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Abstract: The present paper treats mainly two questions, namely the mathematical 

characterization of the notion of biodiversity of a border interface between two adjacent 

ecosystems, and the role of human interference in the physical reality of interacting multi-

species systems. Mathematically, the techniques of reaction-diffusion modeling, Turing’s 

notion of flow matrices and Verhulst logistic growth dynamics are introduced, in order to 

model the complex interactions in a fractal, non-stationary ecosystem. A new key approach is 

the combined use of flow matrices and Verhulst growth dynamics with Laplace transforms. 

However, these findings so far remain theoretical, not in the least because of the widespread 

interference of human activities with ecological developments, both planned and unplanned. 

When comparing mathematical models and the actual physical dynamics of ecosystems, 

parallel trends as well as species-specific, unique deviations are conspicuous. Especially the 

latter remain hard to predict, indicating the limited value of mathematical predictions for the 

actual biodiversity trends in the field. Moreover, in a specific case study from the Netherlands 

related to the ecology of game mammals and a top-predator (the Wolf), it appears that not only 

contemporary ecological management operations, but also the contingency of measures from 

a historical past (exceeding 200 years) play a significant role in understanding the human 

interference factor in nature (designated as the Anthropocene factor). 

Keywords: biodiversity of border interface; reaction-diffusion modeling; Turing’s flow 

matrices; Verhulst logistic growth; multi-species ecosystems; history of Raven-Wolf-Deer 

alliance 

1. Introduction 

In contemporary ecological monitoring, the almost simultaneous occurrence of 

waves of extinction, disease epidemics and other ecological disasters is often recognized. 

Sometimes, a common cause has been pinpointed, such as environmental pollution 

through pesticides [1], oceanic heat waves [2], or pandemics like avian influenza causing 

the sudden death of thousands of Puffins, Razorbills and Guillemots [3]. In other cases, it 

is more difficult to indicate a common cause, although a strikingly parallel development 

may have been found. Take for instance the rise of bovine tuberculosis (TBC) in British 

cattle [4] and the Bluetongue epidemic in cattle and sheep (and in wild ruminants too) in 

Continental Europe in the last decade, and the disappearance of flowering herbs and 

(pollinating) insects in grasslands [5]. Recently, since January 2025, also Foot- and Mouth 

disease (FMD) was detected in Water Buffalos (Bubalis bubalis) in Germany, but, 

fortunately, so far, the latter epidemic didn’t spread to the Netherlands.  

Parallel developments may often appear, without having a clear relationship: they 

may represent unrelated coincidences, or, a hidden variable may be present that we 

still have to unveil. For instance, the sudden (migratory) invasion of thousands of 
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millions of one species of dragonflies, the Common Darter (Sympetrum striolatum) in 

North-Western Europe in the last week of August 2024, and the elevated numbers of 

a particular Finch species, the Greenfinch (Carduelis chloris). The Greenfinch, 

however, is not known as a migrating bird species. Also, it is known as an herbivorous 

species, predominantly feeding on seeds and only occasionally (in the cold winter 

months) it may supplement its diet with small insects. So, the coincidence of the peak 

density numbers of both species, seems entirely fortuitous. Is it truly? 

Since the eighties of last century, mathematicians have tried to capture and analyze 

the interspecies interactions in 2- and 3-species models as a modular system of 

ecosystem dynamics [6–10]. A common thread in these studies is the deterministic 

outset and modular approach, characterized by a limited number of well-defined 

variables (in a closed system), the condition of boundedness of the solutions and the 

finding of monotone, stable dynamical functions describing the ecosystem’s behavior. 

This however may not very well correspond with common sense and direct observation 

in the present era of multiple climate problems and ecological catastrophes [11]. The 

occurrence of parallel developments may on the one hand suggest an abstract, perhaps 

mathematical invariant pattern; on the other hand, natural species may behave in a 

myriad of possibly different ways, whereby only a detailed analysis of the genetic, 

biochemical, behavioral, correlations between the species concerned may explain the 

interspecific interaction. Many examples of these exist in the kingdoms of insects, fungi, 

tree species, coral reef Coelenterata, fishes et cetera. 

The pivotal question to be asked here is whether a different approach is possible, 

that meets the vigor of mathematical analysis and that moreover shows a better 

correspondence with the observed empirical observations? Although for the outcome 

of a single species birth-death process, both deterministic and stochastic approaches 

lead to the prediction of the same population size distribution [12], for the behavior of 

multi-species interaction systems it is more complex. Multi-species models may 

indeed show significant differences between the deterministic Volterra-like cycles 

[13] and cycles where stochastic noise effects are introduced, especially when also low 

abundancies occur for one or more species [12].  

