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ABSTRACT 

Implementing practices such as organic agriculture, sustainable agriculture, or ecological agriculture can greatly 

reduce and eliminate the harmful effects of synthetic fertilizers on both human health and the environment. In efforts to 

promote a more environmentally friendly approach, this study was conducted at the Department of Horticulture and 

Agronomy, Midlands State University in Zimbabwe. The focus was on the use of Trichoderma bio-fertilizer at various 

levels to determine its impact on the growth of horned melon (Cucumis metuliferus) in a greenhouse setting. The 

experiment followed a Complete Randomized Design (CRD) and included four different Trichoderma-based biofertilizer 

treatments, as well as a control treatment [0 g/pot (control), 0.1 g/pot, 0.2 g/pot, 0.3 g/pot, and 0.4 g/pot], all replicated 

four times. The research findings indicate that the biofertilizer utilized had a significant impact (p ≤ 0.05) on vine length, 

number of leaves, and branches for growth characteristics. However, the biofertilizer did not have a significant effect (p 

≥ 0.05) on stem girth, chlorophyll content, or branching pattern. This study reveals that the horned melon plants treated 

with the Trichoderma-based biofertilizer exhibited noticeable changes in their vegetative growth, flowering patterns, and 

fruiting features at different application levels. Further investigation is required to fully understand the potential benefits 

of using Trichoderma-based biofertilizer in horned melon cultivation. 
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1. Introduction 
The expansion of the population requires a corresponding increase in the production of food crops to 

satisfy the continuously rising need for sustenance. In developing nations, a viable solution to meet this demand 
is to enhance the productivity of food crops. Utilizing chemical techniques has proven effective in boosting 
food crop output by stimulating plant growth and managing plant diseases. Adequate and appropriate 
application of fertilizers, in terms of quantity and quality, plays a crucial role in the growth, yield, quality, and 
overall health of the soil. The application of excessive fertilizers has resulted in numerous ecological issues, 
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such as water eutrophication, degradation of the rhizosphere microecological environment, loss of biodiversity, 
global warming, and depletion of the stratospheric ozone layer. Furthermore, certain fertilizers containing 
heavy metals can have adverse effects on soil and plant health and may even enter the food chain through soil 
absorption[1–4]. 

In response to growing concerns around food quality, environmental safety, and soil preservation, there 
has been a notable rise in the adoption of sustainable agricultural methods[5]. This has led to a shift towards 
alternative practices, such as the use of microbial fertilizers, which offer a more sustainable and 
environmentally friendly approach to plant nutrition[6]. 

In contrast, inadequate utilization of inorganic fertilizers in sub-Saharan Africa (SSA) has been a major 
obstacle due to difficulties in accessibility, leading to nutrient depletion and subsequent land degradation[7]. 
However, the availability of bio-fertilizers could provide a potential answer to this issue, as they are recognized 
for their cost-effectiveness[8]. These types of fertilizers can be beneficial for all types of crops in various agro-
ecologies[9]. As a result, the consistent use of bio-fertilizers supports the growth and development of microbial 
populations in the soil, ultimately aiding in the maintenance of soil fertility and promoting sustainable 
agriculture[10,11]. 

The use of bio-fertilizers is considered environmentally friendly as it reduces the reliance on chemical 
fertilizers in crop production worldwide. However, they cannot fully replace the essential role that chemical 
fertilizers play in achieving maximum crop yields. These biofertilizers have the potential to greatly improve 
crop output[12] by controlling plant diseases, increasing phosphorus availability, excreting ammonia, promoting 
plant hormone production, fixing nitrogen, and forming siderophores[13,14]. They are specifically defined as 
products containing naturally occurring microorganisms that are artificially cultivated to enhance soil fertility 
and crop productivity[15]. The term ‘biofertilizer’ refers to preparations containing live cells of efficient strains 
of microorganisms that fix nitrogen, solubilize phosphorous, or decompose cellulose and have the ability to 
enrich soil fertility either independently or in partnership with host plants. The term biofertilizer describes the 
utilization of all biologically derived nutrients to fuel plant growth[16]. 

Trichoderma, a diverse genus of multifunctional fungi found in various ecosystems, is a prime example 
of this concept[17]. These free-living fungi are known for their interactive nature in foliar, soil, and root 
environments[17], and they have become a valuable resource for natural growers due to the availability of a 
wide range of Trichoderma-based biopesticides used in disease management for plants[18,19]. Trichoderma has 
been found to offer numerous benefits, including enhancing plant growth, increasing root development, 
promoting plant maturity, improving seedling strength, facilitating seed germination in unfavorable soil 
conditions, enhancing nutrient absorption, producing enzymes and phytohormones that assist in phosphorus 
solubilization, providing resistance to abiotic stresses, inhibiting the growth of harmful root microflora, and 

increasing yield parameters[20–25].In spite of the potential, smallholder farmers in SSA are not fully 
utilizing bio-fertilizers[26]. The need to comprehend the obstacles and also emphasize the prospects is 
long overdue in order to aid policy-making decisions. 

