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ABSTRACT 

With the rapid progress of image processing algorithms and computer equipment, the development of machine vision 

technology in the field of modern agricultural equipment is on the ascendant, and major application results have been 

obtained in many production links to improve the efficiency and automation of agricultural production. In the face of 

China, the world’s largest agricultural market, agricultural machine vision equipment undoubtedly has tremendous 

development potential and market prospects. This paper introduces the research and application of machine vision 

technology in agricultural equipment in the fields of agricultural product sorting, production automation, pest control, 

picking machinery, navigation, and positioning, analyzes and summarizes the current problems, and looks forward to the 

future development trend. 
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1. Introduction 
Machine vision refers to the use of machines to observe and judge human vision and is a branch of 

artificial intelligence. Machine Vision Technology by American Scholar Roberts proposed in the mid-1960s 
that after half a century of development, machine vision technology has been widely used in various fields of 
the national economy, such as industry, agriculture, medicine, and aerospace, and has gained tremendous social 
and economic benefits. China is a big agricultural country, feeding 22% of the world’s population with 7% of 
its land, and has a complete range of industries such as planting, animal husbandry, forestry, fishery, and 
sideline trades. Agriculture is the foundation of people’s production, and agricultural machinery and equipment 
are important material foundations for the development of modern agriculture. In 2015, the main business 
income of agricultural machinery industrial enterprises above the designated size in the country reached 452.3 
billion yuan, and China has become a major producer of agricultural machinery[1]. Today, with the rapid 
development of intelligent agriculture, agricultural equipment that integrates machine vision technology is 
widely used in agricultural production processes, especially in dangerous environments that are not suitable 
for human operation and where it is difficult for the human eye to distinguish. 

Machine vision equipment can greatly improve detection accuracy and speed, improve production 
efficiency while avoiding the deviations and errors caused by human eye vision inspection, improve product 
quality, reduce labor costs, and reduce water and fertilizer loss, in line with the requirements of sustainable 
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development in precision agriculture[2]. With the strengthening of research and development of agricultural 
science and technology and the development of the intelligent situation of agricultural equipment[3], the market 
potential of machine vision technology in the field of agricultural equipment will certainly be further developed 
and become a new bright spot of “China’s intelligent manufacturing”. 

2. Overview of machine vision technology 
Machine vision technology refers to the use of computer simulation of human vision to identify external 

images and provide information for analysis and judgment. A brief diagram of the machine’s visual system is 
shown in Figure 1. 

 
Figure 1. Machine vision system sketch. 

In a typical machine vision product, the camera (CMOS and CCD, two types of sensors) collects the 
image of the object, and the image acquisition card converts the pixel distribution, color, and other information 
of the target into a digital signal and transmits it to the computer. The discriminating result is then given after 
processing by the machine vision software, and the actuator on the control site performs the corresponding 
operation. Machine vision technology is a multi-disciplinary integrated technology involving optics, 
mathematics, electronic engineering, computer science, and many other disciplines. The complete machine 
vision application system includes a light source system, an image capture model, an image digitization module, 
a digital image processing module, an intelligent judgment decision module, and a mechanical control 
execution module. 

3. Main application directions 
At the end of the 1970s, machine-visual technology began to be applied to the quality testing and grading 

of agricultural products[4]. The rapid development of computer software and hardware technology and the 
automation industry has greatly promoted the breakthrough of machine vision technology in the field of 
agricultural machinery and equipment. In the agricultural machinery and equipment required for the production 
and processing of agricultural products, machine visual technology can be used to realize the digitization of 
the production process, so as to make the production process more objective and standardized: growth process 
monitoring, fine agriculture, quality inspection, grading, and automatic navigation.  
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3.1. Application in inspection and sorting machinery  

Machine vision technology was first applied to quality inspection and quality grading equipment for 
agricultural products[5]. The manual processing of agricultural products such as melons, fruits, beans, and 
vegetables, which are huge after harvest, is not only time-consuming and laborious but also difficult to 
guarantee the results of sorting and inefficient. In practical applications, according to the basic physical 
characteristics such as the form and color of the outer surface of agricultural products, the grading standards 
are preset[6,7], relying on machine vision technology to process images of agricultural products for loss-free 
inspection, and the control actuator completes automatic grading, which effectively improves production 
efficiency and reduces labor and time costs. Based on machine vision technology, Wang et al.[8] designed an 
automatic, rapid, and loss-free detection and grading machine for jujubes, collected comprehensive index 
information such as jujube fruit size, color, and external damage, and used pneumatic execution to complete 
the grading. The test results show that the accuracy of the comprehensive index test is above 92% and the yield 
is 550 kg/h, which meets the requirements of jujube and fruit production. Sofu et al.[9] developed a real-time 
processing apple automatic sorting and quality detection system through the capture and analysis of four 
images of apples on the conveyor belt to obtain different types of apple color, size, weight, and fruit really 
affected by scabs. The effects of stains and decay are sorted. The results of the test show that the device can 
sort 15 apples per second, with an average accuracy rate of 73% to 96%. 

