
Sustainable Social Development 2024, 2(4), 2625. 

https://doi.org/10.54517/ssd.v2i4.2625 

1 

Article 

Modelling-based analytics for urban grand challenges 

Alan Wilson1,2 

1 The Alan Turing Institute, London NW1 2DB, UK; awilson@turing.ac.uk 
2 The London Interdisciplinary School, London E1 1EW, UK 

Abstract: Society faces grand challenges on a number of dimensions, for example: climate 

change, pandemics, security and geopolitics, and social exclusion. The future development of 

towns and cities is key to meeting these. The availability of analytic capabilities provides 

foundations for developing and evaluating alternative policies and plans. An extensive range 

of models is available, but they have not been well-focused on these kinds of grand challenges. 

A significant research task, therefore, is to review the modelling developments needed to 

provide the necessary analytics base. We consider in turn: the building bricks; the challenge of 

interdependencies and high dimensionality, using Lowry’s model as a framework; the 

integration of the elements into a comprehensive model as a basis for grand challenge analytics; 

and the challenges of implementation. 
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1. Introduction 

Six decades of research underpin that part of our knowledge of cities based on 

mathematical and computer models. Objectives in building these include developing 

the science of cities and seeking to use models as an important tool in urban planning. 

At the present time, society faces major challenges, most of which were not understood 

or well-articulated through the history of urban modelling. We need to relate to, for 

example, sustainability and climate change, pandemics, geopolitics and security, and 

social exclusion. Applications of models to date have been largely in the narrower 

field of conventional city planning. The aim of this paper is to show how the models 

can be further developed to contribute both to our understanding of the major 

challenges and to associated policy articulation and planning. There is a considerable 

knowledge base that has been developed over a long period of time. We aim to show 

how further steps can be taken to make use of this in relation to grand challenges that 

are now recognised as urgent. 

This is a very large task and to make this feasible, the paper will be focused on 

the evolution of the author’s own endeavours, and the implications for future research. 

See Wilson [1] for the origins of this thinking, along with accounts of more recent 

developments in the work of Wilson [2]. It should be possible to transfer the argument, 

mutatis mutandis, to other modelling approaches and styles. 

2. The building bricks 

A comprehensive model of a city can be assembled from interacting submodels, 

aimed at handling the interdependencies that make this enterprise so challenging. The 

archetypal model is Lowry’s [3] model of metropolis, and this continues to provide a 

conceptual framework for the development of more detailed, comprehensive models. 
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Subsequent developments have been concerned with dealing with complexity—the 

high-dimensional nature of the modelling challenge—and introducing explicit 

dynamics’ mechanisms, along with a tremendous amount of empirical work by many 

researchers, which has led to extensions and refinements, including handling large data 

sets and developing associated calibration methods. 

The main elements of a comprehensive model are shown in broad terms in Figure 

1. The migration and population (sub)models on the left-hand side represent the 

demographics of the system; the trade, economy, and infrastructure models on the 

right hand side represent the economy. These provide the framework within which 

people live (residence, employment, and use of services) and organisations function 

(delivering housing, jobs, and products or services). These elements interact through 

the transport and communications systems. This modelling of flows is important, 

ranging from migration and trade to journeys to work and to retail and various services. 

The flows are carried on the transport and telecom infrastructures. (There are some 

definitional problems: a move to a new house or job within a city is usually referred 

to as relocation rather than migration; and handling the ‘population’ involves both 

individuals and households and possibly wide family structures. The delivery of 

services such as health and education are sometimes referred to as ‘public services’ 

though the provision can be through public or private organisations (or a combination 

of both). We neglect these refinements in the first instance). 

 

Figure 1. The main elements of a comprehensive model. 

The core submodels can be therefore summarised as: 

• Demographic (including migration) 

• Economic (including trade and infrastructure) 

• Residential location 

• Housing 

• Employment location 

• Provision and use of services (retail, health, education, leisure, …) 
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• Transport 

• Telecoms 

Some of these have generic model elements: 

• Models of flows (spatial interaction) 

• Network analysis (the infrastructure, with flows loaded on to links) 

• Accounts (flow matrices, demographic and input-output accounts) 

• Dynamics 

As noted, the core models have been combined into general or comprehensive 

urban models, with Lowry’s [3] simple and brilliant model capturing the main 

interacting elements as the precursor. Many of the models that have built on the Lowry 

heritage have neglected full connection to demographic and economic input-output 

submodels, though there have been notable exceptions to this. They have not been 

widely used, possibly because of the scale of effort involved in assembling them. See, 

for example, Echenique et al. [4], Simmonds [5], and Kim et al. [6], in the last case 

building on Wilson [1]. 