Researchers are captivated by the use of Trichoderma-based products as a microbial inoculant and are 
motivated to explore its untapped benefits[27]. As a result, this study aims to examine the impact of Trichoderma 
biofertilizer and the possibilities it presents for organic production of horned melon in Zimbabwe, post-
adoption of bio-fertilizers. Based on this context, the present investigation formulates the hypothesis that the 
utilization of Trichoderma-based biofertilizer has an effect on the performance of horned melon. 
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2. Materials and methods 

2.1. Description of research site 

The Department of Horticulture and Agronomy at Midlands State University in Zimbabwe oversaw this 
greenhouse study. The university is situated in Natural Agro-Ecological Region III of Zimbabwe at latitudes 
19°50′ S and 29°84′ E (Figure 1), just 10 km southeast of Gweru Central Business District. The soils in this 
region are sandy loams with kaolinite clay minerals, originating from the fersialitic group. The weather during 
the trial period is as shown in Table 1. 

 
Figure 1. Experimental site. 

Table 1. Weather at the experimental site during the trial period, 2021. 
  

J F M A M J J A S O N D 

Temp/℃ Min 16.3 16.1 15.3 12.9 10.2 8.1 7.4 9.6 12.5 14.8 16.1 16.5 

Max 25.3 25.2 24.5 23.1 21.8 19.8 19.4 23.0 26.9 28.4 27.4 25.9 

Avg 20.8 20.7 19.9 18.0 16.0 14.0 13.4 16.3 19.7 21.6 21.8 21.2 

Rainfall, (mm) 173 126 88 33 8 4 4 1 5 27 100 183 

Rainy days, (d) 12 10 8 4 1 1 1 0 1 4 9 13 

2.2. Experimental procedure 

In the greenhouse, the experiment followed a complete randomized design with four replications and 
included four different bio-fertilizer treatments as well as a control treatment. The treatments consisted of 
varying application rates of the bio-fertilizer: 0 g/pot (control), 0.1 g/pot, 0.2 g/pot, 0.3 g/pot, and 0.4 g/pot. 
200 g of FYM was thoroughly mixed with 3 kg of soil in polyethylene pots, and water was added to reach field 
capacity. The selected biofertilizer treatments were also incorporated during transplanting. Throughout the 
experiment, no mineral fertilizers were utilized. At 4 weeks, healthy seedlings of horned melon were chosen 
and transplanted into the treated media, followed by watering. 

The maintenance of the pots involved regular watering and the application of karate, copper oxychloride, 
and ridomil gold to prevent any infestation or disease. 

After transplanting, data collection commenced after a period of two weeks. For this particular study, a 
commercial bio-fertilizer was chosen that contained at least 1.0×106 colony-forming units per gram of dry 
weight of Trichoderma harzianum. The seeds used were acquired from fruits purchased at the commercial 
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Fruit and Vegetable Market in Sakubva, Zimbabwe. The seedlings were then cultivated in the greenhouse 
using floating trays. 

2.3. Data collection 

The following growth parameters were recorded at different times during the growth of the plants, starting 
3 weeks after transplanting. 

Vine length and number of leaves on the main stem were recorded weekly from 21 days after sowing 
(DAS) up to 42 days after sowing. Measurements for vine length were taken from the lowest rudimentary leaf 
to the tip of the vine using a meter rule, and leaves were physically counted as well. 

The branching pattern was recorded at the initiation of the blossoming of the plants. 

Stem girth was recorded using a vernier caliper at the time of flower initiation. 

Relative chlorophyll content was recorded using a hand-held chlorophyll meter, SPAD-502 Plus (Konika-
Minolta), in a non-destructive manner. The meter determines the relative quantity of the photosynthetic 
pigment present by measuring the leaf absorbance in two wavelengths (red and near-infrared) regions. 

2.4. Statistical analysis 

GenStat 18th edition was used for statistical analysis, and to compare interaction effects, the least 
significant difference (LSD) test was conducted at a 5% level of probability. Fischer’s protected LSD0.05was 
utilized to separate any treatment means that showed significant differences. 