So far, most studies have also adopted a mean-field approximation of the 

population densities in their model. The biodiversity driving potential of borders 

between divergent habitats was recently introduced as a generator for biodiversity 

resilience [14]. In the present study, the premises and limitations of a non-stationary 

approach for ecosystem dynamics with a border (biodiversity) interface are outlined 

(see Section 2. Characteristic Features of an alternative approach for Non-Stationary 

Ecosystems). Then, the premises are worked out in a mathematical translation of the 

initial conditions (see Section 3. Mathematical characterization of the border interface 

and initial conditions). Moreover, attempts are presented to analyze the dispersion 

processes in a fractal border area, taking migration and interspecific interactions into 

consideration (Section 4. Parallel and anti-parallel developments). The mathematical 

techniques of flow matrices and Verhulst logistic growth dynamics appear to be very 

valuable in this respect. Doing so, the present ecosystem model may qualify as a non-

linear dissipative structure, as suggested previously [15]. Finally, a field observation 

case, showing the importance of historical contingencies and species-specific 

idiosyncrasies are discussed (see Section 5. Historical contingencies and species-
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specific deviations). 

2. Characteristic features of an alternative approach for non-

stationary ecosystems 

With due respect for the pioneers of mathematical ecology studies, we’d wish to 

state, in corroboration of the work of e.g., Law [16], that the esthetic qualities of the 

mathematical analysis and theoretical results so far have often outweighed the 

empirical corroboration of the underlying assumptions. Or, in other words, the 

beautiful symmetry of the mathematically constructed systems is (mostly) not 

reflected by the asymmetry of the actual, living world [17]. On the other hand, 

mathematical analyses that are not scientifically sound (whatever rules there are for 

defining what is sound and what isn’t), or require unrealistic, imaginary fabrics 

without possible applications in the physical world, ultimately form a dead end too, 

for obvious reasons!  

In the classical ecological models, dynamic equilibria are suggested to define the 

stable end stages of the ecosystems, quite analogous to chemical equilibria. And, also 

in analogy to chemical dynamic equilibrium reactions, the resulting concentrations of 

chemical substances remain constant, by definition. In mathematical ecology, these 

equilibrium situations are characterized by saddle points and local minima of the 

population densities. To infer from this analogy that also constant population densities 

result for the biological species involved in a ‘stable’ ecosystem, however, is not a 

flawless inference. Not only, because it is at variance with the observation of 

oscillating densities and seasonal migration and other sources of periodic fluctuations. 

There is also a more fundamental flaw in this comparison: in particular, the constant 

chemical concentrations at equilibrium (in a dynamic system) only refer to the 

chemicals that actually are in the (closed) environment where the equilibrium is 

established (and not for the chemical substances that are also involved in other 

chemical reactions, e.g., substances leaking out the compartment, etc., or 

interconnected equilibria). The latter is also true for so-called stable multiple-species 

ecosystems, making it more complicated to define stability of interactions when more 

than two (or three) species are involved [10]. 

A different approach is seen in the analysis of Law [16] and others, making use 

of the notion of (global asymptotic) Lyapunov stability in multi-species orbits [18–

20]. One of the aims of the present study is to investigate whether this asymptotic 

Lyapunov stability can also be applied to the biodiversity of a multi-species border 

system between different ecological habitats, designated as the border interface.  

Following the so-called ‘persistence’ approach, Law [16] developed criteria for 

coexistence of n species (‘persistence’ means that they are not dying out from the 

ecosystem), using a system of coupled ordinary differential equations (ODE) in an n-

dimensional non-negative phase space. The criterion for coexistence of n species, 

according to common practice in theoretical ecology, is to evaluate the Jacobian matrix 

(J) in order to establish the existence of an equilibrium point ẑ with the property of 

asymptotic Lyapunov stability [18]. The test for asymptotic stability consists of 

evaluating the eigenvalues of J at the equilibrium point, of which the real parts should 

all be strictly negative [16]: 
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J = aij with 𝑎𝑖𝑗 =
𝜕

𝜕𝑥𝑖
(𝑥𝑖 ⋅ 𝑓𝑖(𝑥)) |𝑥 = 𝑧

∧
. 

And, as it was also suggested by Law [16], the drawback that the asymptotic Lyapunov 

stability only applies for a small region around the equilibrium point, where the 

dynamic equations can be linearized, forward the problem of the linearization of the 

multi-species border system. 