These models usually function on a steady-state or equilibrium basis, but a 

dynamic model for a retail system was presented in Harris and Wilson [7]—a method 

that can be extended to other submodels—in transport networks, for example—see de 

Martinis et al. [8]. This method has been tested by a number of authors, but it is not in 

general use. See, for example, Dearden and Wilson [9] on the dynamics of shopping 

centre development and gentrification in housing. It has been further developed in a 

new framework by Ellam et al. [10] and Gaskin et al. [11]. This has led to new 

calibration methods—reflecting the impact of new techniques from data science and 

AI. The continued growth in computing power has led to further advances, as with the 

Quant model (see Batty and Milton [12]). Many of the submodels are valuable in their 

own right for particular applications, and in specific fields such as retail and transport, 

they have been extensively tested and deployed (see Birkin et al. [13], Boyce and 

Williams [14]). 

More recently, we have seen the beginnings of attempts to widen the scope of the 

models to contribute to the grand challenges, and we present these in Section 3. We 

pursue the extent to which these initiatives can be driven further in the rest of the 

paper. The subsystem models need to be expanded to incorporate, for example, carbon 

production (see Huber et al. [15]); the spread and control of infection in pandemics 

(see Spooner et al. [16]); more systematic applications in geopolitics and security (see 

Guo et al. [17]); and social inclusion, including access to health and education 

facilities. Modellers have not focused on social inclusion, though of course many other 

researchers have, notably Dorling [18,19]. The explicit incorporation of dynamics 

would enable the exploration of phase changes, both to identify future challenges 

through abrupt change and to target policy levers to support productive change. This 

enables the use of the models for systematic scenario exploration. 

We proceed as follows: in Section 3, we explore how the model system can be 

developed, handling interdependence and high dimensionality as a preliminary to 

defining a model system that can provide the analytics basis for exploring grand 

challenges in Section 4. We conclude in Section 5 with a discussion of the 

implementation challenges. 
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3. Interdependencies and high dimensionality: Insights from the 

Lowry model 

3.1. The modelling challenge 

In order to develop modelling systems to contribute to the grand challenges, we 

need to add more depth and detail, and in some cases, new submodels. We particularly 

need to represent interdependence, as we will demonstrate, and hence expand 

comprehensive models. We can identify one interdependence chain below by way of 

illustration to test the potential for developing extended models. 

Consider the following real challenge, albeit oversimplified but appropriate for 

illustration: A housing problem is usually presented as a shortage of houses. However, 

it can be argued that the underlying problem is an income problem—too many 

households with insufficient income to find or maintain accommodation. There is an 

income problem because there is an employment problem. There is an employment 

problem because there is a skills problem. There is a skills problem because there is 

an education problem. There is an interdependency chain: education—skills—

employment—income—housing. This leads to a further complication: as well as 

seeking to ensure that the education system does not leave a long tail of under-skilled 

people, we need to recognise that to change this, it takes time. It is more complicated 

to model this than to predict the revenue attracted to a new supermarket. However, 

that is part of our agenda. 

The problem of high dimensionality was considered in Wilson [20]—which led 

to the argument that in a relatively coarse-grained model, 1013 variables would be 

needed for a comprehensive description, something that is obviously not feasible in 

practice. As we expand our scope, therefore, we will need to make the necessary 

approximations in as optimal a way as possible. Part of this relates to data availability: 

we almost always have problems with missing data, and we can use such methods as 

biproportional fitting to fill in the gaps—see Dennett and Wilson [21] for an example 

in migration modelling and Caschilli and Wilson [22] on trade. 

In the following subsections, we discuss first scales (3.2), and then we set up the 

Lowry model as a foundational example (3.3). In 3.4, we present the model in formal 

terms as the basis for developing extensions. This allows us to seek to build extended, 

comprehensive model-based analytics in Section 4. 