3. Results and discussion 

3.1. Effect of Trichoderma-based biofertilizer on vine length 

There were significant (p < 0.05) differences between varying Trichoderma levels on horned melon vine 
length at 28, 35, and 42 days after sowing (Figure 2). At 42DAS, vine length registered significant (p < 0.05) 
differences with plants from 0.3 g/pot recording the longest (62.3 cm) but did not differ from 0.4 g/pot (53.2 
cm) and 0.2 g/pot, while 0.1 g/pot recorded significantly (p < 0.05) the shortest. Vine length increased with an 
increase in the quantity of biofertilizer applied. The mean vine length recorded was 47.12 cm. 

 
Figure 2. Influence of Trichoderma-based biofertilizer on vine length. 

3.2. Effect of Trichoderma-based biofertilizer on number of leaves 

As shown in Figure 3, the data regarding the number of leaves affected by the application of the 
Trichoderma-based biofertilizer was significant (p < 0.05) statistically. Treatments that received the 
biofertilizer had a greater number of leaves than the control treatment. The control (0.0 g/pot) treatment 
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recorded consistently the lowest number of leaves from 21DAS through to 42DAS followed by 0.1 g/pot. At 
42DAS 0.3 g/pot and 0.4 g/pot registered significantly (p < 0.05) the highest number of leaves, 17.8 and 17.5 
leaves, respectively. The mean number of leaves recorded was 15.95. 

 
Figure 3. Influence of Trichoderma-based biofertilizer on number of leaves. 

3.3. Effect of Trichoderma-based biofertilizer on number of branches 

The summary of the analysis of variance shows that the means for the number of branches did not differ 
strongly among treatments (Figure 4). The treatments that received the biofertilizer did not differ (p > 0.05) 
from one another, except for the control treatment. However, the trend was that with an increasing amount of 
biofertilizer applied, the number of branches was increasing numerically. The mean number of branches 
recorded was 4.35. 

 
Figure 4. Influence of Trichoderma-based biofertilizer on number of branches. 

Note: Figures not sharing a common letter in a column differ significantly at 0.05 probability. 

3.4. Effect of Trichoderma-based biofertilizer on stem girth 

The summary of the analysis of variance regarding the stem girth as affected by the application of 
Trichoderma-based biofertilizer is shown in Table 2, where there were no significant (p > 0.05) differences in 
the means between the applied treatments. But numerically, the data shows that the means for the stem girth 
were increasing with an increase in the amount of biofertilizer applied. The means of stem girth recorded from 
treatments that received the application of the biofertilizer were numerically higher than the average (5.33) for 
all the treatments. 
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Table 2. Influence of Trichoderma-based biofertilizer on stem girth, chlorophyll content and branching pattern. 

Treatment Girth(mm) Chlorophyll content Node number 

1st Branch 2nd Branch 3rd Branch 

0.0 g 4.96 34.20 1.50 2.50 3.50 

0.1 g 5.38 35.08 1.50 2.50 3.50 

0.2 g 5.43 35.62 1.50 2.50 3.50 

0.3 g 5.46 36.43 1.75 2.75 3.75 

0.4 g 5.44 37.25 1.75 2.75 3.75 

Mean 5.33 35.72 1.60 2.60 3.60 

Significance LSD0.05 ns0.693 ns4.693 ns0.808 ns0.808 ns0.808 

ns denotes non-significance at 0.05 probability. 

3.5. Effect of Trichoderma-based biofertilizer on chlorophyll content 

There were not significant (p > 0.05) differences between the applied treatments on chlorophyll content 
(Table 2). However, like the trend that was shown for stem girth, the chlorophyll content was numerically 
increasing with increasing application of the biofertilizer to the horned melon. The means for 0.3 g/pot (36.43) 
and 0.4 g/pot (37.25) were numerically higher than the average (35.75) for all the treatments applied in the 
investigation. 

3.6. Effect of Trichoderma-based biofertilizer on branching pattern 

Data patterning for the branching appearance on the main stem is shown in Table 2. The node number 
from which the 1st branches appeared to be influenced by the application of the Trichoderma-based 
biofertilizer did not differ statistically (p > 0.05) between the treatments. The same trend was shown even for 
the 2nd and 3rd branches; the node number from which they appeared was not significantly (p > 0.05) 
influenced by applying the biofertilizer at varying levels. The control treatment and the treatments with 
biofertilizer did not differ (p > 0.05) statistically from one another regarding the branching pattern. 

