
Advances in Modern Agriculture 2024, 5(1), 2457. 
https://doi.org/10.54517/ama.v5i1.2457 

1 

Article 

Classification of cotton water stress using convolutional neural networks 
and UAV-based RGB imagery 

Haoyu Niu1,*, Juan Landivar2, Nick Duffield1 

1 Department of Electrical & Computer Engineering, Texas A&M Institute of Data Science and Texas A&M University, College Station 77843, 
Texas, United States 
2 Texas A&M AgriLife Research and Extension Center, Corpus Christi 78406, Texas, United States 
* Corresponding author: Haoyu Niu, hniu@tamu.edu 

Abstract: Embracing smart irrigation management techniques empowers growers to irrigate 

with greater efficiency, thereby promoting sustainable agricultural production. In this context, 

growers often rely on crop evapotranspiration (ETc) as a key factor in making informed 

irrigation decisions, underscoring the significance of accurately determining and spatially 

mapping crop water status. Technological progress, exemplified by the emergence of 

unmanned aerial vehicles (UAVs), has brought about a revolutionary shift in agricultural 

monitoring. UAV platforms can capture high-resolution images with centimeter-level spatial 

accuracy and offer higher temporal coverage compared to satellite imagery. Considering these 

advancements, this study introduces a robust method for classifying water stress in cotton using 

a compact UAV platform and convolutional neural networks (CNN). The experiment was 

conducted at the USDA-ARS Cropping Systems Research Laboratory (CSRL) in Lubbock, 

Texas, where the cotton field was divided into 12 drip zones. The study included three 

replications to evaluate four irrigation treatments: “rainfed”, “full irrigation”, “percent deficit 

of full irrigation”, and “time delay of full irrigation”. The results demonstrated that the CNN 

model successfully classified the cotton water stress using the UAV-based RGB image, 

achieving an overall best prediction accuracy of approximately 91%. By segmenting the 

original cotton images into separate canopy and soil areas using morphological image 

processing methods, the authors also isolated and analyzed the individual contributions of these 

components to cotton water stress. Additionally, a random forest classifier revealed the relative 

importance of different image features in the classification process through feature importance 

analysis. These findings highlighted the state-of-the-art performance of the proposed system in 

cotton water stress classification and provided valuable insights into the key image features 

contributing to accurate classification. The authors concluded that integrating UAV-based 

RGB imagery and CNN models had great potential for assessing water stress in cotton. 

Keywords: cotton; irrigation; water stress; UAV; RGB; evapotranspiration; convolutional 

neural networks; random forest 

1. Introduction 

Cotton, accounting for approximately 25% of global fiber usage, is significant 
among textile fibers worldwide. As the foremost cotton exporter, the United States 
(US) ranks as the third-largest producer of this vital resource [1]. The northwest plains 
region of Texas, known as the Texas High Plains (THP), is the largest continuous 
cotton-producing region of Texas, which contributes to about 25% and 65% of US and 
Texas cotton production, respectively [2]. While cotton cultivation in THP 
encompasses dryland and irrigated systems, higher cotton yields are achieved by 
effectively applying the increased water availability [3]. However, the water resources 

CITATION 

Niu H, Landivar J, Duffield N. 
Classification of cotton water stress 
using convolutional neural networks 
and UAV-based RGB imagery. 
Advances in Modern Agriculture. 
2024; 5(1): 2457. 
https://doi.org/10.54517/ama.v5i1.24
57 

ARTICLE INFO 

Received: 2 January 2024 
Accepted: 23 January 2024 
Available online: 1 February 2024 

COPYRIGHT 

 

 
Copyright © 2024 by author(s). 
Advances in Modern Agriculture is 
published by Asia Pacific Academy 
of Science Pte. Ltd. This work is 
licensed under the Creative 
Commons Attribution (CC BY) 
license. 
https://creativecommons.org/licenses/
by/4.0/ 



Advances in Modern Agriculture 2024, 5(1), 2457.  

2 

are currently insufficient to provide full irrigation in the THP. The Lubbock area, for 
instance, is facing water limitations because of the significant decline of the water 
table in the Ogallala Aquifer [4]. Considering the recurring water shortage in THP, 
finding effective methods to optimize irrigation water use is essential. 

In agriculture, evapotranspiration (ET) estimation is one of the most important 
factors in determining water use efficiency [5], which is defined as the amount of 
carbon assimilated as biomass or grain produced per unit of water used by the crop [6]. 
The mapping of ET temporally and spatially can identify variations in the field, which 
can be used to assess crop water status [7,8]. However, ET estimation of water stress 
still has some challenges, such as complexity, data requirements, uncertainty, and 
accuracy [9]. ET estimation methods often require complex calculations and 
significant data inputs, including meteorological data (temperature, humidity, wind 
speed, etc.), which can be challenging to collect and may not be readily available [8]. 
Also, ET estimation models are based on various assumptions and empirical 
relationships, which can introduce uncertainties and errors in the calculation [10,11]. 
For a comprehensive exploration of ET research, please refer to the extensive content 
available in the book authored by Niu and Chen [10]. 

