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Abstract: Many metropolitan areas face significant environmental challenges posed by 

improper disposal and management of solid waste. As a result, environmental risks have 

emerged as a pressing concern, prompting dedicated research efforts. This study on 

environmental risk prediction of Dar es Salaam SW coincides with a mounting governmental 

effort over rising pollution levels from inadequate SW management. Using the multi-layer 

perceptron artificial neural network (MLP-ANN) model, it effectively examines the prevailing 

conditions and forecasts waste generation rates (WGRs) and environmental risk index (ERI) 

associated with SW pollution. As confirmed with 94.5% prediction accuracy and 86.5% 

success rate of the MLP-ANN model, WGRs in Dar es Salaam have doubled in less than two 

decades. Besides, over 40% of the overall generated SW is left unattended. Consequently, the 

ERI exhibits a consistent upward trajectory throughout the assessment period, with intermittent 

fluctuations between Level II and III but a persistent overall increase. Projections indicate an 

escalation of ERI to Level IV by 2025/26 and to a critical threshold (Level V) by 2038. The 

key indices such as pressure, state, and impact are anticipated to reach critical thresholds ahead 

of the comprehensive ERI. This underscores the imperative for timely interventions and the 

urgency of addressing SW management issues to curb the escalating environmental risks in 

Dar es Salaam and other metropolises with similar challenges. 

Keywords: waste generation rates; environmental risks; artificial neural network; predictive 

modelling; Dar es Salaam 

1. Introduction 

Solid waste-induced pollution is a significant environmental challenge in many 

metropolitan areas, including Dar es Salaam, which has a population of over six 

million and a rapidly growing economy [1–3]. The city generates large amounts of 

solid waste (SW) that are often disposed of in environmentally unfriendly ways [3–5], 

leading to serious public health and environmental consequences. Policymakers and 

researchers face major challenges in addressing this issue [2,6–8]. 

In recent years, there has been growing interest in using artificial intelligence 

(AI), specifically artificial neural networks (ANN), to predict and aid the reduction of 

risks associated with environmental pollution from mishandled SW [9]. ANNs are 

machine learning algorithms modelled on the human brain, enabling them to process 

complex environmental data and make accurate predictions about future pollution 

levels [10]. The multi-layer perceptron (MLP) is a type of ANN that has been 

successfully used in predicting air, water, and land pollution [11–14]. It is 

recommended for time series problems due to its stochastic input-output matching 

capabilities. In this study, the MLP-ANN was used to predict annual generation rates 

of six waste streams (organic-food-based, plastic, organic-paper-based, glass, metal, 

CITATION 

Kazuva E. Multi-layer perceptron 

artificial neural network for 

environmental risks prediction of 

SW-induced pollution in Dar es 

Salaam, Tanzania. Advances in 

Analytic Science. 2024; 5(2): 3018.  

https://doi.org/10.54517/aas.v5i2.3018 

ARTICLE INFO 

Received: 22 October 2024 

Accepted: 3 December 2024 

Available online: 11 December 2024 

COPYRIGHT 

 
Copyright © 2024 by author(s). 

Advances in Analytic Science is 

published by Asia Pacific Academy 

of Science Pte. Ltd. This work is 

licensed under the Creative 

Commons Attribution (CC BY) 

license. 

https://creativecommons.org/licenses/

by/4.0/ 



Advances in Analytic Science 2024, 5(2), 3018.  

2 

and ‘others’) from four major sources: Residential, industrial, commercial, and 

institutional and services wastes. A linear regression model was also used to measure 

the environmental risk index and predict future environmental risk levels in Dar es 

Salaam over the next 20 years. 

Environmental risk assessment aims to provide systematic procedures for 

predicting potential risks from environmental management scenarios, aiding decision-

makers in implementing policies to reduce environmental impacts [15], mitigate 

greenhouse emissions, and promote sustainability [16]. In this regard, environmental 

risk prediction (ERP) is a step in ERA aiding risk management. It uses specific risk 

factors and models to estimate the likelihood of adverse outcomes due to changes in 

environmental conditions from both, natural and anthropogenic forces [17]. For the 

prediction model to be reliable it requires adequate discrimination, calibration, face 

validity, and environmental usefulness [18–20]. Thus, a basic understanding of the 

models is vital before applying them in environmental practice. 

The study by Abbasi and Hanandeh [21] identified five categories of 

modes/methods for the forecasting of SW situations: Descriptive statistical methods, 

regression analysis, time series analysis, material flow model, and AI models. Other 

studies have used non-linear multivariate regression analysis to identify dependent 

parameters for predictor variables [22,23]. Robust AI algorithms, considered state-of-

the-art, offer accurate and reliable predictions of waste generation and ERI due to their 

flexibility and non-linear, non-parametric structure [24]. MLPs provide a promising 

approach to predicting risks associated with waste disposal and identifying effective 

mitigation strategies. 

