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ABSTRACT 

Automated intelligence platforms, i.e., machine learning, big data, and Internet of Things (IoT), provide new 

deployment opportunities within the agricultural marketing paradigm. This study attempts to derive a framework of 

predictive models to ameliorate crop yield and assists in understanding various features that affect crop yield. On the one 

hand, it investigates the impact of allied technologies, including networks with memory and generative models, and on 

the other, it quantitatively analyzes different agri-factors, including the management of plant growth, its quality, crop 

disease, inorganic fertilizer and pesticide deployment, weed management, irrigation, and field-level phenotyping. Further, 

the study analyzes the utilization of smart farming and the monitoring of highly dependent variables across the spectrum 

of precision agriculture. The conclusion is to manifest the importance of networks with memory and generative models 

and emphasize the vital role of artificial intelligence in transforming farm methods into a novel methodology of smart 

information communication technology (ICT) in fidelity agriculture. Apart from increased productivity, this study seeks 

to contribute to the ongoing efforts to reduce the incidence of malnutrition associated with limited access and lower 

production of food grains. 

Keywords: artificial intelligence; machine learning; networks with memory; generative models; smart farming; agri 

marketing 

1. Introduction 
Production and consumption of food play a prominent role in leading human life. Agriculture has been 

around for more than 12,000 years, and it’s a reality today that, with the world population projected to touch 
8.37 billion by 2025 and surpass 9.61 billion by 2050, the need to improve farming methodology and ameliorate 
agricultural production is pivotal. It makes an important case to explore portable technologies to make farming 
more efficient and improve sustainability. 

With the invention of chip-based drip irrigation, this research, on the one hand, believes that AI-powered 
machinery can harness the human workforce in more productive functions, ameliorate crop quality, and enable 
hope for the economic sustainability of smaller farming operations, atypical of India, where 87.23% of land is 
owned in fragments of less than 1.02 hectares per piece and where 57.64% of the population are into farming 
for a livelihood and contribute to 14.27% of the gross domestic product (GDP). Using AI, if this data is put up 
in the cloud and interlinked with big data, the output can serve the farming community on a wider scale[1]. It is 
a technological milestone that Israel, as a nation, recycles over 85.59% of its waste water, the highest by far 
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across the globe. Nicknamed “shotgun”, it absorbs raw sewage through AI-enabled filters, employs 
microorganisms for cleaning, and repeats the process[2]. This enhances the purity of the liquid to attain stringent 
parameters for drinking water. 

This study explores the establishment of an inter-dependent network of remote sensing, data analysis, 
image rendering, and predictive analytics to perform regular farm activities by being able to identify pests and 
insects down to a dimension of 0.1 mm per pixel on a leaf, and then the platform can train a computer to analyze 
and identify these insects of disease or weeds and give a farmer a report with advice on the recommended 
spraying pattern in the field with accuracy in place of spraying the insecticide all over the field. 

The platform can also monitor and deploy bio-pesticides, viz., predatory wasps, to rationalize the 
employment of chemical pesticides. Intelligent farm mechanics deploy big data, and receptors advise the farmer 
on the quantity of nutrients and water as and when required[3,4]. This is the next agriculture revolution, and this 
study is one of the first to try and understand the process of AI deployment in an analytical manner. The process 
of food production includes regular cycles of agriculture, proper management of food production, and adding 
technology to the function of cultivation to give efficient and precise outputs. An important factor in agriculture 
is crop management and productivity. Integration of information and technologies can help in good resource 
management in the field of agronomics. Agriculture operations and management need to be done in a more 
efficient, safer, profitable, and environmentally friendly manner. Smart agriculture with technology support can 
make farming more reliable and logical. This helps in monitoring agricultural practices to improve crop yield 
with fewer costs and optimize inputs like decreased use of water, organic fertilizers, less usage of pesticides, 
weed management, and environmental conditions. 

Implementation of predictive analysis with generative models and networks with memory plays a 
prominent role in the field of agriculture management. These models[5,6] are used to enhance the capacity 
coverage and energy efficiency of networks as a means of improving crop scouting, analyzing data, and 
detecting problems at a rapid pace to help solve and promote crop health. For example, monitoring crop health 
issues such as infections, deficiency in growth, and loss of nutrients can improve productivity and avoid low 
crop yields. 