In recent years, UAVs have emerged as powerful tools for various agricultural 
applications, including irrigation management [12,13] and water stress estimation 
[14,15]. With the integration of lightweight sensors on UAV platforms, it has become 
feasible to capture high-resolution imagery with excellent spatial and temporal 
resolution at a low cost [16,17]. RGB, thermal, and multispectral cameras are 
commonly utilized in agricultural research due to their lightweight nature and low 
power consumption [18,19]. The spatial resolution of UAV-based imagery can reach 
the centimeter level, which proves valuable in identifying, standardizing, and 
validating methods for assessing spatial variability in clumped canopy structures such 
as trees and vines [20]. Numerous studies have demonstrated the potential of UAV 
imagery for enhancing water stress assessment. For instance, Bian et al. simplified the 
calculation of the crop water stress index (CWSI) and improved its diagnostic 
accuracy by employing high-resolution UAV thermal imagery [21]. Zhang et al. 
showcased the effectiveness of high-resolution UAV RGB images in complementing 
UAV thermal images for precise extraction of maize canopy temperature [22]. 
Thermal and RGB orthomosaick were geo-referenced using five ground control points 
measured using a KOLIDA RTK differential GNSS device. A co-registration 
approach, the red-green ratio index (RGRI)-Otsu method [22], was used to analyze 
UAV thermal and RGB images to extract maize canopy temperature at the late 
vegetative stage. Aversano et al. [23] proposed an automatic end-to-end irrigation 
system utilizing deep neural networks (DNN) to perform multinomial classification of 
water stress in tomato plants, based on thermal and optical aerial images. The research 
findings indicated an average classification accuracy of approximately 80% under 
optimal hyperparameter conditions. 

Building upon prior research, this article proposes the utilization of UAV-based 
RGB images exclusively for cotton water stress classification, employing 
convolutional neural networks (CNN). CNNs are highly recognized deep learning 
architectures comprising input layers, convolution layers, pooling layers, and fully 
connected layers [24]. Due to their robust analytical capabilities, CNN models have 
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found applications in various agricultural domains, including yield estimation [25], 
water stress analysis [26], and pest management [27]. For instance, Yang et al. 
proposed a CNN model incorporating hyperspectral imagery for corn yield estimation, 
achieving a classification accuracy of 75.5% using spectral and color image-based 
integration [28]. Li et al. [27] introduced an efficient data augmentation strategy for 
pest detection using CNNs. Their approach involved rotating images at different 
angles and cropping them into multiple grids, resulting in a diverse set of multi-scale 
examples for training a multi-scale pest detection model. Experimental results 
showcased an impressive pest detection accuracy of 81.4% through the integration of 
their data augmentation strategy with the CNN model. Notably, the advancements in 
CNN models have contributed to significant progress in agricultural research. These 
examples highlight the potential of UAV-based imagery and its integration with 
advanced analytical techniques, such as deep neural networks, to enhance water stress 
analysis and irrigation management in agriculture. By leveraging high-resolution 
imagery and innovative algorithms, UAVs offer new opportunities for precision 
agriculture and sustainable water resource management. 

The objectives of this study were to: 1) evaluate the reliability of the UAV-based 
RGB imagery in classifying the cotton water stress with CNN models; 2) demonstrate 
the performance of the CNN models on irrigation treatment inference; 3) analyze the 
individual contributions of canopy-only and soil-only images to the cotton water stress 
with morphological image processing methods; and 4) conduct feature importance 
analysis using a random forest model. The major contributions of this article were: 1) 
devised a dependable approach for detecting cotton water stress by utilizing high-
resolution RGB images obtained from UAVs and employing CNN models. This 
approach offered a reliable and efficient solution for monitoring water stress in cotton 
crops; 2) analyzed the most important features for cotton water stress analysis with 
random forest classifiers. This analysis helped identify the most significant features 
for effectively assessing water stress in cotton crops. Understanding the key features 
contributing to accurate classification enhances our knowledge of the factors 
influencing water stress in cotton plants. 

The rest of the paper is organized as follows: Section 2 offers a comprehensive 
description of the materials and methods employed for UAV-based irrigation 
treatment inference. Subsequently, Section 3 presents a thorough analysis and 
discussion of the obtained results, highlighting the findings related to the reliability of 
RGB imagery, the performance of CNN models, and the feature importance analysis. 
Finally, in Section 4, the authors present concluding remarks, summarizing the key 
insights and implications of the study. 

2. Materials and methods 

2.1. Experimental site and irrigation management 

The study was conducted in an experimental cotton field at the USDA-ARS 
Cropping Systems Research Laboratory (CSRL) in Lubbock, Texas, USA (33.69° N, 
101.82° W). The cotton was planted on 3 May 2022, of the same variety, NG 4098 
B3XF, into a full profile using standard planting practices at a rate of 18,500 seeds per 
hectare (ha). The cotton field was divided into 12 drip zones with three replications to 



Advances in Modern Agriculture 2024, 5(1), 2457.  