This study aims to develop an MLP-based model to predict environmental risks 

from solid waste-induced pollution in Dar es Salaam. The model will be trained using 

historical data on waste generation, disposal, environmental quality, and demographic 

and economic indicators. By analyzing this data, the MLP identify patterns and 

relationships between environmental factors, enhancing the understanding of pollution 

drivers in the city and serving as a tool for predicting and mitigating risks associated 

with solid waste-induced pollution. 

2. Material and methods 

2.1. Geographical description of the study area 

The study was conducted in Dar es Salaam, Tanzania’s largest and main 

commercial city. As shown in Figure 1, this region lies between latitudes 6°35′–7°10′ 

S and longitudes 39°02′–39°30′ E. Being a coastal area, much of its eastern region 

bordering the Indian Ocean consists of lowlands with elevations ranging from −3 m 

below sea level to 268 m above sea level (Figure 1). Dar es Salaam covers a total area 

of 1800 km², encompassing both water and land mass. Its population has grown 

significantly from 0.8 million in 1978 to over 5.4 million in 2022. According to World 

Population Estimates (WPE) for 2024, the population of this city is projected to reach 

8.2 million people, reflecting a 30% increase from 2022 data [25]. The region 

experiences an average annual temperature of 30 ℃ and a humidity level of 80%. It 

has two rainy seasons: One from October to December and the other from March to 

May. Although the city is not prone to natural weather hazards, floods which are 
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exacerbated by inadequate storm drains and blocked drainage systems caused by 

improperly disposed waste are common in this city [3,26]. 

 

Figure 1. Study area map. 

2.2. Computing waste generation rates and environmental risk index 

The major aspects of this section were to determine waste generation rates 

(WGR) [2,5], Environmental Risk Index (ERI) [15,17,18] and subsequent 

environmental risk level (ERL) [7,8,16] which is the essential data source for WGR 

and ERI predictions. For WGR, the primary data on actual waste collection from 2006 

to 2022 were obtained from the sampled sites using procedures similar to those 

previously applied and well-documented in the author’s previously published report  

[2]. This aided the determination and drawing of inferences of average per capita 

generation rates in the city for 17 years, somewhat is crucial as data input to WGR 

predictive models. 

On the other hand, to compute ERI, the driving force-pressure-state-impact-

response, making a DPSIR model. The central idea of the DPSIR model is that 

socioeconomic development is commonly a driving force (D) that exerts pressure (P) 

which changes the natural beauty and state (S) of the environment. From the changed 

environmental state, the impacts (I) on the ecological environment and human health 

are experienced. The impacts provoke society’s responses (R) through preventive, 

adoptive, or curative measures [27]. This model is considered a valuable tool for 

reporting and addressing complex environmental issues particularly those related to 

human activities and has been used by several national and international organizations, 

including the United Nations (UN)1 in various environmental assessment and 

management initiatives, and by the United States Environmental Protection Agency 

[28] in the sustainable Puerto Rico initiative [29,30]. Thus, the DPSIR model has 

proved to be an effective tool for developing indicators and reporting the state and 

consequences of environmental degradation in urban planning, environmental impact 

assessment (EIA), land resource evaluation, health, wetland ecosystem evaluation, and 

other related environmental assessment [31–35]. In this study, the DPSIR model and 
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other supporting computation software including the analytical hierarchy process 

(AHP) and the expert questionnaire method (EQM)-Delphi technique were adopted in 

similar procedures as previously used and well vindicated in own published report [2]. 

Likewise, these techniques were used to organize risk indicator systems and quantify 

them in a hierarchical model to identify ERI which was a crucial procedure and served 

as data input to ERI predictive models. 

2.3. Waste generation rate and environmental risk index prediction 

The multi-layer perceptron (MLP) [36] which is a class of artificial neuron 

network (ANN) [11] is recommended among the best models that are applied to 

predict solutions to time series problems due to their stochastic input-output matching 

capabilities. In the current study, the multi-layer perceptron artificial neural network 

(MLP-ANN) was used to validate and verify the prediction of annual generation rates 

of the six waste streams (organic-food-based, plastic, organic-paper based, glass, 

metal, and ‘others’) as grouped by Kazuva and Zhang [5]. However, for ease of 

analysis, the model was introduced in four major sources–based waste categories: 

Residential, industrial, commercial, and institution and services wastes. The obtained 

prediction results are accurate and statistically significant as all independent variables 

showed a strong linear relationship with dependent variables. Besides, the linear 

regression model was used for the environmental risk index to predict the 

environmental risk level for Dar es Salaam SW. 