2. Data description  
The research need is to manifest data collected for the period of 10 years (from 2010 to 2020) about the 

yield of major field crops in the agri-intensive state of Andhra Pradesh, India (maize, cotton, paddy, soyabean, 
sweet beet, cereals) from the university database (2010–2019) and collect primary data for 2019–2020[7]. Table 
1 specifies the data sets with variability in attributes as observed on three primary types of crop yield that help 
in the implementation of predictive models to retrieve possible benefits. The study mainly focuses on the 
evaluation of attributes that are minimal (Vmin), maximal (Vmax), and average (Vavg) of features: (a) monthly 
perception of weather data; (b) air temperatures; (c) water cycle; (d) soil moisture; (e) water evaporation from 
the plants; (f) chemical applications; (g) spraying decisions; and (h) irrigation scheduling[8]. 

Table 1. Analysis of data sets with attributes variability—implementation of predictive models for possible benefits. 

Data sets 
Attributes – Yield [kg/ha] 

Min Mean Max Std. 

Cotton 2543 5049 6969 1241.72 

Paddy 1003 2153 3040 591.46 

Cereals 16,172 38,571 52,023 9244.51 

Source: Author compiled. 
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2.1. Networks with memory 

Memory networks (MN) provide the inference capability of neural networks, apart from the inclusion of 
components into a cycle of AI. This method overcomes the limitations of a multitude of machine learning 
algorithms that have limited memory for handling low-level tasks like object recognition. Networks with 
memory are capable of multi-tasking, i.e., recall and inform; viz., memory networks comprise of two 
parameters that are strongly supervised. 

MN exhibited robust performance and indicated the selection of this model[9]. Derived an amended 
structure of the MN proposed by Yu et al.[10]. Layered MN (single and triple 3-hops) is depicted in Figure 1. 

 
Figure 1. MN models, depicted as from (Source: Sukhbaatar et al.[11]), (a) single layer memory model; (b) triple-layer memory 
network model. 

Here, xi represents a string of words (clause) in a dialogue. Here, question q would be the last sentence of 
the entire conversation. Symmetrically, the answer would be the answer word, and a sentence is the summation 
of a vector of words. The embedment of words is a representational vector. Referring to the triple-layer 
network, duly weighted and embedded word(s) matrices B1, B2, and B3 are networked. Along the same lines, 
embedded word matrices A1, A2, A3 are also networked. This MN renders the desired output for most QA 
problems[12] apart from functioning as a complete language model. 

In agricultural applications, a primary difference between MN and supervised memory networks (SMN) 
is that strongly supervised networks have embedded labels, and when programmers train the model, the output 
can signify and derive the expected response stimuli along categorized lines. Whereas, in the case of an MN 
model, programmers iterate, and the expected outcome is not trained[13]. With regard to the robustness of MN 
and SMN, the response lies in the designated plane rather than the model having to figure out the required 
output. The architecture of MN has four components. Input “x”, which transforms the arrived data-like 
sentences to the inner feature map like raw text or word embedding’s; Generalization is responsible for the 
maintenance of memory updates, i.e., storing the obtained function (I(x); converted text) into a memory slot 
of the newly arrived inputs; Output (I(x), m) generates a new output that has a scoring function that takes the 
question, matches it with each of the memory components, and tabulates a score. 

The higher the score, the better the match  is. “Hops” is an extension of RNNsearch with multiple 
computation steps. (Once a sentence or a memory score is achieved, the same is taken again to obtain a memory 
sentence and another score.) “Hops” are also used when two supporting facts based on labels are analyzed 
based on the given memories; responses transform new outputs into an appropriate sequence that can take the 
form of “one word” or a “complete sentence” or it can be “action” which can be decoded by the end users. 
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2.2. Predictive modeling by expert learning machine 

Predictive analytics fits into the spectrum of analytics, which cleans, summarizes, and visualizes collected 
data and performs diagnostics to determine why desired or undesirable output is emanating, what’s leading the 
increase or decrease, and how variables or features are related. Predictive analytics can derive robust methods 
to assist decision-making in real time, apart from indicating future trends in chosen variables. One chosen 
employment method of predictive analytics is by regression methods. Expert learning machine (ELM) 
algorithms, which are superior to support vector machines (SVM), are categorically administered for 
regression problems. It can perform predictive analytics across multiple domains of medicine, pharmacy, 
mechatronics, aviation, marketing, and tech deployment in agriculture. 