Multi-species orbits indeed may predict the cyclic and anti-cyclic fluctuations in 

abundance patterns of a number of co-habitant species. However, the geographical range 

dynamics, explaining the often local high abundance peaks of several (sometimes 

unrelated) species, whereas in other areas these very species are completely absent, or 

co-habit with totally different species, remain an unresolved problem [21]. This 

phenomenon has long been recognized for plant communities too. According to 

Hengeveld, the spatial dynamics of a species “result from its idiosyncratic physiology, 

anatomy and behavior, also expressed in, for instance, differences in seasonality, biotope 

preference, or in numerical build-up of its range” [21]. Nevertheless, also obvious 

parallel developments do occur, with an astonishing similarity in geographical 

preferences, like the high densities of herd-forming Red Deer (Cervus elaphus) and Wild 

Hogs (Sus scrofa) in the semi-enclosed territories of the High Veluwe National park of 

the Netherlands, and the exponential growth of the population of Wolves (Canis lupus) 

in that same area, with a yearly growing number of wolf packs since 2018 (so far, no 

full-scale wolf packs are observed outside that very area in the Netherlands) (see Section 

5. Historical contingencies and species-specific deviations). We will come back to the 

notion of spatial range dynamics and to Hengeveld’s emphasis on “statistical geographic 

optimum-surface abundance distributions” as an opposite to the presupposed 

“simultaneous occurrence of equilibrium conditions” [21,22]. 

In order to translate these findings into a numerical modeling approach, therefore, 

many more variables have to be considered (for all possible inter-species interactions 

and not only a few selected species that are considered relevant), with the additional, 

complicating features that although species may be absent in a given area at some 

point, they may re-appear in another period (e.g., seasonal migrations). Or, they may 

pertain to the multi-species and multi-trophic ecosystem, although not present always 

and everywhere in the spatial range of their distribution. In a previous paper, we 

introduced the notion of time-integrated convolution of a fractal biodiversity function, 

as a means to combine the fractal appearance of spatial biodiversity patterns as well 

as the important concept of the border interface [14]. 

3. Mathematical characterization of the border interface and initial 

conditions 

As an outset we suggest the mathematical characterization of the border interface 

to combine a boundary condition description adopted in analogy with Carslaw and 

Jaeger’s [23] solution for heat conduction in the semi-infinite solid with a defined flux 

(f) per unit time and unit area at x = 0, together with a discrete Poisson distribution in 

recursive form [24].  

With a (constant) flux F0 at x = 0 the differential equation is given by: 
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𝑓 = −𝐾
𝜕𝑣

𝜕𝑥
, 

K being the thermal conductivity, which in reaction-diffusion theory represents the 

diffusion constant D. In the present case, we may think of an effective diffusion 

constant (Deff) as a parameter related to the probability of a species (or an individual 

of this species) to enter the border interface. 

The solution of the equation above, according to Carslaw and Jaeger [23] for t > 

0, is: 

𝑓 = 𝐹0𝑒𝑟𝑓𝑐
𝑥

2√𝜅𝑡
, 

with F0 representing the so-called dimensionless time (or Fourier number), allowing 

the combination of conductivity and time variables [25]. 

The resulting ‘temperature’ as a function of (x, t) then was found to be: 

𝑣 =
2𝐹0

𝐾
√
𝜅𝑡

𝜋
𝑒−

𝑥2

4𝜅𝑡
−

𝑥

2
𝑒𝑟𝑓𝑐

𝑥

2√𝜅𝑡
. 

In this case, the ‘temperature’ has to be replaced by the density of a certain species 

in the area for x > 0 and t > 0. However, we have to account for a community with 

multiple species, in order to speak of the biodiversity of an ecosystem (see Section 

4.1). Also, the border interface may play an active role in generating the conditions 

for biodiversity resilience (see Section 4.3.). The diffusion process envisaged here, is 

rather comparable to the so-called time-fractional diffusion processes [26].  

Moreover, the distribution of the different species not necessarily follows the 

same pattern for each species [24], also because species-specific characteristics like 

velocity of displacements (during migration, foraging or escaping from a predator), 

reproductive successes and niche dependencies are not easily described in a few 

formulas. Apart from the constant, uniform distribution case, the simplest form may 

be given by the Poisson distribution:  

1

𝑒𝜇
,

𝜇

1!𝑒𝜇
,
𝜇2

2!𝑒𝜇
,
𝜇3

3!𝑒𝜇
, . . .