2.3.1. The architecture of the MLP-ANN model 

The architecture of MLP-ANN as regression predictive models was developed 

using the libraries of open-source Python programming language software—3.7 

version. Specifically, the study utilized Scikit-learn2 to construct and train the MLP-

ANN models as well as for performance evaluation metrics, NumPy and Pandas for 

data manipulation and preprocessing, and Matplotlib and Seaborn for visualization of 

data distributions and model performance metrics. 

In the first step, the researcher completed an Excel dataset and saved it in 

Comma−Separated Values (CSV) format for each waste stream. This step was done 

by assigning the average values for missing ones. The first row of the CSV files 

comprised independent variables and the names of the dependent variables. The 

independent variables for each waste stream were selected based on the weight of a 

particular element to the quantity of annual SW generated of each waste stream. Thus, 

the parameters used for the SW prediction include population [36], urbanization rates 

[37], gross domestic product (GDP), number of industries (NoI), number of hospitals 

(NoH), number of schools/colleges (NSC), and the number of core food markets 

(NFm). The association principle here is that: (1) The population of an area has 

significant impacts on the increased volume of generated solid waste [38]; (2) 

urbanization rates indicate the direction of population size and influence waste 

generation rates of an area [38,39]; (3) The GDP which measures the economic 

activities, size of the economy and the growth rate of a country is a primary factor for 

WGR of a particular area [40]; (4) For NoI, NoH, NSC, and NFm which are among 

the primary waste generators were also considered independent variables with 

significant contributions to the total volume of SW generated. For this reason, the 
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amount of waste generated from these sources (industries, selected hospitals, health 

care service facilities, education institutions and major food market centres) was used 

as important parameters with input data for the prediction of annual WGR. 

The second step involved the normalization of a standard value which was 

applied to both inputs and outputs following reading the data. In the third step, as 

shown in Figure 2, the researcher randomly divided the data into 70% for training and 

30% for testing. The fourth step involves the choice of the MLP regression model 

parameters which was constructed with the training data. The fifth step involved the 

prediction of the output value with test data by using the MLP-ANN predictive model, 

the R2, and mean squared error (MSE) values calculated from the test data. The 

principle in this calculation is that, if R2 is less than “0.90”, then the procedure is to be 

repeated. But if it is greater than “0.90”, then the prediction results are acceptable and 

the model is saved. Thus, the ideal R2 value is the one closest to “1.00” while the 

acceptable MSE is the one closest to “0.00”. 

 

Figure 2. Flowchart of the multi-layer perceptron artificial neural network (MLP-

ANN) method for identifying the best model for predicting WGRs in Dar es Salaam. 
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The random weight initialization tends to affect the performance of ANN [41]. 

To avoid or reduce this kind of shortfalls of the model, studies recommend repetitions 

of the algorithms in a reasonable number of attempts to find the optimal regression 

model with ideal MSE and R2 (equal or close to “0.00” and “1.00”, respectively). In 

this case, scholars commonly use ten repetitions in the cross-validation of the ANN 

[42,43]. For this purpose, the study applied the same approach. 

In the last step, test data and predicted values are normalized, and the actual 

output and predicted values are printed to compare the performance of the model. The 

main components of MLP-ANN application in the prediction of WGRs for residential, 

industrial, commercial, and institution and services are also shown in Figure 2 above. 

The MSE and R2 values which are the performance indicators of the model were 

calculated for all data using the optimal identified model of the ten 

repetitions/attempts. To find the effect of explanatory variables on results the Pearson 

Coefficients (P) between each dependent variable and the independent variables were 

calculated. The similarity shown in parity plots of predicted data against observed data 

is a sign of the validity of the predictive model used. 

2.3.2. MLP-ANN model application 

 
Figure 3. Architecture of the MLP-ANN with two hidden layers for predicting 

residential waste in Dar es Salaam. 

The neurons of the hidden layer (𝑎𝑖
(2)

 and 𝑎𝑗
(3)

) are defined such that (i, j) ϵ {(10, 5), (20, 10), (40, 10)}; 

GDP: Gross domestic product; NoH: Number of hospitals; NSC: Number of schools; NFm: Number of 

food markets. 