Different from the traditional RGB imaging system[10,11] that only analyzes external characteristics, 
hyperspectral imaging technology can analyze the physical structure and chemical composition of agricultural 
products, and related research has gradually heated up in recent years. Shan et al.[12] combined hyperspectral 
image processing and spectral information through an image scan to detect the surface of the apple and the 
detection of sugar content. The detection of comprehensive quality inside and outside the apple was realized, 
the screening efficiency was improved, and the comprehensive detection rate reached 92.6%. Zhang Dongyan 
et al.[13] developed the field scanning imaging photo spectral spectra by themselves; the canopy high-light 
spectroscopy images of pots and fields were obtained closely; and the spectra of leaf fragments with different 
layers of jade and rice were accurately extracted to construct a spectral prediction model for chlorophyll content 
in jade rice. The validation results indicate that the RMSE error between the prediction and the arms error of 
the validation model is 1.8. Under different vegetation coverages (potted-field), jade rice plants have achieved 
very good results, the precision of the mold is relatively high, and it has great development potential. 

3.2. Application in agricultural production automation equipment  

The growth and cultivation of crops is a relatively long and complex process, and in modern precision 
agriculture, it is necessary to adjust the temperature[14], humidity, moisture, and light intensity[15] of the growing 
environment in a timely manner based on the growth conditions of crops, such as length and color, so as to 
provide a suitable external environment for the growth of crops[16]. Machine vision technology meets the 
requirements of long-term stable monitoring, can timely collect crop growth images, analyze the images to 
give quantitative crop growth information, and provide information support for delicate crop cultivation[17]. 
Ma et al.[18] designed and constructed a plant growth information measurement and analysis system based on 
image processing technology, realized the lossless monitoring of multiple chrysanthemums over a long period 
of time, and improved the accuracy of detection through improved calculations, which is the theoretical basis 
for the growth information provision technology of continuous untouched monitoring plants. Jiang et al.[19] 
used the seedling method of double-station to construct melons, eggplant, vegetables, and vegetables to graft 
machines on such issues as low efficiency, low survival rate, and difficulty in guaranteeing quality. The results 
of the test show that the success rate is similar to the grafting effect of human labor, but the speed is increased 
by 5 to 6 times, which satisfies the requirements of the automation technology of the factory. Yang et al.[20] 
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proposed a seedling acupuncture disc positioning and detection system for grafting seedlings using automatic 
transplanting machines, which obtained matrix depth and three-dimensional shape information for each hole 
by overcutting images and analyzing the depth of vectors. The results of the test show that the system can 
complete accurate identification quickly and steadily, and be satisfied with automatic movement control 
requirements for planting robots. Gongal et al.[21] have developed a new sensor system platform that analyzes 
and estimates apple production by obtaining side images of apple trees in tunnel structure illumination. The 
results of the trial show that the overall accuracy of the device has reached 82%, which is expected to provide 
a basis for apple orchards to accurately and reliably estimate apple yields.  

3.3. Application in farmland pest control equipment 

Most crops grow in an open-air environment and come into direct contact with soil or water sources, making 
them susceptible to pests and diseases and the threat of competitive growth by weeds[22,23]. These pests and 
diseases will not only affect the yield of agricultural products, but also the traditional large-scale application 
of drugs, which will reduce the quality of agricultural products to a certain extent. The machine vision system 
can efficiently complete the detection and identification of weeds, diseases, and insects, and meet the 
requirements of precision agriculture. At the same time, the complexity of the agricultural environment and 
the variability of the work itself[24] determine the possibility and potential of machine vision agricultural 
equipment to operate for human labor. 

