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Abstract: Remote sensing technology has increasingly emerged as a potent tool for precision 

agriculture, particularly in facilitating the mapping and monitoring of crops on a large scale. 

An application of this technology is the identification of different types of rice by analyzing 

the pixels acquired in satellite images. Regrettably, the pixels in the image have been mixed 

from different recorded items. Therefore, they have the potential to influence the outcome of 

the identification. An effective approach to addressing this problem is to employ the linear 

spectral unmixing (LSU) technique. The LSU approach quantifies the ratio of pure objects in 

every pixel of an image by utilizing the spectral value associated with the endmember of the 

rice variety. The investigation was carried out in the Karangjati District during the generative 

stage (70 ± DAP) of the rice planting season. The data indicates that the dominant variety is 

Inpari 32 HDB. The data validation tests, which involved the use of a confusion matrix and 

Kappa analysis, resulted in an overall accuracy rate of 85.48% and a Kappa analysis score of 

70.6%. 

Keywords: endmember; Karangjati; linear spectral unmixing; precision agriculture; remote 

sensing; rice varieties 

1. Introduction 

Since rice, or the grain of the rice plant, is the primary meal of the Indonesian 
people, rice is a vital food crop commodity in Indonesia. Indonesian rice has 
distinctive characteristics depending on the type of variety [1]. The rice-growing 
process involves multiple phases: 1) The planting phase, or what can be called the 
initial phase of growth, is when waterlogging activities in paddy fields are carried out; 
2) the vegetative phase: in this phase, the paddy fields are dominated by green color 
due to leaf growth; 3) the generative phase is when paddy fields have started to rinse 
rice grains and the leaves start to turn yellow; thus, the paddy fields begin to turn 
yellow [2]. In Indonesia, almost 95% of people consume rice as a staple food. Also, 
rice is the primary commodity for supporting people’s food [3]; thus, every year, the 
demand for rice increases in line with the increase in population [4]. Since Indonesian 
people’s rice consumption level is significant, it must also be balanced with balanced 
production efforts to avoid the risk of a shortage of supplies, which impacts food 
insecurity [5]. One of the efforts of the Indonesian state to deal with this is by 
controlling rice production based on its variety. 

Remote sensing is a useful tool for investigating different types of rice. In order 
to perform research on rice varieties, we need imagery from satellites that has high 
spatial, spectral, and temporal resolution. We opted to utilize Sentinel-2 and MODIS 
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imagery due to their favorable specifications in terms of temporal and spectral 
resolution [6–12]. 

However, some obstacles arise when choosing remote sensing satellite imagery 
as a medium for conducting this research. One pixel on a multispectral remote sensing 
satellite image usually contains more than one type of recorded feature, resulting in 
mixed pixels. These mixed pixels affect the accuracy of identification. The spectral 
unmixing method can be used to deal with mixed pixels. To deal with the mixed pixel, 
there are two general approaches used by researchers: linear spectral unmixing (LSU), 
which assumes the photon only interacts with one substance on the surface, and 
nonlinear spectral unmixing (NSU), which assumes the photon has multiple reflections 
or interacts with a variety of substances. In fact, the NSU is very close to reality, but 
the LSU implementation is simpler with accurate results when dealing with moderate 
spatial resolutions [13,14]. LSU is a method for identifying the percentage of the 
presence of a pure object in each image pixel based on its spectral value, which is 
called an endmember. In this case, the intended endmember is rice varieties. The LSU 
method is also applied to multispectral images [6,15,16]. Based on the background 
above, this research was conducted at LSU. 

The purpose of this study was to find out what varieties of rice are planted in the 
Karangjati sub-district, which varieties are dominant, and to find out the accuracy of 
this study using Sentinel-2 imagery data with the linear spectral unmixing method. 

2. Material and methods 

2.1. Study area 

This research was conducted in Karangjati Sub District in Ngawi Regency, which 
included vector data of paddy fields. Karangjati Sub District has geographical 
coordinates of 7°27′31″ South Latitude and 111°36′31″ East Longitude, as shown in 
Figure 1. 