The MLP contains several layers of neurons, whereby the first layer, also known 

as the lowest layer is an input layer that receives information from external 

sources/neurons. The last layer, also known as the highest layer is an output layer 

receiving the processed information as the problem response/problem solution. The 

intermediate layers which separate the input and output layers are known as hidden 

layers [44]. For comprehensive WGRs prediction with various aforementioned waste 

streams, each of the four streams/sources was treated as an independent entity in the 

model using seven independent variables introduced above (POP, UrR, GDP, NoI, 
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NoH, NSC, and NFm). Figure 3 is an illustration of the MLP-ANN model architecture 

for residential waste. A similar model architecture was employed for other waste 

streams only by customizing the attributes of the particular stream with the selected 

independent variables. 

As highlighted by Dursun [44] the use of perceptron learning helps to adjust 

weights for each representation of an input vector of dependent variables. The input 

layer receives an external activation vector and transfers the calculated values 

(Equation (1)), by weighted links to the first hidden layer. The same algorithm 

(Equation (1)) is applied for the hidden layers. The response at the output layer is 

calculated with data from hidden layers using the algorithm shown in Equation (2) and 

the sigmoidal activation function used for calculations is represented in Equation (3). 

𝑎𝑖
𝑘+1 = 𝑔 (∑ 𝑤𝑖𝑗

(𝑘)
𝑥𝑗

𝑛

𝑗=0

) (1) 

ℎ𝑤(𝑥) = 𝑎𝑖
(𝑘+1)

= 𝑔 (∑ 𝑤𝑖𝑗
(𝑘)

𝑥𝑗

𝑛

𝑗=0

) (2) 

𝑔(𝑥) =
1

1 + 𝑒−𝑥
 (3) 

Since the main structure of the MLP network is experimentally defined, the 

specialists’ and experts’ experiences were considered important in defining the 

process. 

By using the gradient descent (GD) of the backpropagation algorithm—also 

known as the square error loss function, it was possible to modify the weight of the 

units outside the network and whenever necessary, to reduce the value between the 

estimate and the actual value [45]. This as shown in (Equation (4)) is dealing with the 

value of training data with the cost function J (w). To accept and use the GD, the 

general expressions in (Equation (5)) must be factual. In this equation (Equation (4)), 

the cost function is partially derivative regarding the weight vector, and this value is 

multiplied by the learning rate. At this point, the result is subtracted from the weight 

vector to complete the update. 

𝐽(𝑤) =
1

2𝑚
∑(ℎ𝑤(𝑥𝑖) − 𝑦𝑖

𝑚

𝑗=1

)2 (4) 

𝑤𝑖𝑗
(𝑖)

≔ 𝑤𝑖𝑗
(𝑖)

−∝
𝜕

𝜕𝑤𝑖𝑗
 (5) 

At this stage, the Root Mean Square Error (RMSE) and the Correlation 

Coefficient (R) were calculated and used as ANN metrics. For calculating the RMSE, 

the square root of the Mean Square Error (MSE) value (which is a common metric) 

was taken. Various mathematical techniques use the MSE in its easiest form to process 

metrics. According to Wolpert and Macready [45], MSE is used in machine learning 
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to evaluate the performance of classifiers. The MSE and RMSE calculations were done 

using the following equations: 

𝑀𝑆𝐸 =
(𝑞1 − 𝑎1)2 + ⋯ + (𝑞𝑛 − 𝑎𝑛)2

𝑛
(6) (6) 

𝑅𝑀𝑆𝐸 = √
(𝑞1 − 𝑎1)2 + ⋯ + (𝑞𝑛 − 𝑎𝑛)2

𝑛
 (7) 

where “q” is the estimated values; and “a” is the actual values. 

Finally, the Correlation Coefficient (RC) was calculated using Equation (8) to 

evaluate the statistical relationship between the actual and estimated values. 

𝑅𝑥,𝑦 =
∑ (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)𝑛

𝑖=1

√∑ (𝑥1 
𝑛
𝑖=1 − 𝑥)2 √∑ (𝑦1 

𝑛
𝑖=1 − 𝑦)2 

 (8) 

where “x” is the value of the variable in the dataset and “y” is the estimated value by 

the model. 

The RC was used to present the weight of the linear relationship between two 

data samples as determined by the two-sided values with the minimum and maximum 

limit −1 and 1, for negative and positive correlation, respectively. A negative 

correlation indicates the extent to which one variable increases as the other decreases, 

while a positive correlation indicates the extent to which the two variables increase or 

decrease. Some scholars grouped correlation into five groups whereby a value of 0 

means there is no correlation, ±0.1‒0.3 represents weak positive or negative 

correlation, ±0.4−0.6 represents moderate positive or negative correlation while 

±0.7−0.9 is a strong positive or negative correlation [41,45]. Exactly −1 or +1 

represents a perfect downhill (negative) or perfect uphill (positive) correlation. This 

study adopted the four correlation classes which are commonly used and depict that, 

the (0) value means no correlation (0), ±(0.1−0.3) means weak negative or positive 

correlation, ±(0.3−0.5) indicates moderate positive or negative correlation and ± 

(0.5−1.0) represent a strong positive or negative correlation. 