Li et al.[25] developed a rapid infestation of citrus full-claw mites based on optical measurement techniques 
that quickly, accurately, and non-destructively detected the degree of damage to fruit trees on the spot by 
measuring the reflectivity of fruit and vegetable canopy leaves to red light and near-infrared light. The test 
showed that the results were stable and that there was a high correlation between the instrument infusion results 
and the actual number of pest eggs. Han and He[26] designed a set of field pest remote automatic identification 
systems, transmitted pest photos through the 3G network, and built a support vector machine classifier after 
extracting characteristic values such as shape and color. The test results show that the average accuracy rate is 
87.4%, which enables rapid real-time identification and diagnosis, which can provide timely and accurate 
insect information for the control of field pests. Zhang et al.[27] researched and developed a near-infrared hyper 
spectral imaging system of 900 to 1700 nm. Through the comparative analysis of hyper spectral images of rice 
weevils, the application area is proposed. The domain growth method distinguishes the live food insects, and 
then accurately counts the density of the out-of-storage pests. The test results show that after 2 days of death 
of self-grain insects, the system completely and correctly identifies live insects and dead insect samples, which 
provides a scientific basis for decision-making for the comprehensive prevention and treatment of grain storage 
pests.  

3.4. Applications in picking machinery 

Fruit and vegetable picking is the most time-consuming and labor-intensive ring in the agricultural 
product industry chain[28], and the diversity of fruit and vegetable surfaces and shapes, the growth position, 
and the randomness of the direction all require a large amount of recognition and mobility work from the 
harvesting staff. It limits the efficiency of the harvesting work, and the automatic harvesting and unloading 
equipment combined with the visual technology of the machine has great potential for development. At the 
same time, in order to adapt to the complex and changeable work environment, the visual positioning system 
of the machine has developed from the initial monocular vision to the bi-eyed[29,30] and even the multi-eye[31] 
vision, effectively realizing the precise positioning of reality in three-dimensional space. Xiong et al.[32] 
designed and manufactured a test platform to simulate fruit body disturbance during the picking process of 
lychee, combined with the simulated motion parameters of the vibration platform, and proposed a three-
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dimensional image reconstruction method for collecting the disturbed state of the lychee. The test results 
showed that the error of the spatial positioning depth value was less than 6cm, and the mechanical hand could 
achieve effective harvesting. It provides guidance for practical work. Feng et al.[33] designed a laser vision 
system for apple extractors, using a laser rangefinder to complete a three-dimensional scan of the target scene. 
The resulting distance image is easy to analyze, including the fruits, the spatial characteristics of the branches 
and leaves, and the layers between each other, and is not affected by the natural change of light lines. Provides 
a richer picture of pattern information for the automation and mechanization of fruit and vegetable picking.  

3.5. Application in navigation and positioning of agricultural machinery  

With the rise of large-scale agricultural operations, production modes such as planting specialized 
households and mechanized collective farms have developed day by day, and the traditional two-dimensional 
operation of the ground has been unable to meet the demand for quantity and quality at the same time. The 
process of application and other processes has been transformed into three-dimensional space and has become 
an important part of the agricultural machinery system[34–36]. In 2016, the agricultural application of the Beidou 
navigation system independently developed in China was developed by the Xinjiang Construction Corps and 
Heilongjiang Agricultural Reclamation in all parts of the country, and emerging technologies such as 
unmanned driving, high-precision positioning and navigation, and system monitoring have made traditional 
agricultural production full of the charm of scientific and technological modernization. 

Ding et al.[37] designed a combined harvester machine visual navigation control hardware system that 
accurately detects the boundary line of the harvest area according to the rotation projection algorithm and the 
histogram fusion algorithm. The results of the wheat field test show that the variation range of cut within the 
normal working speed range is 0.18 m or less, and the control system has good anti-interference performance. 
Guo and Chen[38] developed a field autonomous mobile weeding robot based on machine visual navigation, 
based on regional images and color characteristics, and based on a modular control algorithm to achieve 
autonomous navigation and weed identification by weeding robots. The results of the test show that the robot 
can complete the navigation task well, and the modular control effectively improves the anti-interference 
ability, stability, and reliability of the navigation control. Chen et al.[39] constructed a multi-sensor integrated 
navigation and positioning system based on GPS and machine vision, using GPS and machine vision to obtain 
absolute position information and navigation reference lines of navigation vehicles, respectively, and carry out 
filtering and comparative analysis of combined navigation and positioning. The experimental results show that 
the precision and robustness of the positioning system have been improved, the positioning curve has been 
smoothed, and the drawbacks of single sensor positioning have been overcome.  