 
Figure 1. The location of study area. 
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2.2. Data 

The data utilized in this investigation is categorized into three distinct groups of 
data. The primary source of data is satellite imagery, specifically the MODIS 
MCD43C4 dataset, which spans the whole research region from January 2022 to 
March 2023. Additionally, the Harmonized Sentinel-2 MSI: Multispectral Instrument 
Level-2A dataset was acquired on 13 January 2023, covering the entirety of the 
research area. The growth stage of rice can be determined using MODIS MCD43C4 
satellite imagery. The satellite’s high temporal resolution of 1–2 days makes it a 
dependable tool for monitoring the rice growing phase. Three endmembers that 
represent different rice varieties/types at the field (i.e., Ciherang, Cibogo, and Inpari 
32 HDB) were recorded on 3–4 February 2023, following the work protocol of 
Sanjaya [17]. Meanwhile, the LSU approach utilizes Sentinel-2 satellite imagery to 
discern different types of rice by analyzing the endmembers of each variety. This is 
made possible due to the high spatial and spectral resolution of the satellite imaging, 
as stated on Sentinel’s official website (sentinels.copernicus.eu). The Sentinel is 
equipped with a multispectral instrument that has 13 spectral bands spanning the 
visible, near-infrared, and short-wave infrared channels. The satellite possesses a 
spatial resolution of 10 meters for the visible and near-infrared bands, while for the 
near-infrared and short-infrared bands, the resolution is 20 m and 60 m, respectively. 
The acquisition of all satellite imagery was facilitated by the Google Earth Engine 
platform (earthengine.google.com). The GEE platform offers numerous advantages in 
terms of data processing, both in terms of hardware and software [18]. The second 
component consists of the endmember data acquired from the spectral recordings of 
each leaf of the rice variety cultivated in the study area. The Ocean Optics USB4000 
spectrometer was used to conduct spectral recordings. The third dataset consists of 
vector data representing the unprocessed paddy fields in Karangjati Sub District, 
Ngawi Regency. The data is sourced from the Indonesian Geospatial Information 
Agency (BIG). Agricultural fields are used for cultivating rice. 

2.3. Workflow method 

The stages of processing research data are shown in Figure 2. There are four 
important stages: determining the endmember of each rice variety, determining the 
threshold value of the generative phase of rice using MODIS, applying the threshold 
value to Sentinel-2, and inputting the endmember to Sentinel-2 to perform LSU. 
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Figure 2. Workflow method. 

2.4. Determine the endmember  

To identify the endmembers of each rice variety, the spectral values of leaf 
samples are recorded using a spectrometer. After processing, the recorded spectral 
value results will be identified as an endmember for every rice variety during a 
particular rice growth phase. The endmember results will subsequently be applied to 
the generative phase of the Sentinel-2 band as an input to the LSU formula since the 
sample was collected during the generative phase. To identify the endmembers of each 
rice variety, the spectral values of leaf samples are recorded using a spectrometer. 
After processing, the recorded spectral value results will be identified as an 
endmember for every rice variety during a particular rice growth phase. The 
endmember results will subsequently be applied to the generative phase of the 
Sentinel-2 band as an input to the LSU formula since the sample was collected during 
the generative phase. 
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2.5. Determine the threshold value 

Two spectral indices from MODIS image data, the Normalized Difference 
Vegetation Index (NDVI) and the Normalized Different Water Index (NDWI), were 
used to establish the threshold value for identifying the generative phase in paddy 
fields. NDVI calculations are based on the principle that growing green plants can very 
effectively absorb radiation in the visible light spectrum (photosynthetically active 
radiation, or PAR), while green plants are highly reflective of radiation from the near-
infrared region (NIR). The usefulness of the NDVI index in determining the value of 
this threshold is that in the generative phase of rice, the process of filling and ripening 
of the rice panicles occurs, indicated by the condition of the rice leaves starting to turn 
yellow and the appearance of yellow rice panicles, thus that the fields begin to be 
dominated by yellow color. Based on this knowledge, the NDVI index can be used to 
determine the level of greenery in paddy fields. The lower the NDVI value, the more 
the more it can be concluded that the rice fields are starting to turn yellow. The concept 
of the spectral pattern is based on this principle, using only the red band image as 
follows [19,20]: 