3.2. Scales 

There are three dimensions of scale to be considered: spatial, sectoral, and time. 

The spatial ranges from the global via the national, the city-regional, and the 

neighbourhood to the micro. Model-based analytics have been developed for all of 

these. We will largely take the city-region scale as our focus but show links to others—

up to the global and down to the micro. Indeed, it is possible to model at two scales. 

For sectors, there are classifications available at different levels of granularity for 

industry and services and for labour and government, for example. These range from 

the very coarse—for example, working with a ‘basic’ industry sector and a small 

number of ‘retail’ sectors—through to the very fine. However, the desired granularity 

demands easily useable data which is often only partially available. For example, fine-
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scale sector data may not be available for fine-scale spatial units. At the finest scale, 

we can, in principle, seek data on individual organisations. 

For time, we can think in broad terms of short, middle, and long runs and seek to 

choose what is appropriate for the systems we are modelling and their applications. 

We also have to decide whether to treat time as discrete or continuous—usually 

discrete, but we sometimes want to incorporate data on individual events in health 

analytics, for example, where precision is important, for example, in dealing with co-

morbidities. 

3.3. The Lowry model 

To fix ideas, we first present the Lowry model and then convert this into 

something more formal. This gives us a platform for demonstrating interdependence 

and for extending the models in the direction of handling grand challenges. First, a 

recap on Lowry’s variables: 

A = area of land 

E = employment 

P = population 

c = trip cost 

Z = constraints 

to which should be added the following to be used as subscripts or superscripts: 

U = unusable land 

B = basic sector 

R = retail sector 

H = household sector 

k = class of establishment within a sector 

m = number of classes of retail establishment 

i, j = zones 

n = number of zones 

Ai
H, for example, is the area of land in zone i that is used for housing. If a subscript 

or a superscript is omitted, this implies summation so Ai is the total amount of land in 

i. There are two kinds of economic sectors: basic and retail—the latter further 

subdivided. Basic employment—and its spatial distribution across zones—is given 

exogenously. Retail employment is generated by the population. Once this simple 

principle of building the variables—the region’s descriptors—is understood, the 

model can be presented in twelve equations. 

The key land use equation is: 

Aj
H = Aj − Aj

U − Aj
B − Aj

R (1) 

This captures some key hypotheses: that land for basic and retail industries can 

always outbid housing, so this shows land available for housing is a residual. The 

household sector is represented by: 

P = fΣjEj (2) 

Pj = gΣiEifres(cij) (3) 

ΣjPj = P (4) 

Pj ≤ zHAj
H (5) 
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This sequence generates the population through employment and begins the 

process of housing them. Equation (2) calculates the total population as proportional 

to total employment. Equation (3) allocates this population to zones, i. fres(cij) is a 

declining function of travel cost from i to j, thus building in the likelihood that workers 

live nearer to their workplace. Equation (4) enables g in Equation (3) to be calculated 

as a normalising factor. The fourth equation is particularly interesting and also shows 

how the model is more complicated than it appears at first sight. zH is the unit amount 

of land used for residences, and so this equation is constraining the numbers assigned 

to zone i in relation to land availability. This is one of the subtleties—and part of the 

trickiness—of the model: the equations have to be solved iteratively to ensure that this 

constraint is satisfied. 

The retail sector is represented by 

ERk = akP (6) 

Ej
Rk = bk[ckΣiPif

k(cij) + dkEj] (7) 

ΣjEj
Rk = ERk (8) 

Ej
Rk > zRk (9) 

Aj
R = Σke

kEj
Rk (10) 

Aj
R ≤ Aj − Aj

U − Aj
B (11) 

These six equations determine the amount of employment generated in the retail 

sector. The total in sector k within retail is given by Equation (6), and this is spatially 

distributed through Equation (7). As with the residential location equation, the 

function fk(cij) is a decreasing function of travel cost, indicating that retail facilities 

will be demanded relatively nearer to residences. ck converts these units into 

employment. The term dkEj represents the use of retail facilities from the workplace. 

bk is a normalising factor which can be determined from Equation (8). Equation (9) 

imposes a minimum size for retail sector k at a location. (No school for half a dozen 

pupils for example!) Equations (10) and (11) sort out retail land use, the first 

calculating a total from a sum of k-sector uses—ek converting employment into land—

and the second specifying the maximum amount of retail land—in effect giving ‘basic’ 

(which has been given exogenously) priority over retail. In this case, unlike the 

residential case where Pi was constrained by land availability, retail employment is 

not so constrained. Lowry argued that, if necessary, retail could ‘build upwards’. If Aj
R 

from Equation (10) exceeds Aj − Aj
U − Aj

B, it is reset to this maximum, but employment 

does not change. 