4 

test 4 irrigation treatments: “rainfed”, “full irrigation”, “percent deficit of full 
irrigation”, and “time delay of full irrigation” (Figure 1). Each drip zone had eight 
rows. The length of each row was 200 feet, with around 150 cotton plants for each 
row, and the space between two rows was 40 inches. “Rainfed” treatment relied on 
pre-plant soil moisture conditions, where the plot was either sown after a planting 
rainfall or the soil profile was irrigated before sowing on a predetermined date. No 
additional water was applied during the growing season under this treatment. For the 
“full irrigation” treatment, irrigation events were triggered by canopy temperature 
(CT)-based stress time accumulation and the irrigation amount was set to refill the 
profile based on the accrued moisture deficit. Irrigation occurred as a single event to 
maintain optimal soil moisture conditions. The “percent deficit of full irrigation” 
treatment was triggered at a predetermined fraction of the “full irrigation” amount 
(25%). The frequency of the “percent deficit of full irrigation” was identical to that of 
“full irrigation”, but the irrigation amount was lower. In the “time delay of full 
irrigation” treatment, irrigation events were triggered every other time the “full 
irrigation” signal was generated. The irrigation amount was set to completely refill the 
soil profile, resulting in an approximately 50% decrease in water applied compared to 
the “full irrigation” treatment. However, longer intervals of water stress were 
experienced by the cotton under this treatment. To measure the soil moisture, eight 
soil moisture probes (GoField Plus, Goanna Ag, Goondiwindi QLD, Australia) were 
installed in different crop rows with one meter depth, located in the four different 
irrigation treatments. The data was collected every 15 min and reported every hour. 
The experiment was conducted from May to October 2022. There was no rain before 
the middle of September. 

 
Figure 1. The cotton field experimental layout. 

2.2. Description of the UAV and RGB image processing 

A DJI Phantom 4 RTK was utilized as the UAV platform for collecting high-
resolution RGB images at an altitude of 90 m, with an image resolution of 4096 × 
2160. The FC6310R onboard camera features a 1-inch 20-megapixel (MP) 
complementary metal-oxide semiconductor (CMOS) sensor and a mechanical shutter, 
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eliminating rolling shutter distortion. This advanced sensor, coupled with impressive 
processing capabilities, captures intricate detail and provides the image data needed 
for advanced post-production analysis. Flight missions were conducted biweekly 
throughout the cotton growing season, spanning from May to October 2022. During 
each mission, approximately 400 photos were taken. As the sensor flies along a flight 
path, overlapping images are collected. These images were seamlessly processed 
together in Metashape (Agisoft LLC, Russian) to produce digital elevation data and 
orthomosaick. Figure 2 is an example of the orthomosaick image for 18 August 2022. 
The orthomosaick generation employs orthorectification, a process that eliminates 
distortions or displacements in the image caused by factors such as lens distortion, 
sensor tilt, perspective, and topographic relief. By rectifying these distortions, 
orthorectification produces a comprehensive and seamless image or map of a specific 
Earth area, preserving distances accurately, and therefore, the orthomosaick can be 
used for measurements. The orthomosaick is generated through the creation of a digital 
surface model (DSM), which in turn is derived from the Densified Point Cloud. This 
point cloud consists of 3D points generated by matching pixels in image pairs, with 
these distinct features referred to as key points. 

 
Figure 2. An example of the orthomosaick RGB image for 18 August 2022. 

2.3. Cotton segmentation with morphological image processing 

The study aimed to classify cotton water stress using advanced CNN models. To 
effectively analyze the water stress patterns, the authors employed a multi-step 
approach, taking advantage of both image segmentation and morphological image 
processing techniques. First, the authors faced the challenge of handling a large-scale 
UAV cotton image. To address this issue, the authors split the large-scale UAV cotton 
image into smaller scales with ArcGIS Pro, which created 6832 images for each 
sampling date, (Figure 3 is a demonstration of the generated dataset). The new image 
size was 64 × 64 × 3 (width, height, depth). The ground truth was the irrigation 
treatment, which was also added at the bottom of each image in Figure 3 for 
demonstration. The research goal is to use the CNN model to train the image dataset 
and classify the image into one of the four irrigation treatments. The term “ground 
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truth” is crucial in supervised machine learning tasks like image classification. It 
represents the known and verified correct answers or labels for the data used in training 
and testing machine learning models. By having this ground truth information, the 
CNN model can learn from examples and improve its ability to correctly classify 
images into the specified categories. 

 
Figure 3. To classify the cotton water stress with CNN models, the authors first split 
the large scale of the UAV cotton image into smaller scales with ArcGIS Pro, which 
created 6832 mages for each sampling date. 

To further explore the influence of specific factors on water stress prediction, 
such as the cotton canopy and soil characteristics, the authors turned to morphological 
image processing methods using scikit-image, an image processing package in Python. 
Morphological image processing is a fundamental technique for analyzing and 
manipulating images based on their shape and structure [29]. It is rooted in 
mathematical morphology, which provides a set of operations for extracting, 
enhancing, and modifying the geometric features present in an image. These 
operations are primarily based on the concepts of dilation, erosion, opening, and 
closing [30]. Dilation expands the shape boundaries and fills gaps, while erosion 
erodes the boundaries and removes small details. The opening is a combination of 
erosion followed by dilation, which helps remove noise and small objects. In contrast, 
closing is a combination of dilation followed by erosion, useful for filling gaps and 
connecting broken structures [29]. 