Regression algorithms aim to identify a quantifiable association between input and prediction variables 
as a linear function, as shown below in Equations (1) and (2):  

𝑓(𝑥) = (𝑣, 𝑏) + 𝑟 (1) 

where v, b∈ Dn, linear regression as a methodology is employed in lieu of its simplicity[8]. Non-linear 

deployments are spearheaded by ELM and comprise their functionality to initially classify and subsequently 
apply to prediction and regression problems. Regression can be associated with ELM using kernel functions. 
This study deploys linear regression and is tabulated as a feature engineering variable from “R-Package”. 
Along with a Gaussian radial basis equation, ELM can yield plausible results[14]. 

𝐿(𝑎, 𝑏) = 𝑒𝑥𝑝 ቆ
‖𝑎 − 𝑏ଶ‖

2Ωଶ ቇ (2) 

Finally, regression function can be expressed as in Equation (3): 

𝑓(𝑎) =  ෍ (𝛽௜ − 𝛽௜
∗)𝐿(𝑎, 𝑎௜) + 𝑥

௟

௜ୀଵ
 (3) 

where βi, β*
i are Lagrange multipliers and i and * are support vectors. The study employs a predictive model 

and parameter selection procedure by way of Equation (4): 

Ω 𝑎𝑛𝑑 𝜆 =
1௥

2Ωଶ
 (4) 

The final model is built and evaluated using two methods of error measurement: root mean square error 
(RMSE) and mean absolute error (MAE). The resulting predictive model reflects non-variable sets among 
input and output variables. This acts as an impediment for ELM deployment or any other predictive model, 
including black boxes. Hence, feature contribution plays a major role[6]. 

2.3. Instance explanation 

To explore the prediction of crop yield obtained from one input vector and the value predicted, this 
method asserts an improved contribution from the complex structure of interactions. Hence, an approximation 
is adopted. A pre-identified feature vector output regression method with K as the desired output and N as the 
resultant feature subset vector of population M functions “a” is the dependent relationship. This can be derived 
as a function in Equations (5)–(8): 

𝐾 𝜀 𝐾ଵ × 𝐾ଶ × 𝐾ଷ × … … 𝐾௡ (5) 

𝑀 = {𝑘ଵ … . . 𝑘௡} 𝑤𝑖𝑡ℎ 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑁 ⊆ 𝑀 (6) 

Predicted regression model can yield feature values by 
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△ 𝑁(𝑎) = 𝐸[𝑓)𝑎𝑛𝑑 𝑁 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐸[(𝑓) (7) 

Prediction result for ith feature the study tabulates △ 𝑁(𝑎) for every 𝑁 ⊆ 𝑀 and for correlated analysis, 
Game Theory provides 

𝛾(𝑎) =  ෍
|𝑁|! (|𝑀| − |𝑁| − 1)!

|𝑀|!
൫△ (𝑁 ∪ {𝑖})൯(𝑎) −△ (𝑁)(𝑎)

ே⊆ெ\{௜}
 (8) 

To address extrapolated time complexity, the study deploys a two-process randomization method. For 
“a”, can include the ith feature with ‘b’ for inputs by way of a regression method. The contribution for the ith 
feature can be tabulated as a scalable model of regression analysis. 

The derived model at Equation (8) can estimate the analysis of features selected and predicted values. 
Regression models yield more robust results against parametric variables[15]. 

2.4. Model explanation and results 

Table 2 presents the results obtained on the cotton, paddy, and cereal data sets. The study reports on the 
results obtained from training and testing. The model explanation results are presented in Table 2 for cotton, 
paddy, and cereal yields, respectively. 