Total employment is then given by: 

Ej = Ej
B + ΣkEj

Rk (12) 

This final equation simply adds up the total employment in each zone. The 

equations are solved iteratively, starting with Ej
RK = 0. 

To develop further model-building insight as a preliminary, we can regroup these 

equations into four categories: accounting, aggregate relations, spatial interaction 

(flow) relations, and constraints. 

Accounting 

Aj
H = Aj − Aj

U − Aj
B − Aj

R (13) 

ΣjPj = P (14) 

Ej = Ej
B + ΣkEj

Rk (15) 
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ΣjEj
Rk = ERk (16) 

Aggregate relations 

P = fΣjEj = fE, E = ΣjEj (17) 

ERk = akP (18) 

Aj
R = Σke

kEj
Rk (19) 

Spatial interaction (flow) relations 

Tij = gΣiEifres(cij) (20) 

Sij
k = ck[ΣiPifk(cij) + dkEj] (21) 

extracted from (7), written as 

Ej
Rk = bk[ΣiSij

k + dkEj] (22) 

Constraints 

Pj ≤ zHAj
H (23) 

Ej
Rk > zRk (24) 

Aj
R ≤ Aj − Aj

U − Aj
B (25) 

The accounting relations are statements for each main model element: land, 

population, and employment; these elements are linked first at an aggregate level and 

then through spatial interaction relationships. The constraints are Lowry’s way of 

handling some of the problems of interdependence. 

3.4. The Lowry model in formal terms 

The principal endogenous variables are Ai
H, Ai

R, Pi and Ej
Rk and we can write them 

in formal form as follows. 

Ai
H = Ai

H(Pi, Ei
B, Ei

Rk, Ai
U, Ai

R, Ai
B, cij) (26) 

Pi = Pi(Hi, {Ej}, {cij}, Ai
H, Ai

U, Ai
R, Ai

B) (27) 

Ej
Rk = Ej

Rk(Wj
Rk, {Pi}, {cij}, Ej

B) (28) 

together with the constraint equations 

Pj ≤ zHAj
H (29) 

Ej
Rk > zRk (30) 

Aj
R ≤ Aj − Aj

U − Aj
B (31) 

now renumbered. In Equations (27) and (28), we have added structural variables Hi 

and Wj
Rk as measures of housing supply and ‘retail’ infrastructure respectively. Such 

terms do not appear in Lowry’s model: Hi is (implicitly) taken as proportional to Pi, 

and Wj
Rk similarly to Ej

Rk. However, we need to recognise that these structural variables 

change more slowly than the activity variables, and we will model this explicitly 

below. Meanwhile, we can add formal equations for them: 

Hi = Hi(Pi, {Ej
*}, {cij}, …) (32) 

Wj
Rk = Wj

Rk({Pi}, {cij}, ….) (33) 

It is also helpful to write the interaction Equations (20) and (21), in formal terms: 

Tij = Tij(Pi, Hi, {Ej
*}, {cij}, …) (34) 

Sij
Rk = Sij

Rk(Pi, {Wj
Rk}, {cij}, …) (35) 

The curly brackets in Equations (32)–(35) indicate the vectors or matrices within 

them. The highly interdependent structure of these equations leaps out here: the 

endogenous variables in one equation appear as exogenous variables in the others. 