𝜇𝑟

𝑟!𝑒𝜇
, 

which are the (discrete) successive counts of the rare event (Y). The expression above 

equals the terms of the infinite series expansion of eµ, when each term is divided by eµ 

(given that the parametric mean µ is known) [24]. In recursive form, it may be re-

written as: 

𝑓𝑖̂ = 𝑓𝑖−1̂(
𝑌̅
𝑖⁄ ) for i =1, 2, 3, … where 𝑓0̂ = 𝑒−𝑌̅ = 1

𝑒𝑌̅
⁄ . 

In principle, the initial situation at x = 0 could be defined for each of the species 

(with sample means Yi) entering the ecosystem. This implies that we don’t have a 

single ‘diffusion constant’ for one species, but multiple (effective) diffusion constants 

referring to a number of species. We will come back to the ‘spatial contingency’ of 

these diffusion constants (see Section 4.4 below). 

Can we make use of some general biological principles like the relation between 

body size and litter size (number of offspring) (e.g., the Janis and Carrano hypothesis, 

for terrestrial mammals) [27,28]? Or, between size and dispersive speed? 

Given the proportionality between the size of an animal (A) and its velocity (L/t), 
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as previously stated [14], the characteristic time dimension () in terms of the species-

specific parameters ,  and the physical time (t), may be approximated by: 

𝜏(𝐴)~
𝛼𝐿𝛽

𝐿

𝑡

= 𝛼𝐿𝛽−1𝑡. 

The combination of several of these relationships, in theory, might explain why 

only a limit number of large predators may cut down or limit the exponential growth 

of populations of smaller (and also some of the larger) herbivorous species. Obviously, 

we have to account for a considerably larger degree of complexity to analyze proper 

interspecific relations in multi-trophic ecosystems [24]. 

There is (only) a slight similarity of the conductive flow equation shown at the 

top of this paragraph, and the following equation, derived by Metz and Diekmann [29], 

describing the spread of an epidemic in an age-structured populations, with di and dm 

the diffusion constants for the immature, resp. mature individuals of a species (see also 

[11]): 

𝜕𝑢𝑚

𝜕𝑡
= 𝑑𝑚

𝜕2𝑢𝑚

𝜕𝑥2
+ 𝛼𝑒−𝛾𝜏 ∫

1

√4𝜋𝑑𝑖𝜏
𝑒
−(𝑥−𝑦)2

4𝑑𝑖𝜏 𝑢𝑚(𝑦, 𝑡 − 𝜏)𝑑𝑦 − 𝛽𝑢𝑚
2∞

−∞
. 

Moreover, Metz and Diekmann had found that, in the case of an ‘immobile 

immature phase’, the di would become zero and a Dirac delta function () was found 

[29]: 

1

√4𝜋𝑑𝑖𝜏
𝑒
−(𝑥−𝑦)2

4𝑑𝑖𝜏 = 𝛿(𝑥 − 𝑦), 

implying that: 

∫
1

√4𝜋𝑑𝑖𝜏
𝑒
−(𝑥−𝑦)2

4𝑑𝑖𝜏 𝑢𝑚(𝑦, 𝑡 − 𝜏)𝑑𝑦 = ∫ 𝛿(𝑥 − 𝑦)𝑢𝑚(𝑦, 𝑡 − 𝜏)𝑑𝑦 = 𝑢𝑚(𝑥, 𝑡 − 𝜏)
∞

−∞

∞

−∞
. 

Or, the mathematical expressions show a better correspondence than the initial 

case descriptions. 

4. Parallel and anti-parallel developments 

4.1. The single vs. multi-species problem in biodiversity 

Starting from the ODE’s for a three-species wavefront model for the spread of an 

epidemic, according to Murray [30], a general solution shows the product of a periodic 

and exponential function, such as:  

𝑠(𝑥, 𝑡) = 𝑠0 + 𝐴 cos[𝜔(𝑡 + 𝑥 𝑣⁄ ) + 𝜓] exp[−𝜆(𝑡 + 𝑥 𝑣⁄ )], 

for a single species (s) at some time (t) and distance (x) from the source of the 

epidemic.  

When considering the similarities in distribution and propagation of the 

abundance patterns (and fluctuations) of different species in a geographical area, 

theoretically, a number of k species may be represented by a set of n × n matrices (with 

only real positive values A1
ij, A

2
ij, … Ak

ij, i.e., the abundance patterns at a given moment 

t0 for the species 1 to k). 
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Comparison of species that are evolving in parallel vs. anti-parallel evolving 

patterns, results from calculating the min, resp. max of the following operation: 

Dmax = sup1→k {(A1
ij − A2

ij)/A1
ij} for all k and i  j (*). 

(* We use capitals for the Ak matrices of k different species and lower-case 

symbols for the individual i,j-entries of the n × n matrices.) 