By leveraging morphological image processing techniques, it becomes possible 
to extract important features, remove noise, segment objects, and perform other 
essential image analysis tasks, ultimately aiding in the interpretation and 
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understanding of the cotton image (Figure 4). By segmenting the image into cotton 
and soil areas, the authors could focus on studying the distinct properties and 
characteristics of each region. This approach enabled a comprehensive analysis of how 
water stress manifests within the cotton canopy versus the soil, providing valuable 
insights into the factors influencing water availability and distribution within the field. 

 
Figure 4. Cotton segmentation with morphological image processing methods. (a) 
the original UAV-based RGB image; (b) a rough mask image after Otsu’s methods; 
(c) the mask after opening and dilation operations; (d) the cotton canopy image with 
the mask in (c). 

To accomplish the task of cotton canopy segmentation, the authors initially 
converted the RGB image into the LAB color space, which is a color space defined by 
the International Commission on Illumination (abbreviated CIE) in 1976 [31]. The 
LAB color space is a color model that represents colors based on three components: L 
(lightness), A (green-red), and B (blue-yellow). By transforming the RGB image into 
LAB color space, the authors aimed to exploit the distinctive characteristics of the 
LAB color channels for better differentiation between the cotton canopy and the 
background. Because of the green color of the cotton canopy, the authors mainly chose 
the A channel as the grayscale image for further image processing. 

To obtain a rough mask image for cotton canopy segmentation, the authors 
employed Otsu’s method, a widely used technique for automatic thresholding [32]. 
Otsu’s method calculates an optimal threshold value by maximizing the between-class 
variance of a grayscale image, thus segmenting a grayscale image into two classes: 
foreground and background. The resulting rough mask image provided an initial 
segmentation of the cotton canopy region, albeit with some imperfections and noise 
(Figure 4b). This rough mask served as a starting point for further refinement and 
finetuning of the cotton canopy segmentation process. Subsequent morphological 
operations, such as opening and dilation, could be applied to improve the accuracy and 
smoothness of the final mask image (Figure 4c and 4d). The conversion of the RGB 
image into LAB color space and subsequent segmentation of the cotton canopy using 
morphological image processing techniques provided the authors with a targeted 
representation of the cotton canopy region. After applying Otsu’s method, opening, 
and dilation operations to generate the mask images, the authors manually assessed 
the segmentation performance (Figure 5). This segmentation step was essential for 
further analysis and accurate water stress prediction in the cotton field, as it isolated 
the canopy region from the surrounding background and facilitated the extraction of 
relevant features for subsequent classification tasks. 
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Figure 5. An example of the orthomosaick RGB image for 18 August 2022. 

2.4. Image processing for the CNN model 

In the data preprocessing stage, the authors divided the large-scale UAV cotton 
image into smaller scales, resulting in a total of 6832 images for each sampling date. 
To create a training and testing dataset, the UAV dataset was split into 70% for training 
and 30% for testing. For visualization, the authors created a plot showcasing the initial 
25 images from the training set, with the corresponding class name displayed below 
each image (Figure 3). The TensorFlow 2.0 framework was utilized for implementing 
the CNN model. The architecture of the CNN model is presented in Table 1 in the 
paper. The model primarily consisted of Conv2D and MaxPooling2D layers, with each 
layer producing a 3D tensor output representing height, width, and channels. As the 
network went deeper, the width and height dimensions tended to decrease. The number 
of output channels for each Conv2D layer was determined by the first argument 
specified. The output tensor generated from the convolutional base was then fed into 
Dense layers for classification. Given that the dataset comprised four irrigation 
treatments, the final Dense layer had four outputs, enabling the model to classify the 
input images into the respective treatment categories. This architecture ensured that 
the model effectively learned and distinguished between the different irrigation 
treatments based on the provided training data. Parameter tuning is a crucial step in 
the process of building the CNN model, as it involves finding the optimal 
configuration of hyperparameters to enhance the model’s performance. 
Hyperparameters are external configurations that cannot be learned from the data and 



Advances in Modern Agriculture 2024, 5(1), 2457.  

9 

significantly influence the model’s behavior. In the context of the CNN model, 
hyperparameters include values such as the number of neurons in layers, kernel sizes 
in convolutional layers, and the choice of optimizer algorithms. Automated tools, 
libraries, and frameworks, such as scikit-learn, and TensorFlow, provide convenient 
ways to perform systematic hyperparameter tuning, contributing to the development 
of more accurate and robust machine learning or deep learning models. In this article, 
parameters were searched in the following parameter grid: {‘optimizer’: [‘adam’, 
‘sgd’], ‘neurons’: [32, 64, 128], ‘kernel_size’: [(3, 3), (4, 4)], ‘pool_size’: [(2, 2), (3, 
3)]}. It turned out that the architecture shown in Table 1. had the best model 
performance for our validation. The CNN model utilized in this study can be easily 
reproduced for validation purposes. For more comprehensive information and specific 
instructions on replicating the model, please refer to the “Reproducibility” section 
located at the end of the paper. 