4. Discussion 
Plant growth stimulation by Trichoderma spp. in addition to other microbes, has been reported in several 

crops[22,28]. Furthermore, Sani et al.[24] had reported an increase in plant height, number of leaves, number of 
branches, shoot dry matter weight, and root dry matter weight with microbial biofertilizer. The positive 
influence on vine length, number of leaves, and branches could be due to the improved uptake of mineral 
nutrients as a result of improved root hairs in the soil rhizosphere. More mineral nutrients for photosynthesis 
could have resulted in the horned melon growing more nodes and ultimately a greater number of leaves. With 
more nutrients as well, the plants were stimulated to grow more shoots, resulting in a greater number of 
branches with the increasing application of the Trichoderma-based biofertilizer. 

The significant effect of biofertilizer application on vine length, number of leaves, and branches might be 
ascribed to the plant growth-promoting fungi (PGPF), which improved plant growth by synthesizing plant 
growth-promoting hormones[29] or averting plant diseases[30]. This result is consistent with several research 
studies that also observed enhanced plant growth[31,32]. El-Mansi et al.[33] also reported the increase in branches 
due to the application of biofertilizers. The higher above-ground growth as a result of greater vine length, 
number of leaves, and branching in treatment with Trichoderma-based inoculum may be because of PGPF-
amplified N uptake, solubilized P, produced siderophores, and secreted phytohormones required to chelate Fe 
and make it accessible to plants for advanced growth. 
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With regards to relative chlorophyll content, the absence of a main effect response to Trichoderma-based 
inoculation in the current study contrasts Bashan et al.[34] and Mahato and Neupane[35] who reported higher 
photosynthetic pigment quantities in wheat seedlings and maize, respectively, following inoculation. In 
contrast to the current findings, Chirino-Valle et al.[36] noticed a greater chlorophyll concentration when a 
treatment containing T. Atrobrunneum and T. harzianum was applied. However, Liu et al.[37] found that plants 
inoculated with three types of Trichoderma-enriched biofertilizer had lower chlorophyll content compared to 
the control treatment. This could be attributed to the fact that Trichoderma biofertilizers may have a negative 
effect on the expression of genes involved in chlorophyll synthesis during the middle and late stages of leaf 
development. It is possible that Trichoderma biofertilizers upregulate chlorophyll synthesis genes in the early 
stages of leaf development, but downregulate them later on. 

Application of Trichoderma-based biofertilizer could not influence the node from which branching 
occurred. The probable reason for this finding could be that this attribute may be influenced genetically, apart 
from the type or quantity of fertilizers applied. So, since the same variety of horned melon was used in this 
study for all the treatments applied, the biofertilizer could not cause any effect in this regard. 

The non-significant differences between the means for stem girth as affected by varying application levels 
of the Trichoderma-based biofertilizer are similar to findings by Mahato and Neupane[35], who did not observe 
a positive effect of Trichoderma on stem girth in maize. The Trichoderma-based biofertilizer has an inhibiting 
effect on stem girth, probably owing to the interference of this fungicide with arbuscular mycorrhizal fungi 
(AMF) or the problem of its competitiveness with rhizospheric microorganisms or with obtainable key 
nutrients. Even though Trichoderma has seldom been viewed as a parasite, there are some reports indicating 
the pathogenicity of Trichoderma to plants[38–40]. 

The presence of Trichoderma spp. has a positive impact on plant growth by establishing a symbiotic 
relationship with roots, resulting in increased secondary roots and overall leaf area, as well as improved root 
system structure[41,42]. Trichoderma not only promotes plant growth through its own metabolic processes but 
also through the release of secondary metabolites in the rhizosphere, which has been documented in previous 
studies[43,44]. In addition, Trichoderma has the ability to reduce soil components that hinder plant growth[45–47]. 
Further research has shown that T. harzianum 1295-22 is capable of enhancing nitrogen utilization and 
solubilizing difficult-to-absorb nutrients such as Cu2+, Fe3+, Mn4+, and others, resulting in enhanced plant 
growth and development[48]. Therefore, it can be inferred that one or more mechanisms may be at play in 
regulating the growth of horned melon when using Trichoderma-based biofertilizers. 

5. Conclusion 
Taking into account the results, it can be inferred that implementing Trichoderma-based biofertilizers 

proved to be effective in impacting vine length, leaf count, and branch count of horned melon plants. Therefore, 
incorporating this treatment in the cultivation of commercial horned melons could lead to sustainable crop 
productivity while promoting positive plant growth and ensuring environmental safety. Nevertheless, further 
comprehensive and systematic research is essential to fully comprehending the advantages of using 
Trichoderma-based biofertilizers in enhancing horned melon production. 
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