Table 2. Cotton, paddy and cereals analysis metrics. 

Cotton Performance 

Correlation 
co-efficient 

MAE RMSE 

SVM (Training Set) 0.9418 203.07 312.04 

SVM (Test Set) 0.9327 412.92 507.29 

Mt (Cross Validation) 0.8617 431.11 510.29 

Paddy Performance 

Correlation 
co-efficient 

MAE RMSE 

SVM (Training Set) 0.9431 211.34 320.31 

SVM (Test Set) 0.9115 421.19 515.56 

Mt (Cross Validation) 0.8782 439.38 518.56 

Cereals Performance 

Correlation 
co-efficient 

MAE RMSE 

SVM (Training Set) 0.856 205.9 316.86 

SVM (Test Set) 0.8244 415.75 512.11 

Mt (Cross Validation) 0.7911 433.94 515.11 

Source: Author compiled. 

For all the data sets about 2/3rd of the data is deployed for training and the remainder is allocated for 
testing activity and displayed as a grid. Estimation of the error is set and deployed for algorithm comparison 

with different parameters C and 𝛾௔. 

The best parameters were C = 50 and = 0.001. Additionally, results from the study with model tree 
analysis, as presented in the instance explanation, are shown in Figure 2 below. 
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(a) 

 
(b) 

Figure 2. Model tree analysis and explanations, (a) Cotton yield—instance explanation results; (b) Paddy yield—instance 
explanation results. 
Source: (a) Lab Exp - Matlab 9.5 Screen Capture; (b) Lab Exp - Matlab 9.5 Screen Capture; (Actual Value – 2743.7 Qu/Ha, 
Predicted Value – 2731.09); (Actual Value – 5247.6 Qu/Ha, Predicted Value – 5207.41). 

Figure 3 depicts six explanation graphs, i.e., two for each sampled crop. These graphs may technically 
be generated for all the identified features. Given the wide spectrum of chosen features, only these six are 
represented. 
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(a) 

 
(b) 

 
(c) 

Figure 3. (a) Comparative Analysis Cotton Yield, Attribute Vmax_04n Attribute Cw_5br, Contribution to Cotton yield; (b) 
Comparative Paddy Beet, Attribute Vmin_1Fr Attribute Cw_7d Contribution to Paddy yield; (c) Comparative Cereal yield, Attribute 
Vavg_7tr Attribute Cw_04n Contribution to Cereal yield. 

Figure 3(a) depicts the impact of high temperatures on cotton crops across the coastal Andhra Region in 
April–May. Figure 3(b) details how paddy crop yield is impacted by coastal evapotranspiration in May, with 
attribute Cw_7d inclusive of the monsoon onset month of June. Figure 3(c) reflects real-time 
evapotranspiration in July and minimal temperature in August. The color code is Blue dots indicate “+ve” and 
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red dots indicate “-ve” association of corresponding feature on yield of the chosen crop. Black dots are 
indicative of the standard deviation of the tabulated Σ contribution. 

On one hand, values in the upper circuit denote that the chosen feature is dependent on other 
corresponding feature variables; on the other hand, low-circuit values denote improved independence. 

3. Discussion: Generative models 
As enterprises shift to AI-first, the study’s approach is not to replace human intelligence with AI but to 

augment capability and intelligence more than artificial intelligence itself. The idea is to determine a 
probability density model of data analysis from which a researcher can draw new samples for a given data 
density or training dataset. Given data X with N data points (I = 1 to N) where Xi are given, this could be an 
approximation to get an empirical density, i.e., Pdata (x)[16]. With the available data, a program can be written 
given the empirical density estimates of the said data and derive a model that can determine and sample data 
points. “Word"-generated models and new samples can be drawn, which are similar to the training data. 

Training data is representative of the problem that the study attempts to solve. The need for generative 
models is to generate new images or relevant outlines that can be used for image translation[17]. Giving labels 
or outlines to generate new data, for instance, transforms black and white to color and can yield the virtual 
aerial map of an entire city; it can differentiate between day and night; and if labels are given with outlines and 
apriori training, the model can give an output with a new design of the object that was modeled. 