Table 1. The architecture of the CNN model. 

Layer type Output shape Parameter numbers 

Conv2D (None, 62, 62, 32) 896 

MaxPooling2D (None, 31, 31, 32) 0 

Conv2D (None, 29, 29, 64) 18496 

MaxPooling2D (None, 14, 14, 64) 0 

Conv2D (None, 12, 12, 64) 36928 

Flatten (None, 9216) 0 

Dense (None, 64) 589888 

Dense (None, 4) 260 

2.5. Cotton canopy cover analysis 

According to Ashapure [33], canopy cover is typically quantified as the 
percentage of ground area covered by the vertical projection of the plant canopy. This 
parameter is closely associated with crop growth, development, water utilization, and 
photosynthesis, rendering it a significant characteristic that necessitates continuous 
monitoring throughout the growing season [34]. Monitoring the cotton canopy cover 
through the growing season can provide valuable insights into the overall performance 
of the cotton. To gain a comprehensive understanding of cotton growth during the 
growing season in 2022, the authors analyzed the canopy cover trends, an important 
indicator of cotton growth. The canopy cover was calculated with the same method 
shown in the study of Ashapure et al. [35]. The RGB orthomosaick image was first 
classified into a binary map using the Canopeo algorithm [36]. Then, Equations (1) 
and (2) were applied to compute the canopy cover. 

𝑐𝑎𝑛𝑜𝑝𝑦 = ൬
𝑟𝑒𝑑

𝑔𝑟𝑒𝑒𝑛
< 𝑝ଵ൰  and ൬

𝑏𝑙𝑢𝑒

𝑔𝑟𝑒𝑒𝑛
< 𝑝ଶ൰  and (2𝑔𝑟𝑒𝑒𝑛 − 𝑏𝑙𝑢𝑒 − 𝑟𝑒𝑑 > 𝑝ଷ) (1) 

where red, green, and blue were the pixel values in the corresponding band. The 
parameters p1, p2, and p3 were used to classify pixels that were predominantly in the 
green band [37,38]. The default values for the Canopeo algorithm were p1 = 0.95, p2 
= 0.95, and p3 = 20 [36]. 
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canopy cover =
Σ(𝐺𝑆𝐷ଶ) if canopy

Σ(𝐺𝑆𝐷ଶ)
 (2) 

where GSD is the ground sample distance. The GSD was the distance between two 
consecutive pixel centers measured on the ground [35]. 

2.6. Feature importance analysis 

In the feature importance analysis, the random forest classifier was trained on the 
same dataset used for training the CNN model (the dataset on August 18th). The 
random forest algorithm is a powerful machine-learning technique that can provide 
insights into the importance of different input features for making accurate predictions 
[39]. It works by constructing a multitude of decision trees and averaging their 
predictions to produce a final classification result. This analysis is based on evaluating 
the impact of each feature on the reduction of impurity within decision trees. For the 
random forest algorithm, the default setting of 
sklearn.ensemble.RandomForestClassifier from scikit-learn was applied for feature 
importance analysis. The code was attached in the appendix, where parameters are 
shown with the RandomForestClassifier().get_params() function. Compared with 
‘activation maps’ or ‘gradient-based’ methods, the use of Random Forest for feature 
importance analysis is particularly beneficial in scenarios where interpretability and 
transparency are essential. In contrast, ‘activation maps’ and ‘gradient-based’ methods 
often involve complex computations and may provide less straightforward 
interpretations of feature importance. For example, random forest provides a highly 
interpretable way to assess feature importance. The ensemble of decision trees allows 
for a clear understanding of how each feature contributes to the overall prediction. 
While activation maps or gradient-based methods can provide insights into which 
regions of the input contribute to the output, the interpretation might not be as intuitive 
as the feature importance scores provided by random forests. Therefore, feature 
importance analysis using the random forest is preferred for the cotton water stress 
applications in this article. 

For the cotton water stress task, 8 features were derived from the UAV-based 
RGB image, which was “red”, “green”, “blue”, “exgreeness”, “canopy cover”, 
“canopy volume”, “mask size”, and “canopy height”. The “red”, “green”, and “blue” 
were mean band reflectance values for the cotton canopy area. The “exgreeness” 
represented the excess green index (EXGI). The EXGI contrasts the green portion of 
the spectrum against red and blue to distinguish vegetation from soil and can also be 
used to predict NDVI values. It has been shown to outperform other indices that work 
with the visible spectrum to distinguish vegetation [40]. The EXGI was computed by 
Equation (3): 

𝐸𝑋𝐺𝐼 = 2𝐺 − (𝑅 + 𝐵) (3) 

where G, R, and B are normalized green, red, and blue bands, respectively [35]. The 
canopy volume was calculated by Equation (4): 

canopy volume = Σ(𝐻 × 𝐺𝑆𝐷ଶ) (4) 

where Hi is the height of the ith pixel [35]. The Canopy height calculation was obtained 
from the CHM (canopy height model). The CHM is generated by subtracting the DSM 
of each flight from the digital terrain model (DTM) obtained during the first flight. 
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The first flight was conducted after planting and prior to plant emergence to obtain the 
bare earth surface without any features, such as vegetation. 