The above operation however doesn’t coincide with multiplying |A1 − A2| with 

A−1 (or the inverse matrix of A1), not only because not all n × n matrices are invertible 

[31], but in fact, the operation represents a different re-scaling of the original data set 

than is commonly used. Here, we may benefit from a paradigm developed by A. M. 

Turing’s (1912–1954) in the previous century, that we’d like to introduce and propose 

a novel ecological application (see Section 4.2 below). 

4.2. Turing’s flow matrix paradigm  

Turing’s posthumously published description of so-called ‘flow matrices’ was 

originally related to the problem of continuously changing phyllotaxis and the use of 

‘inverse lattice’-concept [32]. Turing’s own definition of ‘flow matrices’ was 

formulated as follows [32]: 

If a lattice is changing, the manner of its change may be described by some matrix 

description A(t0) of the lattice at some time t0, together with the product (A(t))−1A’(t) 

at other times, the dash here representing differentiation. This product will be called 

the ‘flow matrix’. It is independent of the matrix description chosen, for if B(t) is 

another matrix description there is an improper unimodular matrix L such that B(t) = 

LA(t), and if A(t) and B(t) are continuous, L must be constant. But then:  

(B(t))−1B’(t) = (LA(t))−1LA’(t) = (A(t))−1A’(t) 

Although the notion of lattices, according to Turing “is no longer appropriate 

when discussing the origin of the phyllotactic pattern”, it is “nevertheless appropriate 

to describe functions on the surface of a cylinder by a Fourier analysis of some kind” 

[32]. He also noticed that the description of these phyllotactic patterns is similar to the 

description of electron density in a crystal [32], as was first observed by the brothers 

Louis et Auguste Bravais in 1837 [33]. According to Turing, the theory of flow 

matrices is derived from the analysis of Joseph Fourier (1768–1830) for functions 

derived on a cylinder: the appropriate kind of Fourier analysis for such functions is of 

the general form of a Fourier series in one variable and a Fourier integral in the other 

(see also Appendix A of [34]), as shown in the formula of [32]: 

𝑓(𝑥, 𝑦) = ∑ ∫ 𝐹𝑚
∞

−∞
∞
𝑚=−∞ (𝑣)𝑒(

𝑖𝑚𝑥

𝑃
+𝑖𝑣𝑦)𝑑𝑦, 

although the function Fm() in general will not be easily represented (in a diagram), 

Turing cautions, because of its complex nature.  

Using the matrix description in helical coordinates [32], Turing derives the 

following notation for the flow matrix, e.g., of a phyllotactic pattern in developing 

plant buds.  
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𝐹 = (
𝐹11 𝐹12
𝐹21 𝐹22

) = (

𝑑 log𝜌

𝑑𝑡
0

𝜌

𝜂
·
𝑑𝛼

𝑑𝑡

𝑑 log𝜂

𝑑𝑡

). 

For a lattice which changes continuously with time from A(t1) to A(t2), the ratio 

(A(t1))−1A(t2) is called the “finite flow matrix” for the period t1 to t2. Further, Turing 

suggests that if a flow matrix is independent of time, the corresponding finite flow 

may be expressed as the exponential of the product of the flow and the time for which 

it acts [32]. An example of a relevant case of an exponential of matrices is given by: 

exp (
0 𝜃
−𝜃 0

) = (
cos 𝜃 sin𝜃
− sin 𝜃 cos 𝜃

), 

following from the following calculation rules for exponentials of matrices, namely 

exp(A) = I + A + A2/2 + … + An/n! 

(for A being a rectangular matrix), which in the example given above indeed 

yields the given matrix [32]: 

exp (
0 𝜃
−𝜃 0

) = (
1 0
0 1

) + (
0 𝜃
−𝜃 0

) − (𝜃
2 0
0 𝜃2

) + ⋯ = (
cos𝜃 sin𝜃
− sin𝜃 cos 𝜃

), 

since: 

(
0 𝜃
−𝜃 0

)
2

= (𝜃
2 0
0 𝜃2

) · (−1)
2

2. 

The latter exponential of matrices is analogous to the relationship between the 

Taylor (1685–1731) series expansions of exponential and geometric functions (also 

known as Euler’s formula) (1707–1783), or: 

exp(𝑖𝑥) = cos 𝑥 + 𝑖 sin𝑥. 

The matrix chosen by Turing [32] (see above) also fulfills the criterion for 

invertibility, namely A·A−1 = I which is shown below in the case of the 2 × 2 matrix. 