This is why they always have to be solved iteratively. Of course, this simply represents 

real-world interdependence. 
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We now have the framework to show how the models can be extended to 

contribute to meeting the grand challenges. All the submodels listed in Section 2 are 

implicit here. The crucial spatial interaction models have been made explicit in 

Equations (20) and (21) and formally in Equations (34) and (35). These have been 

developed in highly sophisticated and tested forms. Lowry’s retail sectors are based 

on a very broad definition of retail to mean ‘any form of interaction of people using a 

facility’—and so can be expanded to include education and health. It is immediately 

clear that the population and sector variables need much more detailed subscripts and 

superscripts, as indicated in the previous subsection. This can be done but creates, 

again, as noted, very large multi-dimensional arrays, and a full integration of these 

disaggregated models with microsimulation methods is called for. See Birkin and 

Clarke [23] and Smith et al. [24]. 

4. Towards an extended comprehensive modelling system: 

Analytics for grand challenges 

4.1. Model development 

We can now combine the analytics needed for the grand challenges sketched in 

Section 1 with the building bricks discussed in Section 2 and the insights offered by 

the Lowry model in Section 3.3, transformed into a formal structure in Section 3.4. 

The analytics base we are seeking is described as a ‘modelling system’ because its 

elements are often valuable in their own terms, and there will be variants of the 

comprehensive model as different kinds of approximations are made to deal with the 

challenges of high dimensionality. 

Equations (26)–(35) provide a good starting point, first in terms of omissions and 

weaknesses in our usual comprehensive models: Equation (26) reminds us that we 

have not always dealt with ‘land’ effectively; Equations (29)–(31) remind us of the 

importance of handing constraints. However, in a broad conceptual way, Equations 

(27) and (28) along with Equations (32) and (33), represent the core of the model 

building challenge. 

This takes us back to Figure 1: the left-hand side of the diagram represents the 

population and associated activities; the right-hand side represents the economy. To 

recap on Section 2, we have detailed demographic models that are usually applied at 

an aggregate scale, and similarly, good economic models—based on input-output 

accounts—are also applied at an aggregate scale. These provide envelopes for the 

more granular multi-zone models. For both the demographic and the economic 

models, we need fine-grained specifications of people (and households) and sectors, 

and there are obvious links to the activity models: life expectancy in relation to 

education, for example, and employment through the skills base, represented in both 

supply and demand terms in the input-output model. 

This implies the need for disaggregation, which we now pursue. In Section 3, we 

have no disaggregation of person type, and the economic sectors are divided into 

‘basic’ and a set of ‘retail’. A starting point, therefore, is to define a superscript, n, to 

represent person type, and m to represent economic sectors. The latter replaces ‘basic’ 

and ‘Rk’. This releases k to be used as a superscript for housing type. We can then 
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rewrite the formal model equations in these terms (and this defines the disaggregated 

variables in an obvious way). 

Ai
H = Ai

H({Pi
n}, {Ei

m}, Ai
U, Ai

R, Ai
B, {cij

mn
}) (36) 

Pi
n = Pi

n(Hi
k, {Ej

m}, {cij
mn}, Ai

H, Ai
U, Ai

R, Ai
B) (37) 

Ej
m = Ej

m(Wj
m, {Pi}, {cij

mn}, …), mε{retail} (38) 

Pj
n ≤ zHAj

H (39) 

Ej
m > zm, mε{retail} (40) 

Aj
R ≤ Aj − Aj

U − Aj
B (41) 

Hi
k = Hi

k({Pi
n}, {Ej

*}, {cij}, …) (42) 

Wj
m = Wj

m({Pi
n}, {cij}, …), mε{retail} (43) 

Tij
mn = Tij

mn(Pi
n, Hi

k, {Ej
*}, {cij

mn}, …), mε{retail} (44) 

Sij
mn = Sij

mn(Pi
n, {Wj

m}, {cij
mn}, …), mε{retail} (45) 

We assume an upper-tier envelope that will handle, for example, migration (Rees 

and Wilson [25}) and the economy through an input-output model (see Zhang et al. 

[26]). We also need to recognise that further disaggregation may well be required. In 

relation to person types, for example, the superscript n may be a ‘vector’ of 

superscripts representing age, sex, education, skills, employment, income, and so on. 

For example, define Pij
dakmse where i = residential location, j = workplace location (or 

a service location—probably not both needed at the same time), d = demographics, a 

= income, k = house type, m = employment sector, s = skill level, and e = education 

status. 

Equation (37), along with Equation (44), when assembled into its various 

submodels, represents the population and associated activities, usually anchored in 

residence and work and with a strong interaction between these—the journey to work. 