The scoring function in a generalized model’s (GM) depicts the way of providing answers to a given input 
by matching different sentences through word embedding. The word embedding is used to map different words 
in a low-dimensional vector space for tabulating the distance between word vectors. It helps in finding the 
maximum score between sentences to understand the high correlation with a question[18]. 

For example, question stem: “What is the water level for the paddy crop?" A scoring function will take 
the question and answer from memory mentioned as “water level for rice crop is 6 mm–10 mm”[19]. 

GM’s examines the correlation between these two sentences. The word embedding’s uses “q” transpose 
and “U” transpose Ud (qTUTUd), where “q” is the question, “d” is the answer, and U is the matrix by which 
the word embedding’s is the output. The pareto representation of the training set with model likelihood is 
presented for both data and the model in Figure 4 below. 

 
Figure 4. Pareto analysis of likelihood and complexity of the model. 

Weight tying is a method of multiplying the weight matrix with the input and output functions; there are 
two types of weight tying, i.e., the first is “adjacent”, whose functioning is similar to that of a stack. In this, 
the program passes output weights to one layer as an input layer to another layer, which represents a 
hierarchical structure. 
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The second one is “layer-wise", in which the program passes the same weights to every layer. Functional 
aspects of the selected model employ unique smart methods to draw responses from the “hub of words” Smart[9]. 

AI methodology analyzes each variable for its mediation and moderating capabilities and helps to qualify 
the resulting vectors without word association. The other is position encoding (PE). This is more powerful than 
the “bag of words” model as it considers the context of the sentence. When modeling words, PE considers the 
preceding and successive words of a sentence and maps them to the low-dimensional vector space. 
Implementation can be derived using symmetric tensor flow methods (34) and (40). An illustration of this 
method is presented in Table 3 below. Question: Is the yellow square to the left of the blue? Answer = ‘no’ - 
Confidence score = 93.77% correct. 

Table 3. Data analysis for generative models. 

Text Memory hope 1 (multiple lookups 1) Memory hope 2 Memory hope 3 

The blue square is above the pink 
rectangle 

0.00 0.04 0.36 

The yellow square is to the right of 
the pink rectangle 

0.37 0.59 0.64 

Source: Author design. 

Generative models can also be used for deeper applications, such as generating speech or raw audio from 
the stored text in the form of digital format (Kosovic et al.[20] generating a sequence of text similar to the auto-
complete of the sentences while we are writing a mail or a message and generating the images with super-
resolution, i.e., given low-resolution data and ideally the code to generate high-resolution data of the same, we 
can think of an image in a painting as having some holes or damage areas that can be rectified by generative 
models to figure out the missing data or data imputation methods. In the context of analyzing static, high-
resolution images of agricultural fields, auto-regressive GM’s (learning models) can be deployed to a high 
degree of suitability[21]. 

Two algorithms are presented in Tables 4 and 5 below that can complete the task of GM’s and auto 
regression to capture the missing links and variables. Both are homogeneous learning models. 

Table 4. Learning model M1. 

Algorithm 1: Learning in model M1 

while 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔()do 
𝐷 ← 𝑔𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑖𝑛𝑖𝐵𝑎𝑡𝑐ℎ() 
𝑧௜ ∼ 𝑞∅(𝑧௜|𝑥௜)   ∀𝑥௜ ∈ 𝐷 

𝐽 ← ෍ 𝐽

௡

(𝑥௜) 

(𝑔ఏ , 𝑔∅) ← ൬
𝜕𝐽

𝜕𝜃
,

𝜕𝐽

𝜕∅
൰ 

(𝜃, ∅) ← (𝜃, ∅) + 𝛤(𝑔ఏ , 𝑔∅) 
end while 
while 𝑑𝑖𝑠𝑐𝑟𝑖 𝑚𝑖𝑛 𝑎 𝑡𝑖𝑣𝑒𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔()do 
𝐷 ← 𝑔𝑒𝑡𝐿𝑎𝑏𝑒𝑙𝑒𝑑𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑖𝑛𝑖𝐵𝑎𝑡𝑐ℎ() 
𝑧௜ ∼ 𝑞∅(𝑧௜|𝑥௜) ∀{𝑥௜ , 𝑦௜} ∈ 𝐷 
𝑡𝑟𝑎𝑖𝑛𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟({𝑧௜ , 𝑦௜}) 
end while 

Source: Author derived. 
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Table 5. Learning model M2. 