(Note that the determinant of the matrix above equals 1, since for any , we have cos2 

 + sin2  = 1. This is especially helpful, when calculating the inverse matrix A−1 from 

A). And, therefore: 

(
cos 𝜃 sin 𝜃
− sin𝜃 cos 𝜃

) · (
cos𝜃 − sin𝜃
sin𝜃 cos 𝜃

) = (
1 0
0 1

) = 𝐼2
2. 

The latter matrix multiplication—corresponding with a (anti-)clockwise rotation 

with angle —is reminiscent of a special class of invertible matrices, known as the 

Pauli (1900–1958) spin matrices used in physics [31], such as: 

𝜎2
2 = (

0 −𝑖
𝑖 0

) · (
0 −𝑖
𝑖 0

) = 𝐼2
2. 

Turing [32] applied the (finite) flow matrices for various ends, related to the 

growth of fixed patterns in plant morphogenesis, and suggested it could also become 

useful to describe the unrolling (literally by unfolding a cylindrical pattern) of 

epidemics in a planar configuration [35]. In principle, this approach would also allow 

to describe a flow pattern of changing interacting species in time, but, so far, this 

remains a theoretical possibility. We here suggest the combination of the flow matrices 
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with Laplace transform as a new mathematical application. 

In continuation of the use of Laplace transforms to the description of the border 

phenomena [14], we forward the following Laplace transforms I and J, respectively of 

the cosine and sine functions of (qt) with q  0. 

𝐼 = 𝐿{cos𝑞𝑡}, 

𝐽 = 𝐿{sin𝑞𝑡}. 

Again, using Euler’s formula and solving the defined integral, we obtain the 

following results for I and J, assuming s > 0 [36]: 

𝐼 + 𝑖𝐽 = ∫ 𝑒−𝑠𝑡 cos 𝑞𝑡 𝑑𝑡
∞

0
+ 𝑖 ∫ 𝑒−𝑠𝑡 sin 𝑞𝑡 𝑑𝑡

∞

0
, 

𝐼 + 𝑖𝐽 = ∫ 𝑒−𝑠𝑡𝑒𝑖𝑞𝑡𝑑𝑡
∞

0
= [

𝑒−(𝑠−𝑖𝑞)𝑡

(𝑠−𝑖𝑞)
]
0

∞

= 0 +
1

(𝑠−𝑖𝑞)
=

(𝑠+𝑖𝑞)

(𝑠2+𝑞2)
, 

𝐼 = 𝐿{cos𝑞𝑡} =
𝑠

(𝑠2+𝑞2)
, 

𝐽 = 𝐿{sin𝑞𝑡} =
𝑞

(𝑠2+𝑞2)
. 

Taking the Laplace transform of the matrix F(t), for a fixed angle  = qt, we then 

obtain: 

𝐿{𝐹(𝑡)} = ∫ 𝑒−𝑠𝑡𝐹(𝑡)𝑑𝑡 = ∫ 𝑒−𝑠𝑡 (
cos 𝜃 sin 𝜃
− sin𝜃 cos 𝜃

)
∞

0

∞

0
𝑑𝑡, 

𝐿{𝐹(𝑡)} = (

𝑠

(𝑠2+𝑞2)

𝑞

(𝑠2+𝑞2)
−𝑞

(𝑠2+𝑞2)

𝑠

(𝑠2+𝑞2)

) =
1

(𝑠2+𝑞2)
(
𝑠 𝑞
−𝑞 𝑠). 

The challenge to be solved remains, however, the combination of multiple 

overlapping patterns corresponding to a real dynamical ecosystem, with multiple co-

habiting species [14]. In an anthropogenic, agriculturally controlled landscape, we 

may expect some seasonal periodicity with synchronized growth and abundance 

patterns, due to seeding, growing, mowing or grazing activities. Moreover, planned 

human interference may in part control the succession of a series of species with 

interrelated characteristic timing dimensions. Mathematically, we may write  = qt = 

2kit/, with ki a species-specific constant and  the characteristic angular velocity. 

However, many more unpredicted interactions with other species than the controlled 

ones, may cause deviations from the wanted or predicted patterns. 

4.3. Growth and recycling in the border interface 

In order to characterize the ecological border interface in mathematical terms, we 

start from the logistic growth function y(t) in terms of the carrying capacity (L) and a 

logistic growth rate k, k > 0, expressing the steepness of the curve. The logistic growth 

function, originally introduced by Verhulst (1804–1849) [37] as an adaptation of the 

exponential growth model of Quetelet (1796–1874), is given by: 

𝑦(𝑡) =
𝐿

1+𝑒−𝑘𝑡
, 
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𝐿

𝑦(𝑡)
− 1 = 𝑒−𝑘𝑡. 

