation; furthermore, 

they would also help to improve the shelf life of food products by inhibiting some 

pathogens [101]. Similarly, some COS derivatives have been reported to inhibit 

adipogenesis and lipid accumulation, i.e., sulfated (N, O)-COS (MW  1 kDa), which 

confer high potential to be utilized as a bioactive agent in the nutraceutical and food 

industries, among others [106]. 

On the other hand, trials with COS for the treatment of pesticide poisoning in 

laboratory animals have shown that some of these materials alleviate and remove the 

toxicological effects, as has been observed for chlorpyrifos, an organophosphorus 

pesticide. COS showed significant biological effects in removing and mitigating blood 

biochemistry, antioxidants, inflammation, apoptosis, gut barrier structure, and 

metabolic function changes induced by this pesticide [107]. 

4. Concluding remarks 

The preparation and application of COS is a very active field of research due to 

the variety of sources and preparation methods available, as well as the multiple 

modification possibilities that these materials offer for the preparation of bioactive 

derivatives. A clear relationship has been established between the low molecular 

weights of these chitinous materials and their striking bioactivities in fields such as 

agriculture, food, health, environment, etc. However, in addition to achieving a 

consensus definition of when chitooligomers can be referred to as COS, much more 

research needs to be carried out on this point, to optimize the sustainable production 

of COS with better-defined and characterized structures and where the effects of the 

PA begin to be disclosed [29,108,109]. 

Likewise, research on the chemical modification of the wide variety of existing 

COS, through the infinite range of agents and methods of modification and application 

of the resulting products, is a virgin field that could generate products with powerful 

elicitor properties, including computer simulation studies, which have also been 

reported to optimize the performance of COS based systems. Similarly, the biocidal 

activities of COSs, advantaged with their greater water solubility than chitin and 

chitosan, are remarkably attractive due to the possibility of replacing, partial or 

completely, synthetic bioactive products in use, a fact of current importance in 

different sectors such as agriculture, food, health, environment, etc. 

In a sense, chitin, chitosan, and COS are usually mixtures of similar molecules, 

containing species of different molecular sizes, DD, and PA, capable of activating 

specific processes; unfortunately, the use of these mixtures has prevented clarifying 
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the importance that some of the species, or a combination of them, may have on certain 

biological processes. Therefore, obtaining COS with well-defined structures can help 

discover, among others, the specific up-regulating mechanisms that each of them can 

activate (or repress), i.e., defense mechanisms in plants, which makes research in this 

field more exciting every day. As has already been proposed [48], the next 

development of these materials may be based on taking the in vitro biorefinery 

approaches to the in vivo cell factory levels for the biotechnological production of 

well-defined COS, using recombinant microbial strains capable of expressing 

oligomer-specific chitin synthases and chitin deacetylases. Additionally, the 

bioactivities of these COSs could be further improved by derivatization. 
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