3. Results and discussion 

3.1. Overall cotton growing trends 

The irrigation treatment played a vital role in cotton growth, and its impact on 
cotton canopy cover was evaluated based on the amount, frequency, and timing of 
water application (Figure 6). The “rainfed” treatment resulted in reduced canopy 
cover, as cotton conserved water by reducing its leaf area or closing its stomata to 
minimize water loss. Similar effects of reduced irrigation on canopy cover and leaf 
area were observed in a previous study on drip-irrigated blueberries [41]. Conversely, 
the fully irrigated treatment led to excessive canopy cover, as cotton plants responded 
to the surplus water supply by producing more leaves. However, excessive growth of 
canopy cover may also lead to decreased water use efficiency, increased susceptibility 
to disease, and compromised fruit quality [42]. Therefore, applying water at the 
appropriate amount and timing, based on the specific water requirements of the plants, 
is crucial for achieving optimal canopy cover and promoting healthy plant growth. 

 
Figure 6. The cotton canopy covers trends. Irrigation treatments played a vital role 
in cotton growth, and their impact on cotton canopy cover was evaluated based on 
the amount, frequency, and timing of water application. 

Notably, one of the key research findings was the significant differences observed 
among the irrigation treatments during the middle of the growing season, specifically 
between 60 and 120 days after the emergence (primarily in August and September 
2022). This period marked a critical stage where the divergent effects of different 
irrigation treatments on canopy cover became more pronounced. Understanding these 
variations and their implications during this specific timeframe provided valuable 
insights into the optimal management of irrigation practices for cotton cultivation. 
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Considering the importance of this specific stage, the subsequent section of the study 
focused primarily on utilizing the dataset collected during August and September for 
training and testing the CNN models. By concentrating on this specific period, the 
authors aimed to capture and analyze the key features and patterns related to cotton 
growth that emerged during these critical months. This targeted approach allowed for 
a more in-depth exploration of the effects of irrigation treatments on cotton growth 
and provided valuable data for training and evaluating the CNN models. 

3.2. The performance of the CNN model 

The study utilized a total of 6832 cotton canopy images for each sampling date: 
Aug 18th, Sep 2nd, Sep 9th, and Sep 20th, all in 2022. For each sampling day, the 
dataset was randomly split into a 70% training set and a 30% testing. During the 
training process, the CNN model was trained using the “Adam” optimizer and the 
cross-entropy loss function. The model was trained for a total of 70 epochs, with the 
aim of optimizing its performance. To assess the performance of the trained CNN 
models, the authors employed the original dataset (Figure 3) and plotted the training 
and testing accuracy curves as the number of epochs increased (Figure 7). The test 
accuracy achieved varied for each sampling date, with approximately 91% for Aug 
18th, 85% for Sep 2nd, 86% for Sep 9th, and 71% for Sep 20th in 2022. These 
accuracy values provided insights into the performance of the CNN models in 
classifying cotton water stress levels on different sampling dates. 

  
(a) 18 August 2022 (b) 2 September 2022 

  
(c) 9 September 2022 (d) 20 September 2022 

Figure 7. The training and testing accuracy of the CNN model for the original image dataset at different sampling 
days. 
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To evaluate the performance of the trained CNN models, the authors employed a 
confusion matrix, which provided a comprehensive summary of the prediction results 
in a classification problem. The confusion matrix helped in understanding not only the 
overall accuracy of the classifier but also the specific types of errors being made. In 
this study, the confusion matrix was utilized to assess the CNN model’s performance 
in predicting the irrigation treatment levels. The “True label” in the confusion matrix 
represented the actual irrigation treatment levels based on the ground truth data. On 
the other hand, the “Predicted label” indicated the irrigation treatment levels predicted 
by the trained CNN model. To simplify the visualization, the irrigation treatments 
were labeled numerically as follows: “rainfed” as “0”, “fully irrigated” as “1”, “percent 
deficit” as “2”, and “time delay” as “3” (Figure 8). The color bar on the right side of 
the confusion matrix represents the number of test samples. 

 
Figure 8. Summary of prediction results of the CNN model for the original image 
dataset at different sampling days. The irrigation treatments were labeled as follows: 
“rainfed” as “0”, “fully irrigated” as “1”, “percent deficit” as “2”, and “time delay” 
as “3”. The color bar on the right side shows the test samples. 