Rewriting L − y(t) = G(t) for the (maximum) growth potential (or the ‘available’ 

carrying capacity), and with y(t) = g(t), the following logistic growth ratio is expressed 

as a Taylor series: 

𝐺(𝑡)

𝑔(𝑡)
= 𝑒−𝑘𝑡 = 1 +

(−𝑘𝑡)

1!
+

(−𝑘𝑡)2

2!
+⋯

(−𝑘𝑡)𝑛

𝑛!
= ∑

(−𝑘𝑡)𝑛

𝑛!
𝑛
𝑛=0 . 

The growth rate of the border interface, however, not only refers to the growth of 

plant species, e.g., trees defining a fractal border between forest and grassland [38]. It 

is a complex process, involving both linear growth (pi(t)), as well as ramifications or 

branching points (qi(t)) [8], and a term for destruction, decay or recycling (si(t)) of the 

previously grown material. In terms of the ‘worm paths’, this process can also mean 

the ‘predator eating its way’ in an existing population of prey species, or primary 

producers (see Section 4.4 below).  

ki(t) = pi(t) + qi(t) − si(t), 

si(t) ≌ σcos ηt. 

The complexity of this active, fractal border-generating process, becoming a true 

interface between different habitats, is also analogous to the connectivity distribution 

derived by Albert and Barabasi, as mentioned before [20]. Moreover, the successive 

steps in this fractal-generating process allow for an iterative procedure. In non-

degenerative conditions, implicating that pi(t) + qi(t) > si(t), the growth potential in 

the i-th phase, depends on the resources made available in the preceding phase, or:  

𝑑𝐺𝑖

𝑑𝑡
= 𝑘 · 𝑒−𝑘𝑡 ∫ 𝑠𝑖−1(𝜏)𝑠𝑖−1(𝑡 − 𝜏)𝑑𝜏

𝑡

0
. 

Solving the above integral-differential equation, making use of the Laplace 

transform (as worked out in Section 4.2), the following (theoretical) result appears: 

𝐺𝑖(𝑡) = ∫ 𝑒−𝑘𝑡 [∫ 𝑠𝑖−1(𝜏)𝑠𝑖−1(𝑡 − 𝜏)𝑑𝜏
𝑡

0

]
∞

0

𝑑𝑡 

= ∫ 𝑒−𝑘𝑡 [∫ 𝜎𝑖−1(cos 𝜂𝜏) cos 𝜂 (𝑡 − 𝜏)𝑑𝜏
𝑡

0

]
∞

0

𝑑𝑡 

= 𝐿{𝐹1(𝑠𝑖−1(𝜏))𝐹2𝑠𝑖−1(𝑡 − 𝜏)}. 

Finally, when the border interface grows into a fractal-like network with 

extensions, ramifications and holes in it, then also the availability of ecological niches 

rises, and consequently, the potential for animal biodiversity (and of other life forms 

related to these habitats). Relating the theoretical, optimal biodiversity potential 

(Bopt(t)) to the similarity (or topological) dimension (D) [39], with i the characteristic 

amplitude for cyclic growth and replacement at the lowest (microscopic) scale and the 

time-averaged estimates of p, q and s at the i-th iteration level, we obtain a new 

estimate for the similarity dimension D:  

𝐷 = lim
𝜎𝑖→0

ln(𝐵𝑜𝑝𝑡(𝑡))

ln(𝜎𝑖)
≅

−(𝑝𝑖̂+𝑞𝑖̂−𝑠𝑖̂)

ln(𝜎𝑖)
. 
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4.4. Antagonism, neutral interactions and morphic resonance 

Before discussing the biological significance of the mathematical features 

described above, we’d first dwell into a little historical and philosophical discourse. In 

the eighties of previous century, the British biologist and philosopher Rupert 

Sheldrake (1942, Newark-on-Trent, England) proposed a physical hypothesis in order 

to explain so-called diachronic causal relationships (in biology), designated as 

‘formative causation’ [40]. These ‘formative causation’ relationships, according to 

Sheldrake, might explain the interaction between entities that are separated in time and 

place, and thus do not need a direct, localized transfer of energy or momentum. 

Sheldrake proposed the term ‘morphic resonance’, in analogy with the resonance 

notion in physics (in acoustics, in subatomic physics and nuclear magnetic resonance, 

et cetera), but with also many examples in the field of biology [40]. Sheldrake’s notion 

of ‘morphic resonance’ however was met with skepticism and fierce criticism, his 

work being denounced as pseudo-science, probably due to his affiliation with 

parapsychology and other disciplines outside of mainstream science [41]. The latter 

criticism apparently reverberated long after the publication of Sheldrake’s 

monography [40], which in itself formed an interesting illustration of the ‘formative 

causation’ principle (even before the rise of Internet critiques and social media), with 

no direct physical interaction between the physicists blaming Sheldrake for his 

digressions [41,42].  