It is also important to include those who don’t work away from home: those in regular 

employment but, post-pandemic, working from home; the retired; the unemployed; 

and those committed to domestic work. These latter categories will be an important 

element of the social inclusion challenge and are usually neglected in current models. 

It is then possible to enumerate the set of activities, usually modelled as spatial flows 

from home or work origin to a facility—such as retail, education, and health. We also 

seek to model the impact of these activities, such as the development of skills through 

education and in the treatment of disease, for example. As we noted earlier, many of 

these impacts are at future times, which implies in modelling a cross-section at each 

point in time. We need to take past histories into account, something that is not usually 

done, though the modelling of co-morbidities in health may be a pointer for future 

work on a broader basis. See Pagliara et al. [27] for a review of residential location 

models. Equation (38), along with Equation (43), works on a similar basis, but 

representing organisations in the economy, usually aggregated into sectors—though 

there is a challenge here in linking micro and meso/macro theory—see Pagliara et al. 

[28]. 

The interaction Equations (44) and (45) provide the basis for transport analysis 

and planning, which is a well-developed field of study in engineering. These models 

provide the key to providing generalised cost terms that figure throughout, handling 

congestion in networks, for example. See Boyce and Williams [14] for a brilliant 

review of the history of these models and an account of the current state of play. 
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The model system represented by Equations (36)–(45) is, essentially, handling 

time either through steady state or comparative static equilibrium assumptions. It is 

important to move towards explicit dynamics, particularly so that we can identify four-

phase changes. The dynamic retail model of Harris and Wilson [7] provides a starting 

point. In formal terms, for a discrete time period, take the W-retail structure from 

Equation (43). 

ΔWj
m = ΔWj

m(Dj
m − KWj

m)Wj
m (46) 

where, 

Dj
m = ∑inSij

mn (47) 

Identification of phase changes is a particularly important task for the analytics 

of grand challenges—both to identify potential catastrophes and possible routes to 

‘good’ outcomes. For a detailed account of progress in incorporating these dynamic 

concepts into a comprehensive model, see Dearden and Wilson [9]. 

There are submodels available for each element of the Equations (36)–(47) 

system—embracing demography, economics, residential and housing, basic industry, 

‘retail’—people-driven services, employment, transport and telecoms. This formal 

system could be expanded to add the detail that these offers. It remains essential that 

these are combined into a general model, particularly in relation to grand challenges 

so as not to lose track of the interdependencies. 

4.2. Analytics for grand challenges 

We start with the initial assumption that the submodels listed in Section 4.1 are 

in place, along with comprehensive models that integrate these for tackling 

interdependence. This assumption will not typically be satisfied, of course: there are 

no organisations that are big enough to carry the full range. What is common to each 

case, as we can anticipate from the focus of the paper, is that responses will demand 

radical change in the organisation of our towns and cities, and the analytics base 

through modelling provides a means of assessing what is needed and what is possible. 

In each case, we need to calculate new kinds of indicators for sustainability analytics 

which can be used to guide us towards potentially effective plans. It is worth 

emphasising that analysis alone—modelling—will not solve problems and meet these 

grand challenges: inventiveness in creating plans and policies is essential. 

The analysis above, taking insights from Lowry’s original comprehensive model, 

warns us that we will need to develop our current models to fill some gaps—notably 

to handle land more effectively (and associated questions of pricing and rent) and to 

understand the dynamics more deeply, particularly being able to identify phase 

changes that might be the basis of sustainability policies. 

We proceed on the basis that an enhanced modelling system is in place, take each 

of the four grand challenge areas in turn, and note the state of play and the 

opportunities for further development of grand challenge analytics. We introduce the 

first three and then consider the social inclusion and associated housing challenges in 

more detail. 