To provide more detailed information on the model’s performance, precision and 
recall values were calculated and presented in Table 2. Precision measures the 
proportion of correctly predicted samples for each class, while recall measures the 
proportion of correctly predicted samples out of all the samples that belong to a 
particular class. These metrics provide valuable insights into the model’s accuracy and 
ability to correctly classify different irrigation treatment levels. The test accuracy 
achieved was approximately 91% for Aug 18th, 85% for Sep 2nd, 86% for Sep 9th, 
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and 71% for Sep 20th in 2022. The lower performance observed on the last sampling 
date (Sep 20th) could be attributed to several factors. One of the important reasons 
was that rainfall happened before Sep 20th. As the cotton plants progressed in their 
growth cycle, the canopy structure and appearance changed compared to earlier 
sampling dates. The canopy cover increased significantly compared with the previous 
sampling dates (Figure 6). This change in canopy characteristics could have 
introduced additional variability and complexity in the UAV-based RGB images, 
making it more challenging for the CNN models to accurately classify them. These 
factors could affect the overall health and vitality of the cotton, potentially leading to 
variations in their visual appearance and making classification more difficult [43]. 

Table 2. The CNN model’s classification performance on irrigation treatments for 
each sampling day (original image dataset). 

Date Irrigation treatments Precision Recall F1-score 

Aug 18th rainfed 0.94 0.92 0.93 

Aug 18th fully irrigated 0.92 0.93 0.93 

Aug 18th percent deficit 0.89 0.92 0.90 

Aug 18th time delay 0.90 0.88 0.89 

Sep 2nd rainfed 0.93 0.94 0.93 

Sep 2nd fully irrigated 0.83 0.83 0.83 

Sep 2nd percent deficit 0.82 0.84 0.83 

Sep 2nd time delay 0.83 0.81 0.82 

Sep 9th rainfed 0.94 0.95 0.94 

Sep 9th fully irrigated 0.84 0.83 0.84 

Sep 9th percent deficit 0.84 0.85 0.84 

Sep 9th time delay 0.81 0.81 0.81 

Sep 20th rainfed 0.79 0.81 0.80 

Sep 20th fully irrigated 0.83 0.82 0.82 

Sep 20th percent deficit 0.60 0.63 0.62 

Sep 20th time delay 0.60 0.56 0.58 

3.3. Canopy-only and soil-only images for cotton water stress analysis 

The utilization of canopy-only and soil-only images in cotton water stress 
analysis serves a specific purpose and offers valuable insights into the underlying 
factors affecting plant health and water needs. By segmenting the original cotton 
canopy images into separate canopy and soil areas using morphological image 
processing methods, the authors aimed to isolate and analyze the individual 
contributions of these components to cotton water stress. 

The canopy cover plays a crucial role in determining water requirements and 
overall plant health [44]. It directly influences factors such as transpiration, 
photosynthesis, and evaporation rates, which are vital indicators of water stress levels 
in cotton plants. By examining the canopy-only images (Figure 5), the authors can 
focus on assessing the extent and distribution of canopy coverage, as well as detecting 
any signs of wilting, senescence, or other stress-related symptoms. These observations 
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enable a more accurate evaluation of the impact of water availability and irrigation 
treatments on the cotton canopy. 

On the other hand, analyzing the soil-only images provides crucial information 
about the moisture content. Soil moisture directly affects the plant’s ability to extract 
water and nutrients, impacting its overall water status. By examining the soil-only 
images, the authors can assess the spatial variability of soil moisture and its 
relationship to irrigation treatments. This analysis helps understand how different 
irrigation strategies influence soil moisture levels and the subsequent impact on cotton 
water stress. To generate the soil-only images, the authors simply inverted the binary 
image mask created for the canopy-only images (Figure 5), resulting in a visual 
representation of the soil in the cotton field. 

Then, the same CNN model was employed for training and testing the canopy-
only and soil-only images. To provide a comprehensive understanding of the model’s 
performance, precision and recall values were calculated and presented in Table 3. In 
the table, the authors presented the classification performance for both the canopy-
only and soil-only images together. For example, “Accuracy (Canopy/Soil)” indicated 
that the overall accuracy of the canopy-only image dataset was on the left, while the 
overall accuracy of the soil-only image dataset was displayed on the right. 

Table 3. The CNN model’s classification performance on irrigation treatments for 
each sampling day (canopy-only and soil-only image datasets). 

Date Irrigation 
treatments 

Precision 
(canopy/soil) 

Recall 
(canopy/soil) 

F1-score 
(canopy/soil) 