NDVI =
(𝜌NIR − 𝜌Red)

(𝜌NIR + 𝜌Red)
 (1)

In contrast, water bodies can absorb strongly at visible and infrared wavelengths. 
An NDWI value greater than zero indicates that the surface contains water/water 
bodies, but conversely, if the value is smaller or equal to zero, it is assumed to be a 
non-water surface [21]. The use of NDWI in determining this threshold value follows 
the situation when, in the field, the generative phase of rice is indicated by the 
elongation of rice leaves and the appearance of rice panicles, so that leaves cover the 
condition of the rice fields along with the rice panicles, with the rice fields being 
covered, causing part of the paddy soil that contains water to be covered. Then, the 
NDWI index can be used to determine the level of water presence in paddy fields, with 
the assumption that the lower the NDWI value, the more the more it can be concluded 
that the level of water presence in paddy fields begins to disappear. NDWI has an 
equation pattern as follows: 

NDWI =
(𝜌Green − 𝜌NIR)

(𝜌Green + 𝜌NIR)
 (2)

2.6. Application of threshold values into Sentinel-2 

At this stage, the Sentinel-2 data is updated with the generative phase threshold 
value. The “generative phase Sentinel-2 image data” that is produced as a result of this 
step only shows rice fields that are in the generative phase. 

2.7. Input endmember into Sentinel-2 to perform LSU 

The endmember is then input into Sentinel-2 to perform LSU; at this stage, each 
rice variety endmember is input into the Sentinel-2 image data. In this case, the 
endmember targeted is the rice variety. Before inputting the endmembers, it is 
necessary to adjust the wavelength of each endmember to the Sentinel-2 image band. 
Then the LSU process is carried out. The results of this method are image data of 
endmember fractions from each rice variety studied. LSU is a method for identifying 
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the percentage of pure objects present in each image pixel based on the spectral value, 
which is called the endmember [22,23]. The standard technique for performing 
spectral unmixing analysis is linear spectral unmixing (LSU) [24]. The LSU method 
is also applied to multispectral images [15]. 

2.8. Classifying the endmember fraction 

Classifying the endmember fraction results of each variety: At this stage, the 
results of the endmember fractions are classified into four classes based on the range 
of minimum and maximum values of the fractions. The four classes are 0–25%, 25%–
50%, 50%–75%, and 75%–100%. Each class indicates the level of existence of 
fractions of the endmember in each pixel. The larger the percentage value, the larger 
the presence of endmember fractions in a pixel (dominant), and the smaller the 
percentage value, the smaller the presence of endmember fractions in a pixel (not 
dominant). 

2.9. Accuracy test 

The accuracy of the processing results must be tested in this study. The 
percentage of accuracy can be validated by using accuracy tests to identify errors. A 
confusion matrix is utilized to conduct an accuracy test of a model’s or classification 
algorithm’s performance [25]. Within a matrix, the confusion matrix indicates how 
many of the model’s predictions were right and wrong. It is a square matrix that 
summarizes the results into true positive (TP), true negative (TN), false positive (FP), 
and false negative (FN). Accuracy test assessment can use a contingency matrix, 
which is a square matrix that contains the number of pixels that are classified. It has 
been determined that the lowest level of classification or interpretation accuracy using 
remote sensing is less than 85% [26]. 

3. Result and discussions 

3.1. Endmember of rice varieties 

Each variety of rice is measured for its spectral value during this process. Only 
the rice varieties grown at the study site were measured. A spectrometer was used to 
measure the spectral value of each leaf in each rice variety; approximately 90 leaves 
were measured for each variety. The midpoint of the leaf tip is the portion of the leaf 
body that is measured, as illustrated in Figure 3. The area of the leaf to be measured 
is indicated in the figure by the red circle around it. calculated with a spectrometer. 