2.3.3. Performance verification of MLP-ANN and evaluation of prediction 

results 

The study surveyed several structures of the MLP-ANN with different numbers 

of neurons in three layers as shown in Figure 3, two activation functions (logistic and 

tanh) and different training algorithms to estimate the annual WGRs for all waste 

streams. The combinations of Solver: 1bfgs/sgd/adam, with the activation functions of 

logistic and tanh sized (10–5): (20–10): (40–20) were used to carry out the prediction 

experiments for WGRs. The best ANN-MLP predictive models are decided by 

performing 135 experiments for each waste stream, making a total of 540 for the four 

streams considered. Then, from the two model accuracy indices, i.e., MSE: Mean 

squared error and R2: The coefficient of determination the ideal networks were selected 

(ref. Figure 3 for residential waste). Table 1 summarizes the solver, activation 

functions, number of neurons in the hidden layers, the MSE and R2, the optimal results 

obtained and the model with the lowest MSE and highest R2 that were selected to 
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represent be best MLP-ANN model for prediction of WGRs in Dar es Salaam. Similar 

procedures were followed for the other three waste streams. 

Table 1. Specification and performance measures of an optimal MLP-ANN for data testing at each stage for all waste 

streams. 

Waste stream Solver Activation function Hidden layer neurons 
Statistical indices for Measuring of accuracy 

MSE test R2 test All MSE All R2 

Residential sgd tanh 10-5 0.004 0.98 0.4233 0.98 

Industrial adam tanh 20-10 0.012 0.96 0.0155 0.97 

Commercial lbfgs logistic 40-20 0.006 0.97 0.0941 0.90 

Institution & Services adan tanh 20-10 0.005 0.97 0.0766 0.94 

After obtaining the prediction results, it was essential to validate the results to 

clear any ground of doubts while making the obtained results. In model validation, the 

existing/observed data on WGRs and ERL were compared with the acquired WGRs 

and ERL probability results. In this task, a receiver operating characteristic curve—a 

simple and reliable tool for the validation of prediction results was employed [46]. 

From the ROC, results of the success rate were obtained using the training data set, 

and the prediction accuracy was calculated using the validation dataset that was not 

used in the training process. The Area Under the Curve (AUC) for ML regression and 

ANN were calculated in “R” statistical software using training and testing data for 

success rate and prediction rate of accuracy assessment, respectively. 

3. Results 

3.1. Waste generation rates and environmental risk index 

The waste categories as highlighted by Kazuva and others were adopted in the 

current study, where over 57% of the waste stream from the entire city was found to 

be organic waste [2,5]. Other categories are plastics waste (13%), paper waste (6%), 

glass waste (2%), metals waste (1%) and other assorted forms, making 21%. The 

characteristics of each category have extensively been studied in previous studies 

[2,3,5]. As indicated in Table 2 the rate of SW generation in the city of Dar es Salaam 

has been increasing significantly from 3930 MT/day in 2006 to over 6080 MT/day in 

2019 and 6570 MT/day in 2022. This increase is approximately 54.7% in just 14 years 

and about 67% in 17 years, respectively. The average amount of SW generation and 

its percentage composition for each stream is presented in Table 2. 

Table 2. Average SW generated and composition per stream from 2006 to 2022 (MT/day). 

Year 
Organic 

(57.21 %) 

Plastic 

(13.08 %) 
Paper (6.12 %) Glass (2.32 %) Metal (1.02 %) Others (20.25 %) 

Total SW 

Generates (100 %) 

2006 2248.35 514.04 240.52 91.18 40.09 795.83 3930.01 

2007 2354.19 538.24 251.84 95.47 41.97 833.29 4115.00 

2008 2452.02 560.61 262.30 99.44 43.72 867.92 4286.01 

2009 2548.13 582.58 272.58 103.33 45.43 901.94 4453.99 

2010 2618.51 598.67 280.11 106.19 46.69 926.84 4577.01 
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Table 2. (Continued). 