4. Current problems 
China is a large country with a population based on agriculture, and many experts and scholars have long 

been devoted to the application and study of machine vision technology in the field of agricultural equipment, 
and have made considerable progress in many directions. The variety of agricultural machinery products has 
been constantly increasing, and the production capacity has been increasing day by day. However, in some 
aspects, there are still many problems that need to be solved urgently in the actual environment in which 
equipment combined with machine vision technology is applied in fine agriculture to the field, and it is 
necessary to improve and improve it in future research and production work.  

1) The agricultural production environment is complex, and many working objects lack regularity. 
Agricultural production areas are changeable[40], and the growth conditions such as temperature, light, 
and wind speed are different from each other and cannot be controlled. At the same time, the shape, size, 
color, and other appearance characteristics of various types of work objects vary greatly, and much 
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intellectual agricultural equipment is only suitable for agricultural objects in a specific environment and 
has certain limitations[41,42].  

2) Image identification and analysis still need to be continued. At present, most of the research is to deal 
with static and two-dimensional pictures, and the anti-interference ability is poor, which cannot meet the 
requirements of parallel real-time processing. It is urgent to improve the speed, accuracy, and accuracy 
of processing[43]. Machine vision technology belongs to the multidisciplinary interdisciplinary field, 
which objectively increases the difficulty of research and engineering costs. 

3) Limitations of hardware conditions. At present, the scientific and technological content and economic 
cost of image recognition systems, central processors, and terminal enforcement agencies are still 
relatively high, which limits the promotion and use of complete sets of intellectual systems[44,45]. In terms 
of automatic picking, diseases and pest detection, etc., due to cost factors, the system has problems such 
as slow operation speed and low processing accuracy[46], and large-scale engineering applications have 
not yet been realized. 

4) Restriction of agricultural production mode. At present, China’s agricultural production is still dominated 
by decentralized operations, many mountainous and hilly areas are not suitable for large-scale 
mechanization, and it is more difficult to popularize the equipment of intelligent agriculture. At the same 
time, relying solely on agricultural machinery subsidies for development is not a long-term solution, and 
it is necessary to raise the level of awareness of the peasants as a whole and actively guide the healthy 
development of the agricultural machinery market[47].  

5. Outlook 
In China, the application of machine vision technology began in the 1990s. After more than 20 years of 

development, machine vision systems have been widely used in many fields of agricultural production, saving 
a large amount of human and material resources and improving production efficiency. Improving agricultural 
engineering applications that improve machine vision technology requires simultaneous efforts from both the 
software and hardware aspects. Software aspects and image recognition calculations are the important bases 
for implementing machine vision. Improving existing arithmetic, improving the processing efficiency and 
reliability of algorithms[48], and using them in conjunction with neural networks[49–51] to enhance the robustness 
of calculations and support for dynamic three-dimensional images can further open up and develop the 
application of machine visual technology in agricultural machinery and equipment. In addition, the 
improvement of the hardware aspect comes from the improvement of the production level, the enhancement 
of computing power, the improvement of the discrimination rate, the acceleration of scanning speed, and the 
enhancement of software functions[52], such as the combination with the Beidou navigation system. The use of 
machine vision technology to detect farmland information and realize intelligent navigation will become an 
important research hot spot for the unmanned use of agricultural machinery and equipment[47]. Wisdom and 
agricultural equipment undoubtedly have an extraordinary broad prospect in front of China’s world’s largest 
agricultural market. With the development of China’s processing and manufacturing industry and the gradual 
upgrading of the advanced manufacturing industry, agricultural equipment combined with machine visual 
technology will surely go from the low end to the high end, helping the rapid advancement of the process of 
agricultural modernization.  

6. Conclusion  
With the perfection of supporting infrastructure and the accumulation of technology and funds, the 

research and application of machine vision technology in the fields of sorting agricultural products, monitoring 
of growth processes, control of pests and diseases, picking machinery, and automatic navigation and 
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positioning have developed vigorously. The rapid development of advanced technology represented by 
machine-visual technology has provided new impetus and possibilities for the transformation and upgrading 
of China’s agricultural industry and the steady progress of precision agriculture.  

Agriculture is a fundamental issue that has a bearing on the national economy and the people’s livelihood, 
and the steady development of agricultural modernization has a bearing on the country’s long-term peace and 
stability. Since the 21st century, agricultural labor has been continuously transferred to other industries, and 
the problems of structural shortages and the gradual aging of the industrial population have become 
increasingly serious. Machine vision technology can improve the mechanization level of agricultural 
production, liberate labor, and help agricultural production move steadily towards modernization, automation, 
and intelligence. 
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