Algorithm 2: Learning in model M2 

while 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔()do 
𝐷 ← 𝑔𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑖𝑛𝑖𝐵𝑎𝑡𝑐ℎ() 
𝑦௜ ∼ 𝑞థ(𝑦௜|𝑥௜)     ∀{𝑥௜ , 𝑦௜} ∉ 𝑂 
𝑧௜ ∼ 𝑞థ(𝑧௜|𝑦௜ , 𝑥௜) 

𝐽ఈ ← ෍ 𝐽

௡

(𝑥௜) 

(𝑔ఏ , 𝑔థ) ← ቆ
𝜕𝑙ఈ

𝜕𝜃
,
𝜕𝑙ఈ

𝜕𝜙
ቇ 

(𝜃, ∅) ← (𝜃, ∅) + 𝛤(𝑔ఏ , 𝑔∅) 
end while 

Source: Author derived. 

In the context of agriculture images (remote sensing), GM’s have powerful usage when it’s hard to label 
identified differences by screening pixels. Images can be diagnosed by a generative algorithm for generating 
images of the anomaly (weed, insect, rock, etc.) or a regular plant anatomy that helps in doing anatomical level 
segmentation. Till recently, GM’s were applied only as applications of image-to-image translation for medical 
imaging where doctors have a lot of data for a particular modality, like CT images of the liver, which are easily 
available. In both instances, researchers can train a model to perform the diagnostic task of transforming the 
images of the same anatomy, such as (a) classifying remote sensing agri-field images and (b) transforming MR 
images to CT images and using the trained model for diagnosis and decision-making. 

The types of generative models that are used for generating the data (images) are Anastasi et al.[22] and 
Varela et al.[23]. (a) Auto-regressive models: PixelRNN and PixelCNN are highly cited models based on auto-
regression methods and are explicit. It determines the probabilistic or probability density of the data and 
generates a desired set (predicted) of images based on the collected and captured pixels. This method is an 
auto-regressive model and gives explicit density images, which are representations of a deep neural network, 
or (b) a latent variable model—variational auto-encoder (VAE). This is another class of GM that also explicitly 
determines density based on the variation auto-encoder and includes an approximate way of determining the 
density function. So, it is called a latent variable model because of the algorithms that are implemented in it. 
A third model (c) is the implicit density model, which is a generative adversarial network (GAN). This method 
does not explicitly model the density with the probability density; rather, it is sampled directly from a neural 
network output. The sample and its output have primarily been used for generating images, mostly human 
faces, that look very realistic. 

This same method[24] can be designed to derive the expert system identification of insect types, weed 
pattern, color of crop (health attribute), and other aspects that require human intervention. 

GM’s try to model underlying training data distributions, and users desire to figure out (x), where x is the 
set or a sub-set of the training data. A researcher can draw samples from the probability distribution that 
resemble training data and can endorse improved interpretation of GM’s. This pattern has a multitude of 
possible applications. GM’s can also be used as classifiers, of course, but when working with labeled data, it 
is much more straightforward to train the classifiers by directly using deep neural networks. 

3.1. Application of networks with memory 

Digital technology Networks with memory are driving change in agriculture for analyzing and decision-
making; they can measure and transmit data via a network. On agri-farms, strongly “supervised networks” in 
“networks with memory” allow better output. 
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Information generated by supervised learning algorithms (SLA) can be enabled to predict using labeled 
datasets, i.e., questions for which a possible “bag of answers” is server-driven. For instance, (illustrated in 
Figure 5 as below), capturing data from soil about its moisture and levels of topsoil provides for variances 
with the pre-stored value of desired levels of moisture. It can also predict crop yield per hectare based on 
features such as land wetness, pH levels of soil, minerals left in soil, crop efficiency, and rate of growth on the 
farm field. 