 
Figure 3. The illustration of rice leaf part for spectra measurement. 

The Cibogo, Inpari 32 HDB, and Ciherang varieties provided the successfully 
measured spectral data. Following the measurement of each sample’s spectral values 
in the field, the results are filtered in an effort to remove data anomalies. Figure 4 
shows an example of a rice variety data set that has been filtered for anomalies. 
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Figure 4. Measured spectra of rice leaf. 

The data free of outliers for each rice variety is then averaged to produce pure 
endmembers based on the outcomes of the outlier filtering. The ideal endmember data 
is obtained after the average process is completed. A description of the data that was 
transformed into endmember data for every variety of rice examined is presented in 
Figure 5. 

 
Figure 5. Endmember of each variety. 

3.2. Identification of the rice generative phase from MODIS 

In this study, it is necessary to guarantee that all data measured and processed are 
in the same phase, which is why the rice planting phase in the generative phase was 
identified. In terms of image data processing, it must be made sure that the data 
processed is limited to areas that are in the generative phase, as previously mentioned, 
since the field data measured is rice that is in this phase of growth. Take into account 
that the spectral values and endmember data of each object are unique. Different 
spectral values and endmember data will be present in rice during its vegetative and 
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generative phases, for instance. Using threshold values from NDVI and NDWI indices 
calculated from MODIS satellite imagery data based on 10 sample points at research 
locations over a one-year period, from January 2022 to March 2023, is the process 
employed in this procedure. Figures 6 and 7 display the NDVI and NDWI values, 
respectively, that were obtained. A value of 0 to 9 in Figures 6 and 7 is the code of 
samples. 

 
Figure 6. NDVI Value of MODIS in Karangjati Sub District. 

 
Figure 7. NDWI Value of MODIS in Karangjati Sub District. 

To make the process of analyzing the threshold value easier, the two indices 
(NDVI and NDWI) are combined by averaging their respective index values. Figure 
8 shows the combination’s outcomes. The average NDVI index value is displayed in 
blue, and the NDWI is displayed in orange. 

From the combined NDVI and NDWI indices, the threshold value for the 
generative phase of rice plants was determined. The threshold value is determined by 
looking at the starting points of the NDVI and NDWI decline patterns, namely in June 
2022 and October 2022. The results of the analysis show that the threshold values for 
the generative phase are NDVI > 0.7 and NDWI < −0.65. 
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Figure 8. Combined Average NDVI and NDWI in Karangjati Sub District. 

3.3. Generative phase of rice in Sentinel-2A 

The date of the Sentinel-2 image data used is 13 January 2023. The selection of 
dates is dependent upon factors related to cloud cover, and the image data must be in 
the generative phase at the time of each rice leaf sample’s spectral value measurement. 
Figure 9 displays the results of the first step, which involved substituting the Sentinel-
2A image data with the rice field vector data in the Karangjati Sub District. 

The generative phase threshold value is then used to carry out the image data 
masking procedure. Figure 10 shows the results of the masking process, which yields 
image data with rice areas in the generative phase. The reddish area is not in the 
generative phase, whereas the green area shows that the region is. It is important to 
keep in mind that not every paddy field in the Karangjati Sub District is currently 
growing. 

 
Figure 9. Sentinel-2A imagery data subsetted by the Raw Paddy Field Vector Data. 
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Figure 10. Generative phase masking results. 

3.4. Endmember fraction of rice varieties 

The generative phase masking process is then carried out by inputting the 
endmembers of every variety of rice into the linear spectral unmixing (LSU) method. 
A range of distribution values for each endmember in the image data is the outcome 
of this process. The proportion of the endmember object is dominant if the range of 
values is near 1. On the other hand, if the value range is near zero, it indicates that the 
object’s endmember proportion is not dominant. Figure 11 shows the distribution of 
all final member fractions for the Ciherang, Cibogo, and Inpari 32 HDB varieties. The 
dominant varieties (composite from the three varieties used in this study) were 
indicated by green, and the less dominant ones by yellow. 