Climate change: 

A starting point is to seek an indicator based on carbon production. This needs 

estimates that relate to activities in buildings and transport flows. When we have 
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estimates of carbon production at a fine scale, we can add these to our models to 

calculate carbon production for different kinds of towns and cities and then to pursue 

the questions: what is a reasonable and achievable target for carbon reduction, and 

how can this be done? We can conjecture that production will be a function of urban 

form—residential densities, housing, the organisation of workplaces, the ways in 

which services are accessed and used, and links strongly to transport and telecoms. At 

the present time, in relation to UK cities, for example, densities of new housing remain 

low, and its relation to workplaces and the availability of public transport means that 

car trips, on average, are lengthening. In other words, the intensity of carbon 

production is increasing and taking us further away from reduction targets. We can 

use our model systems, with enhanced indicators, to explore alternative forms and 

organisation and it will become very clear that radical policies are needed. This kind 

of work is well under way—for example, through Micael Wegener’s team in 

Germany—see for example, Huber et al. [15]. 

Demographic modelling and analysis will be important at both intra- and 

international scales, particularly in relation to migration flows. Modelling the 

economy through input-output models can be used to measure the effects of ‘greening’ 

policies and what this means for employment. 

Pandemics: 

COVID has shown that we need to be better prepared to handle future pandemics. 

In this case, urban models have been enhanced through integration with 

epidemiological modelling which facilitates the understanding of spread and the 

policies needed for control. This approach has been much extended by Spooner et al. 

[16]—this is essentially an ‘add-on’. 

Security, geopolitics, and war: 

Models are being developed that can generate probabilities of conflict, intra-

nationally and particularly internationally [17,29,30]. These applications are based on 

a new use of the spatial interaction concept: as ‘threat’. The issues link to 

demographics, particularly migration, driven by climate-driven change—energy, 

food, and water shortages, for example. Effective and efficient international trade is 

important [31], again in relation to energy and food security, and this has generated 

models of other kinds of conflict, notably piracy [32]. This area provides a new 

challenge for modelers and new opportunities for analysis and planning in police and 

defense agencies. 

Social inclusion: 

This is an important area with huge potential, especially, as noted earlier, 

modelers lack of application to social exclusion. Our core models, as described in 

earlier sections, are well developed and potentially effective in their ability to represent 

the well-being of people (households) and organisations (the economy, private and 

public; mixed). Accessibility indicators are particularly important in relation to 

employment (and hence incomes), education, and health. We can work through this 

example in more detail using our illustrative interdependency chain and the associated 

formal model: education—skills—employment—income—housing. Although the 

stimulus for this is related to housing challenges, there are obviously wider 

implications for social inclusion. 
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If we assume that the core models are in place, we can extract from these to follow 

the chain through: education will be one of the sectors, m; the population vector will 

be disaggregated to reflect skills levels and incomes (associated with age and gender); 

employment in all sectors will be disaggregated by skills needed and wage. The 

handling of time will be critical. For illustration, let us assume an annual cycle denoted 

by t = 1, 2, 3, … and that the model system we are building will run through this time 

sequence. The shift from t to t + Δt will be achieved through dynamic models such as 

Equations (46) and (47), with equivalent equations for housing. In terms of these 

structural variables, they will, at least in part, be specified exogenously through actions 

and plans. This might include investment in education provision to increase skills, and 

we would model the impacts of such investment through the skills element of the 

demographic model. Similarly, the developing employment distribution would be 

partly generated by the model (for the ‘retail’ sectors) and would be partly exogenous. 

This system would generate changes in income distribution over time, and these would 

become inputs into the housing model. 

The key equations in the model for this case, in sequence, extracted from 

Equations (36)–(47) above and re-ordered as appropriate, follow. A brief commentary 

is added to show how this facilitates a walk along the chain. 

Ej
m = Ej

m(Wj
m, {Pi}, {cij

mn}, …), mε{retail} (48) 

Wj
m = Wj

m({Pi
n}, {cij}, …), mε{retail} (49) 

ΔWj
m = ΔWj

m(Dj
m − KWj

m)Wj
m (50) 

to record investment in m = education through Wj
m and the take-up through Dj

m. 

Pi
n = Pi

n(Hi
k, {Ej

m}, {cij
mn}, Ai

H, Ai
U, Ai

R, Ai
B) (51) 

Sij
mn = Sij

mn(Pi
n, {Wj

m}, {cij
mn}, …), mε{retail} (52) 

which will pick up access to education and training, the take-up, and the impact of 

increasing skill levels. 