Aug 18th rainfed 0.86/0.83  0.84/0.87 0.85/0.85 

Aug 18th fully irrigated 0.90/0.82  0.90/0.82  0.90/0.82  

Aug 18th percent deficit 0.79/0.65  0.80/0.64  0.80/0.65  

Aug 18th time delay 0.84/0.67  0.84/0.66 0.84/0.66 

Sep 2nd rainfed 0.79/0.88 0.82/0.90  0.81/0.89 

Sep 2nd fully irrigated 0.73/0.77 0.67/0.72 0.70/0.74 

Sep 2nd percent deficit 0.62/0.74 0.65/0.74 0.63/0.74 

Sep 2nd time delay 0.64/0.69 0.63/0.74 0.63/0.71 

Sep 9th rainfed 0.78/0.89 0.82/0.90 0.80/0.90 

Sep 9th fully irrigated 0.70/0.78 0.68/0.72 0.69/0.75 

Sep 9th percent deficit 0.63/0.76 0.63/0.76 0.63/0.76 

Sep 9th time delay 0.63/0.71 0.61/0.75 0.62/0.73 

Sep 20th rainfed 0.72/0.76 0.73/0.76 0.72/0.76 

Sep 20th fully irrigated 0.78/0.78 0.73/0.76 0.75/0.77 

Sep 20th percent deficit 0.53/0.53 0.52/0.54 0.52/0.54 

Sep 20th time delay 0.50/0.53 0.54/0.54 0.52/0.54 

As anticipated, the CNN performance for these individual image subsets did not 
surpass the performance achieved with the original UAV-based RGB image dataset, 
as indicated in Table 2. Another notable research finding was that the irrigation 
treatments “rainfed” and “fully irrigated” were relatively easier to classify compared 
with the other two irrigation treatments. This observation could be attributed to several 
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factors. The CNN model relied on patterns and features present in the input data to 
make accurate predictions. By using only the canopy or soil images, certain contextual 
information that could be captured in the original RGB image may be omitted. The 
RGB image captured not only the individual components of the plant and soil but also 
their interactions, which could provide additional cues for accurate classification. 

3.4. Feature importance analysis 

In the above discussion, it can be concluded that the CNN model demonstrates 
state-of-the-art performance in cotton water stress classification. However, a limitation 
lies in the lack of physiological interpretability, specifically the understanding of 
which features contributed to the classification tasks. To address this limitation and 
gain further insights into the classification performance, the authors conducted a 
feature importance analysis using the random forest classifier. 

The classification performance of the random forest model is shown in Table 4. 
After training the random forest classifier, the authors computed the feature 
importance scores based on the Gini impurity index. The Gini impurity measured the 
extent of impurity or disorder in a node of a decision tree, and the feature importance 
score represented the reduction in Gini impurity achieved by splitting on a particular 
feature [45]. Higher feature importance scores indicated that the corresponding feature 
played a more significant role in the classification task. The feature importance 
analysis results are shown in Figure 9. 

Table 4. The random forest classifier performance. 

Irrigation treatment Precision Recall F1-score 

rainfed 
fully irrigated 
percent deficit 
time delay 
accuracy  

0.93 
0.94 
0.93 
0.94 

0.96 
0.96 
0.90 
0.92 

0.94 
0.95 
0.92 
0.93 
0.93 

 
Figure 9. Feature importance analysis results. Higher feature importance scores 
indicated that the corresponding feature played a more significant role in the 
classification task. 
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The high feature importance score for the “red” channel indicated that it carried 
significant information for accurately classifying cotton water stress levels. The red 
channel represented the intensity of the red color component in the image, which was 
closely related to the absorption and reflection properties of vegetation. In the context 
of cotton water stress analysis, the red channel could provide valuable insights into the 
physiological changes in the cotton canopy. As water stress increases, plants typically 
undergo physiological adjustments that affect their pigment concentration and 
chlorophyll content [46,47]. These changes could alter the reflectance properties of 
the plant, particularly in the red portion of the spectrum. Therefore, the red channel 
became a relevant indicator for detecting variations in water stress levels. 

By analyzing the feature importance scores, the authors gained valuable insights 
into the key factors that contributed to the accurate classification of cotton water stress. 
These insights could provide a better understanding of the physiological and 
environmental factors that drove variations in cotton water stress levels. Additionally, 
the feature importance analysis helped identify the most informative features for future 
monitoring and assessment of cotton water stress, potentially enabling more targeted 
and efficient management practices. 

4. Conclusion 

In this article, the authors demonstrate the effectiveness of using a CNN model 
for cotton water stress classification with state-of-the-art performance. By training the 
model on a large dataset of UAV-based RGB images, the authors achieved high 
accuracy (91%) in distinguishing between different irrigation treatments. The analysis 
of canopy-only and soil-only images provided valuable insights into the individual 
contributions of canopy cover and soil moisture to water stress assessment. However, 
the CNN model’s performance using these individual image subsets did not surpass 
the performance achieved with the original RGB image dataset. This suggested that 
the CNN model benefited from the contextual information and interactions captured 
in the RGB images. Additionally, the feature importance analysis using a random 
forest classifier revealed the significant contributions of specific image features, such 
as the red and blue channels, canopy cover, and other vegetation characteristics. 

This knowledge can inform future research on the physiological mechanisms 
underlying cotton water stress and guide the development of more targeted water 
management strategies. For example, cotton water stress is influenced by various 
environmental factors, including temperature, humidity, and solar radiation. 
Investigating the integration of environmental data alongside RGB imagery can 
improve the accuracy of water stress classification models by considering the 
contextual effects of these factors. Training CNN models on larger and more diverse 
datasets, encompassing different regions and cultivars, can enhance model 
generalization capabilities. Additionally, applying transfer learning techniques to pre-
training models on related crops or plant species may help improve the performance 
of cotton water stress classification. Overall, the study highlights the potential of deep 
learning models to advance our understanding and monitoring of crop water stress for 
improved agricultural practices. The authors concluded that the integration of UAV-
based RGB imagery and CNN models had great potential for assessing water stress in 
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cotton. 
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