 
Figure 11. Endmember distribution of three varieties composite. 
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The results of the range of endmember fraction values for each rice variety are 
shown in Table 1. 

Table 1. Range of endmember fraction values for each rice variety. 

Varieties 
Endmember fraction value 

Min Max 

Inpari 32 HDB 0.510 0.941 

Ciherang 0.000 0.257 

Cibogo 0.000 0.253 

Based on Table 1’s endmember value range, the data indicates that the Inpari 32 
HDB variety has a value range of 0.510 to 0.941, indicating a high occurrence rate of 
this variation in certain pixels. There are Ciherang and Cibogo varieties with low 
occurrence rates in some pixels because their values are below 0.5, despite having 
nearly the same range of values, which is between 0 and 0.25. Analysis is done using 
Table 1’s results. The Inpari 32 HDB variety is the most prevalent rice variety at each 
pixel, according to the analysis’s findings based on the statistical data in Table 1, 
whereas the Ciherang and Cibogo varieties are the least prevalent. Thus, it can be said 
that the Inpari 32 HDB variety is the most widely used variety in Karangjati Sub-
District. 

The dominant endmember range values are then used to group rice varieties. To 
distinguish the dominant HDB Inpari 32 variety from non-dominant varieties, this was 
done. Ciherang, Cibogo, and other varieties are the non-dominant types in question. 
Given that the “MR” variety was discovered to have been planted in the Karangjati 
Sub District based on the findings of the field survey, it is possible that other varieties 
exist as well. The dominant endmember range values are then used to group rice 
varieties. To distinguish the dominant HDB Inpari 32 variety from non-dominant 
varieties, this was done. Ciherang, Cibogo, and other varieties are the non-dominant 
types in question. Given that the MR variety was discovered to have been planted in 
the Karangjati Sub District based on the findings of the field survey, it is possible that 
other varieties exist as well. 

The threshold value used as a reference to obtain information regarding the 
presence of the dominant HDB Inpari 32 variety in the fraction image is more than 
0.50 or > 0.5. Meanwhile, the threshold value used to detect the presence of non-
dominant varieties in the fraction image is less than 0.50/<0.5. The principle of using 
threshold values using these range values is that if the endmember value of a rice 
variety in one pixel is above 0.50, then that pixel is confirmed to contain the Inpari 32 
HDB variety, but if the value is below 0.50, then that pixel contains varieties other 
than Inpari 32 HDB (Ciherang, Cibogo, and other varieties). The results of these 
reference values can be seen in Figure 12. 
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Figure 12. Result of endmember fraction of each variety. 

The endmember fraction classification procedure is then implemented according 
to the range value of every variety of rice. The classification is grouped into four 
classes: 0–25%, 25%–50%, 50%–75%, and 75%–100%. Each class indicates the level 
of existence of the final member shard in each pixel. The larger the percentage value, 
the greater the presence of endmember fractions in a pixel (dominant); the smaller the 
percentage value, the smaller the presence of endmember fractions in a pixel (not 
dominant). The results of the classification of the percentage of endmembers in Inpari 
32 HDB, Ciherang, and Cibogo varieties can be seen in Figures 13–15. 

 
Figure 13. Classified endmember fraction of Inpari 32 HDB variety. 
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Figure 14. Classified endmember fraction of Ciherang variety. 

 
Figure 15. Classified endmember fraction of Cibogo variety. 

The results of calculating the area based on GEE statistical data for each variety 
are listed in Table 2. Based on Table 2, the area containing the Inpari 32 HDB variety 
is 1095 hectares. Meanwhile, the area of rice fields planted with other varieties, namely 
Ciherang, Cibogo, and others, is 1184 hectares. 

Table 2. The area of the pixels containing the endmember of each variety. 

Varieties Area (ha) 

Inpari 32 HDB 1095 

Ciherang, Cibogo, etc. 1184 



Advances in Modern Agriculture 2024, 5(2), 2538.  