Ej
m = Ej

m(Wj
m, {Pi}, {cij

mn}, …), mε{retail} (53) 

Dj
m = ∑inSij

mn (54) 

which will give us employment for all m, and then we can look at housing provision, 

which will feed back into Equation (55). 

Hi
k = Hi

k({Pi
n}, {Ej

*}, {cij}, …) (55) 

Equation (56) gives the journey to work. 

Tij
mn = Tij

mn(Pi
n, Hi

k, {Ej
*}, {cij

mn}, …), mε{retail} (56) 

and the remaining equations check out the constraints: 

Ai
H = Ai

H({Pi
n}, {Ei

m}, Ai
U, Ai

R, Ai
B, {cij

mn}) (57) 

Pj
n ≤ zHAj

H (58) 

Ej
m > zm, mε{retail} (59) 

Aj
R ≤ Aj − Aj

U − Aj
B (60) 

The hard work then begins in two respects: to develop the model system as 

indicated; and to integrate it into planning and policy development to respond to the 

social inclusion challenge, with appropriate creativity and invention to chart ways 

forward. 

5. Concluding comments: The challenges of implementation 

We can take for granted computing power, high levels of visualisation skills, and 
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abundant data. We have excellent account-based models of demographics and 

economics; we can model the functioning of most subsystems, though these skills are 

not universally applied; we have the beginnings of an understanding of dynamics with 

its implications of path dependence and phase changes. We could deal with the high-

dimensionality challenge through the full integration of microsimulation. 

To confront the grand challenges that we have used as examples, we have the 

modelling tool kit, which could be used at least for short-run analysis, but there is very 

little related modelling in practice. The modelers’ agenda has been too narrow. So, 

what can be done? A central institute may be needed. This could lead to the 

development of best practices and the articulation of the research front line. However, 

government agencies would have to play their part with substantial in-house integrated 

units, connecting planning and policy development to analytics through inventive 

design. Britton Harris once remarked, “Policy, design, and analysis each involve 

different kinds of thinking. It is rare to find all three in the same room at the same 

time!” This highlights the organisational challenge. Universities would have to play 

their part with seriously large interdisciplinary centres, each substantially bigger than 

typical core departments—so a major restructuring is called for. There would be major 

battles as disciplines went into defensive mode. 

Local government should have cross-council units that would construct an 

intelligent information system for a city or region, incorporating basic data through a 

GIS, policies and plans, and a model-based analysis and evaluation system. A best-

practices system is needed to chart the way. The UK Department of Levelling Up, 

Communities, and Local Government should lead a cross-department ‘joining-up’ 

initiative. Universities should take interdisciplinary challenges more seriously, and 

some, at least, should use ‘cities and regions’ as a case study of what can be achieved. 

They would need to invest themselves, but they would also need partners among 

research councils, consultants, and government agencies. A new kind of cooperative 

structure is needed. There are significant implications for education: new courses will 

be needed for both young and mature students to generate an expanding skilled 

workforce in modelling and planning. The modelling community should break out of 

silos, extend horizons, and work in major public services (and the private sector), 

possibly re-invigorating operational research enroute. This is non-trivial and, with 

some notable exceptions, is not what we have now. The policy and planning 

communities should embrace intelligent analysis. 

This all turns on a commitment to ambition in both the sciences and in policy and 

planning. The science needs to become ‘big science’—exciting in its own terms but 

able to contribute to solving some of society’s biggest problems. This is not essentially 

a funding problem; universities and government agencies could reorganise and 

commit to existing resources. It is a cultural problem with many dimensions. For 

example, academic researchers, in inefficient silos, have become accustomed to 

working on ‘small’ problems, often on ‘toy’ systems, because they are manageable; 

policymakers and planners typically have short-term perspectives and do not have the 

backgrounds to see that the science can help. They are also unambitious in that part of 

their own territory they should be good at: inventing and developing radical plans for 

problems that need radical solutions. These cultures are deep-seated, but perhaps 

dreaming the utopian dream could be the beginning of something new. 
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The paper aims to articulate for the urban modelling community how existing 

systems can be expanded to contribute to the analysis of grand challenges and the 

planning of responses. Although the argument is limited to one style of modelling, the 

conclusions can easily be translated to other approaches. This provides the basis for 

an important and urgent ongoing research programme. 
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