Year 
Organic 

(57.21 %) 

Plastic 

(13.08 %) 
Paper (6.12 %) Glass (2.32 %) Metal (1.02 %) Others (20.25 %) 

Total SW 

Generates (100 %) 

2011 2671.13 610.71 285.74 108.32 47.62 945.47 4668.99 

2012 2515.52 575.13 269.10 102.01 44.85 890.39 4397.00 

2013 2666.56 609.66 285.25 108.14 47.54 943.85 4661.00 

2014 2634.52 602.33 281.83 106.84 46.97 932.51 4605.00 

2015 2616.21 598.15 279.87 106.09 46.64 926.03 4572.99 

2016 2711.75 619.99 290.09 109.97 48.35 959.85 4740.00 

2017 3008.11 687.75 321.79 121.99 53.63 1064.75 5258.02 

2018 3204.90 732.74 342.84 129.97 57.14 1134.41 5602.00 

2019 3480.66 795.79 372.34 141.15 62.06 1232.01 6084.01 

2020 3502.58 800.80 374.69 142.04 62.45 1239.77 6122.32 

2021 3615.57 826.63 386.77 146.62 64.46 1279.76 6319.82 

2022 3759.13 859.45 402.13 152.44 67.02 1330.58 6570.75 

Total 48,607.84 11,113.28 5199.79 1971.18 866.63 17,205.20 84,963.92 

Based on the actual data, it is evident that the generation rate of SW increased 

significantly for the last 17 years while the response to it was inadequate. This trend 

made the ERI continue rising from medium to relatively high level, somewhat 

increasing ecological environment and human health risks [2]. As clearly shown in the 

national population projection report for 2013–2035 [25,47], the population of this 

city is fast growing at 4% as the average annual growth rate. As the statistical 

relationship between population growth rates and increased waste generation rates is 

shown in MLP-ANN model results (Table 1); waste generation rates are expected to 

grow even faster. 

3.2. MLP-ANN prediction results of WGRs 

3.2.1. WGRs prediction for individual factors 

While all six waste streams (organic, plastic, paper, glass, metal, and ‘others’) 

were processed, the discrete predictive models were developed based on four major 

waste sources of the mentioned six waste categories which are residential, industrial, 

commercial, and institution and services wastes. The use of scatter plot—an important 

and powerful tool for showing the degree of correlation between two variables [48] 

was used. In this plot, when the data form a graph resembling a straight line, the 

correlation between the two variables is considered high. In other words, the more the 

slope value is close to 1.0, the stronger the correlation between the two variables. 

Figure 4 is the scatter plots of MLP-ANN predictive models that are graphically 

present by comparing the actual and predicted WGRs for the four identified waste 

streams. For ease of graphical staging, only data for 2006–2019 were used. 
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(a4) (b4) 

Figure 4. Results of the MLP-ANN model for annual waste generation rates (WGRs) for residential, industrial, 

commercial and institutional/services waste, (a) comparison of observed and predicted WGRs; (b) scatter plot of 

observed against predicted WGRs. 

Apart from the results presented in Figure 4 above, Table 3 presents the Pearson 

Coefficient for the independent variables to dependent variables (residential, 

industrial, commercial, institution, and services waste). For instance, under residential 

waste, except for the school numbers parameter (P = 0.49) which is a moderate 

positive correlation, other independent variables showed a strong positive correlation 

with annual residential waste generation rates in Dar es Salaam (i.e., population (P = 

0.95), urbanization (P = 0.94), GDP (P = 0.92), hospital numbers (P = 0.63), and 

industrial numbers (P = 0.72). Correlation for all variables is presented in Table 3. 

Table 3. Pearson Coefficients between independent variables and dependent variable (annual Residential, industrial, 

commercial and institution and service waste generation rates (WGRs). 

Type of waste/Dependent variables Independent variables Pearson Coefficient (P) Correlation type 

Residential 

Population 0.95 Strong positive 

Urbanization 0.94 Strong positive 

GDP 0.92 Strong positive 

Hospital numbers 0.63 Strong positive 

Industrial numbers 0.72 Strong positive 

School numbers 0.49 Moderate positive 

Markets numbers 0.90 Strong positive 

Industrial 

Population 0.92 Strong positive 

Urbanization 0.95 Strong positive 

GDP 0.91 Strong positive 

Hospital numbers 0.70 Strong positive 

Industrial numbers 0.98 Strong positive 

School numbers 0.92 Strong positive 

Markets numbers 0.67 Strong positive 
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Table 3. (Continued). 