 
(a) 

 
(b) 

Figure 5. AI powered supervised learning algorithm, (a) field model using ai powered (atmega 2560-microcontroller) drones; (b) 
block diagram of supervised learning algorithm (SLA) employed for smart agriculture. 
Source: Author design. 

SLA’s are powerful algorithms and can teach a model to learn from the labeled example that is provided 
in Figure 5(b) above[25,26]. 

Supervised learning can be further divided into classification and regression. In classification, the output 
label is categorized into two or more classes, such as true/false, red/blue, yes/no, and crop has disease/no 
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disease. Whereas in regression problems, the output variable is real or continuous, viz., insecticide quantum 
per square inch of tractable land or water required for plant growth, etc. 

Regression methods create a predictive model that provides trends in vital data, such as crop health and 
yield quality. When researchers build an algorithm for the collation of single-point data referring to crop 
behavior, its growth, its health, its yield, fertilizers, etc., by reviewing the data about the crop, false data can 
be identified through some keywords, i.e., growth levels, yield data, soil moisture level, etc. These data points 
help in predicting crop quality and yield with a high degree of accuracy. So, in regression, let's say there are 
two labels, “temperature” and “humidity”, where humidity is dependent on temperature, such that as the 
temperature increases, humidity decreases. When this data is fed to a regression model, SLA’s can guide to 
improve understanding and derive a correlation amongst dependencies for a better crop yield. 

3.2. Applications of generative models 

Generative models deployed with the assistance of agricultural farmers can make farming a simpler task 
by providing real-time data (through labeled images) and improving efficiency by way of identifying water 
management requirements. It also lessens the amount of fertilizer runoff, spot spray fertilizer based on the 
snapshot of crops taken, which helps in scouting the field by finding the exact problem and its precise location 
in the field. 

Using auto-regressive models (PixelRNN), PixelCNN users can recover lost data in the images and try to 
find the probability density of the data, which helps in the improvement of overall metrics of cultivation, better 
profits, and reduced input cost[13]. Auto-regressive models play a prominent role in identifying and guiding 
steps to improve plant growth through the extraction of various vegetation indices and supporting farmers’ 
decision-making by rendering an estimate of crop yield, apart from addressing 24 × 7 crop monitoring, reduced 
field visits, limited human exposure to harmful pesticides, scouting wide and vast tracts of agri-fields, quantity, 
and quality improvement of crops. 

4. Conclusion 
The emerging technologies of artificial intelligence, machine learning, and deep learning models are 

changing the perspective of traditional practices in the agriculture system drastically, including SVM as a 
revolutionary approach in traditional farming that helps to lead farmers to implement modern practices by 
managing and monitoring the cultivation field. The implementation of ICT improves crop yield, diagnoses 
crop disease, applies fertilizer and pesticides, monitors crop growth, manages water resources, manages weeds, 
and requires less maintenance. Agrarian inter-linkages using smart farming remain to be addressed, which 
include efficient management of crop disease, pollution management, rational fertilization, and accurate yield 
predictions. However, scientific contributions towards the agri-food industry can be ameliorated by machine 
learning algorithms, generative models, and networks with memory where auto-encoders are employed as an 
integral part of GM’s, which can improve deep learning, i.e., when encoders map data to a low-dimensional 
latent space and decoders map latent space back to reconstructed data, dynamically assisting remote sensing 
abilities. This aspect attests that deep generative models are useful for tasks where the underlying structure of 
the data is important for decision-making and the generated data can be treated and iterated as a virtual sensory 
information flow to augment improved decision-making. On the other hand, deep generative models are 
atypically harder to learn than discriminative models and foster interpretable results. 

Generally, applications of AI, especially ELM's, are also employed for mediating and moderating features 
not limited to speech recognition, sensitivity analysis, optical character recognition, remote sensing, and 
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translation of languages. This study scoping GM’s and applications does not encompass these applications and 
can be taken as a future study direction. 
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