14 

3.5. Accuracy test 

Following the completion of all data processing results using the LSU method, 
an accuracy test utilizing the confusion matrix method takes place. This test includes 
Kappa analysis, producer accuracy, user accuracy, and overall accuracy values. For 
the purpose of using the sample point coordinates for accuracy testing, researchers 
conducted a field survey for each variety of rice. They were able to obtain 62 sample 
point locations for each variety. In Figure 16, the distribution of all sample points is 
shown. 

 
Figure 16. Distribution of validation sample points. 

Then the 62 sample points began to be calculated for the accuracy test using the 
confusion matrix, the accuracy test for the confusion matrix is shown in Table 3. 

Table 3. Confusion matrix table. 

 Field survey results (user’s accuracy)/omission error 

Procedure’s 
accuracy/commission 
error 

Class Inpari 32 HDB Other varieties Total 

Inpari 32 HDB 30 4 34 

Other varieties 5 23 28 

Total 35 27 62 

Based on the confusion matrix, it is necessary to know that the green table 
indicates the suitability of the field validation sample data with the processing data. In 
contrast, the orange color indicates an error (discrepancy). From the confusion matrix, 
the results of the accuracy test calculations include the user’s accuracy, the producer’s 
accuracy, and the overall accuracy list in Table 4. 
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Table 4. User, producer and overall accuracy. 

Varieties User’s accuracy Producer’s accuracy Overall accuracy 

Inpari 32 HDB 85.71% 88.24% 
85.48% 

Other varieties 85.19% 82.13% 

From the results of accuracy test calculations based on the confusion matrix, user 
accuracy for the Inpari 32 HDB variety was 85.71% and for other varieties was 
85.71%. Then the producer’s accuracy was 85.71% for the Inpari 32 HDB variety and 
85.19% for the other varieties. Then the overall accuracy (total accuracy) was obtained 
at 85.48%. Through the United States Geological Survey (USGS), it has been 
determined that the lowest level of classification or interpretation accuracy using 
remote sensing is less than 85% [26], which means the overall accuracy is acceptable. 
Then a Kappa analysis was carried out, and the results are shown in Table 5. The 
kappa accuracy was 70.6%. In accordance with the level of agreement carried out by 
Landis and Koch [27], 70.6% is included in the moderate to high level of confidence, 
which is close to 80%. 

Table 5. Kappa accuracy result. 

Kappa accuracy 

70.6% 

4. Conclusion 

It is known that the rice varieties planted in Karangjati Sub District are the Inpari 
32 HDB, Ciherang, and Cibogo varieties. In addition, based on farmer sources, there 
are also MR varieties planted, but not many. The dominant variety in Karangjati Sub 
District, Ngawi Regency, is Inpari 32 HDB. Apart from that, from the analysis of the 
NDVI and NDWI indices, it is known that the generative phase of rice fields in 
Karangjati District is around June and October 2022 and mid-January to mid-February 
2023. Based on the map, the distribution of each endmember rice variety in Karangjati 
Sub District is spread evenly in each region. There are some rice fields that are 
homogeneous, and there are also those that are heterogeneous. From the LSU results, 
it is known that the distribution of rice variety endmembers in Karangjati Sub District 
for the Inpari 32 HDB variety has a total area of 1095 ha with a range of dominant 
endmember values of 0.510–0.941, or 51%–94.1%, while other varieties (Cibogo, 
Ciherang, etc.) have a total area of 1184 ha with a non-dominant endmember value 
range of 0–0.25, or 0%–25%. Based on the range of endmember values of each rice 
variety in each Sentinel-2 image and the area of each variety, it is known that the 
variety that dominates at each pixel in Karangjati Sub District is the Inpari 32 HDB 
Variety. 

The accuracy of the results of this research is acceptable, with the following 
details: The user accuracy obtained for the Inpari 32 HDB variety was 85.71%, and 
for other varieties it was 85.71%. Then the accuracy of the producers for the Inpari 32 
HDB variety was 85.71%, and for other varieties, it was 85.19%. The overall accuracy 
and kappa accuracy were obtained at 85.48% and 70.6%, respectively. 
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