Type of waste/Dependent variables Independent variables Pearson Coefficient (P) Correlation type 

Commercial 

Population 0.97 Strong positive 

Urbanization 0.94 Strong positive 

GDP 0.93 Strong positive 

Hospital numbers 0.41 Moderate positive 

Industrial numbers 0.87 Strong positive 

School numbers 0.87 Strong positive 

Markets numbers 0.90 Strong positive 

Institution & services 

Population 0.92 Strong positive 

Urbanization 0.91 Strong positive 

GDP 0.90 Strong positive 

Hospital numbers 0.96 Strong positive 

Industrial numbers 0.60 Strong positive 

School numbers 0.95 Strong positive 

Markets numbers 0.45 Moderate positive 

Generally, all selected independent variables are positively correlated with 

annual WGRs. The MLP-ANN model was confirmed powerful for both linear and 

non-linear relationships to classical regression models. The capability of MLP-ANN 

models in the prediction of annual WGRs in Dar es Salaam has been illustrated with 

high accuracy (> 85%) in estimating WGRs of the considered waste streams. The 

adaptive and flexible characteristics of MLP-ANN models together with statistical 

accuracy indices converged in determining an optimum architecture and information 

paradigm to predict WGRs after analyzing and training datasets. The study 

successfully identified independent variables that are highly correlated with dependent 

variables for residential, industrial, commercial, and institution and services waste 

datasets. The differences between observed/actual and predicted WGR values are not 

statistically significant regarding low MSE and high R2 values. Population size, 

urbanization trend, and GDP are the most influential parameters for residential, 

industrial, and commercial WGRs. On the other hand, hospital and school/college 

numbers are the most effective factors for the institution and services WGRs. 

3.2.2. Prediction of comprehensive WGRs 

By using actual SW generation data and all indicators presented as independent 

variables for annual waste generation rates under the MLP-ANN model, SW 

generation has increased from an average generation of 3930 MT/day equivalent to 

1.4 mil. MT/year in 2006 to about 5884 MT/day equivalent to 2.2 mil. MT/year in 

2019 and 6570 MT/day equivalent to 2.4 mil. MT/day in 2022. From Figure 5, the 

use of one power simulation to calculate the trendline of the comprehensive waste 

generation rates (CWGRs) helped to obtain the equation. 

y = 152.4 x ‒ 30200 (passes the significance test, R2 = 0.8630) 
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Figure 5. Average SW generation rates and prediction. 

As shown in Figure 5, the generation rates of SW in Dar es Salaam increased 

year by year from 2006 to 2022, increasing by 152.4 MT every year. From this trend, 

and as shown by the prediction line, it is estimated that in 2040 (18 years from 2022) 

the amount of SW generated will exceed 9000 MT/day. Unless some improvements 

are made, the available management approaches will be unable to keep pace with this 

generation rate. 

3.3. Environmental risk of SW-induced pollution 

From the previous study by Kazuva and others [2], the ERI for Dar es Salaam 

SW was found to be a function of different factors grouped into five major risk indices 

of the DPSIR model, namely driving force, pressure, state, impacts, and response 

indices. These indices were subordinated by different indicators as the subsets of a 

comprehensive ERI system and were displayed as B- to E-layers. 

The result shows each factor of the five considered at different magnitudes has a 

significant contribution to the Comprehensive Environmental Risk Index (CERI) and 

so to the rise of ERL of Dar es Salaam SW. Figure 6 compares the trend of each risk 

factor (index) with that of CERI. The correlation of the two variables is shown by the 

R-squared value (R2) where they all indicate a strong positive correlation to the 

environmental risk level of the city. Similarly, the trendlines extracted equations show 

the trend of the particular index throughout the assessment period. As for the case of 

WGRs graphs, 2006−2019 data are inferences used. Despite the decrease in risk value 

for the response index (Figure 6i,j) it was not enough to immediately reverse the 

upward trend of ERI for other indices (A1–A4). As a result, there has been an increase 

from 0.22 to 0.45 risk values from 2006 to 2019, respectively. The scatter plot in 

Figure 6l shows the relationship and the degree of correlation between the 

compounded ERI for A1 through A4 and the ERI for response (A5) index. From this 

plot, the data resemble a straight line and the generated R-squared value (R2 = 0.85) is 

strong evidence to justify that the correlation between the two variables is strong. 

Thus, for sustainable environmental risk reduction from SW in the city of Dar es 

Salaam, special attention to the response index is of particular importance. 
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Figure 6. Comparison of ERI for all indices and their influence on the environmental risk level (ERL), (a) trend of 

driving forces index (A1); (b) comparison of driving forces index (A1) with the CERI; (c) trend of pressure index 

(A2); (d) comparison of pressure index (A2) with the CERI; (e) trend of state index (A3); (f) comparison of state 

index (A3) with the CERI; (g) trend of impact index (A4); (h) comparison of impact index (A4) with the CERI; (i) 

trend of response index (A5); (j) comparison of response index (A5) with the CERI; (k) comparison of ERI value for 

A5 and the compounded A1–A4; (l) scatter plot of ERI value for A5 and the compounded A1–A4. 

3.4. Overall ERI and risk prediction for Dar es Salaam SW 

The CERI for Dar es Salaam SW rose steadily from 2006, reaching level III in 

2011 and peaking in 2015. Such a trend indicates a substantial increase in the risk 

value due to external pressures, needing restoration action [49]. The declines in 2013 

and 2016 suggested improved management actions, such as improved management 

capacities, environmental publicity and education. However, other factors dominated 

by economic variables halted sustained progress. Despite fluctuations, the index 

remained high by 2019, indicating persistent environmental challenges despite 

intermittent improvements driven by government and community actions. Such a 

condition highlights the need for sustained efforts to get rid of all associated risks [50]. 

As the previous study indicates [2], the study categorizes ERI for Dar es Salaam 

SW into five levels based on risk degree and weight. These are Level I (0.10–0.2) 

extremely low, Level II (0.2–0.4) relatively low, Level III (0.4–0.6) Medium risk level, 

and Level IV (0.6–0.8) which is a relatively high risk. The ERI is considered extremely 

high at level V (> 0.8), marked as a critical threshold. The key indices—pressure, state, 

and impacts—exert significant influence, with pressure and state nearing level IV in 

2015, while impact approached medium risk. Despite the differences, all preceded the 
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CERI’s level. The trendline projections suggest the pressure index will hit the critical 

point (0.8 risk value) by 2022, with state and impact following in 2025 and 2030, 

respectively (Figure 7). On the other hand, the study used one power simulation to 

calculate the trendline of the CERI as shown in Figure 7. In this Figure the 

significance equation (Y = 0.0141x + 0.332); pass the significance test, R2 = 0.7871, 

was obtained; meaning that the CERI of Dar es salaam SW increased year by year 

from 2006 to 2019 by about 0.014 annually. Therefore, it is estimated that in 2038 the 

environmental risk of Dar es Salaam SW will reach the critical point (RV ≥ 0.8). 

 
Figure 7. Risk level and prediction of pressure (A2), state (A3), impact (A4) and the 

CERI for Dar es Salaam SW. 

3.5. Validation of prediction results 

The study aimed to assess solid waste generation rates (WGRs) in Dar es Salaam 

and their environmental impacts. This was accomplished by presenting the prediction 

results of both WGR and ERL. The predictions were validated through comparison 

with observed data using the receiver operating characteristic [46] curve. The MLP-

ANN and MLR models were employed, achieving over 70% prediction accuracy. 

MLP-ANN demonstrated superior accuracy, with a 96.5% prediction rate and 92.5% 

success rate (Figure 8a,b, respectively), while MLR yielded an 86.0% prediction rate 

and 95.0% success rate (Figure 8c,d, respectively). These models underscore the 

identified indicators’ reliability in predicting environmental risk levels, affirming their 

significance for decision-making. Responding to these indicators can proportionally 

reduce environmental risk levels in Dar es Salaam. The ROC curve analysis validated 

the models’ accuracy, with MLP-ANN exhibiting the highest predictive capability. 

The study emphasizes the importance of these models for informed decision-making 

and environmental management strategies in the region. 
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Figure 8. AUC of success and predictive rate for WGRs and ERI, (a) AUC curve of 

MLP-ANN model for WGRs; (b) WGRs predictive rate; (c) AUC curve of MLR 

model for ERI; (d) ERI prediction rate. 

4. Conclusion 

This study provides a comprehensive analysis of solid waste management in Dar 

es Salaam, focusing on waste generation rates and environmental impacts, particularly 

the Environmental Risk Index (ERI). Waste generation rates have doubled in less than 

20 years, with MLP-ANN models achieving high prediction accuracy and success 

rates. Over 40% of generated waste remains unmanaged, contributing significantly to 

environmental hazards. The ERI, derived from the DPSIR framework, reveals 

pressure, state, and impact indices as critical contributors to pollution, with ERI levels 

rising from Level II (2006–2010) to Level III (2011–2019) and projected to reach 

Level V by 2038. 

The study highlights the potential of MLP-ANN models for predicting waste 

generation and assessing environmental risks. Future research could focus on 

advanced AI techniques, such as Convolutional Neural Networks (CNNs) and Long 

Short-Term Memory (LSTM) networks, to better capture temporal and spatial 

patterns. Additionally, integrating machine learning with optimization methods like 

Genetic Algorithms (GAs) or Particle Swarm Optimization (PSO) may enhance 

resource allocation, optimize waste collection, and support sustainable interventions 

in waste management. These advancements would contribute to adaptive and efficient 

waste management systems for Dar es Salaam and other urban areas. 
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