Although resonance is a well-known phenomenon in the physics of oscillations, 

the transfer of this notion to the field of morphogenesis and morphogenetic 

mechanisms, indeed is a tedious and cumbersome piece of work. Sheldrake remarked 

that the size of morphogenetic fields is crucial, although not much specific information 

on the relation between these fields and their size was given (except for the general 

quadratic and cubic relationships between size of a body and energy exchange, as well 

as the characteristics of field polarity and stability of a morphogenesis, which are 

suggested to be already present at the molecular level) [40]. And, indeed, apart from 

the multi-species models where food competition or direct energy transfer occurs 

through the eating of one species by another, the interaction of different species 

without a localized transfer of energy or momentum is hard to explain in conventional 

physics terms. Moreover, although the interaction through visual, auditive or olfactory 

signaling could presumably be reduced to light, acoustic or chemical signaling, it is 

not the pattern of photons, the typical sound or noise, or chemical substances, that 

directly exchanges energy with the recipient animal. Otherwise, ‘fear’ of being 

attacked by a predator, might make the energy available for the animal to flee. So, in 

the end, awareness or fear may cause animals to avoid interaction (also with humans 

see Section 5. Historical contingencies and species-specific deviations) and form 

segregated distribution patterns. However, in rare occasions, predators and prey are 

enclosed in an area where it is almost impossible for the prey to completely escape 

sight from the predators: such is seen in the Ngorongoro Crater (Arusha region, 

Tanzania), where Lions, Hyenas, Gazelles and many antelope species and other 

predators live at close distance from one another. In the case of plants that are signaling 

through chemical substances with each other, and doing so providing a plant defense 

system against their assailants, the chemical mechanism involved and energy 
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exchange are not less complicated.  

Finally, it is the mathematical description of patterns of interaction that may 

mirror the patterns seen in (natural) wildlife, without ‘direct physical interaction’ with 

the biological species or individuals, giving again an illustration of what Sheldrake 

called a “dualism between mathematics and physical reality” [40], in some 

‘metaphorical’ way mimicking the wave-particle duality of physical entities [43]. 

However, in Sheldrake’s metaphorical usage of this duality, no confining element like 

the Planck constant is present, referring to the pioneering physicist Max Planck (1858–

1947), and therefore, Sheldrake’s universal duality between mathematics and reality 

offers no starting point for direct analysis. As a result, in order to apply for instance 

reaction-diffusion theory to biological processes, and to ecological dispersion 

phenomena in particular, the spatio-temporal contingency of these systems forms an 

important conceptual link [44]. 

The antagonism or neutrality of patterns of interaction between different species, 

moreover, follows from direct observation of the ecological phenomena. The same 

holds for the susceptibility to infection with viruses, parasites and other zoonotic 

epidemics. 

However, another analogy may find some popular imitation, such as the 

computer-generated quasi-fractal replications of natural phenomena with the name 

Worm Paths [45]. Obviously, not much imagination is needed to represent the areal 

distribution pattern of a certain (number) of species in a two or three-dimensional 

graphic. The technique for drawing such patterns was proposed already long ago, 

namely by Frank C. Odds (1945, Devon, UK), John H. Conway (1937–2020) and 

Mike Patterson (1942, UK), who invented the concepts and rules for generating 

patterns by so-called ‘spirolaterals’ [46,47]. Also, when considering the border 

interface between two biotopes, characteristic pioneering species of either side may 

‘eat their way’ in the adjacent biotope, like the ‘prehistoric worms’ did in M. Beeler’s 

memorandum of 1973 [45,47] (see also Section 4.3). On top of these fractal-generating 

activities of pioneers (e.g., spruce seedlings adjacent to a spruce forest, or grasses from 

an adjacent grassland, or saprophytic fungi feeding on the previous), the patterns thus 

generated may become a stepping-stone access for other species. So, no longer the 

geometric, regular lattice of squares, triangles or hexagons, but a so-called stochastic 

fractal pattern forms the starting point for a further fractal-like repatterning of the 

entire ecosystem.  

5. Historical contingencies and species-specific deviations 

In the following paragraph, an example is given from observations in the 

Netherlands, the so-called Raven-Wolf-Deer alliance in forest ecology. It is a well-

known example (at least among foresters and wildlife managers) that Northern Raven 

(Corvus corax) follow the dispersion of Wolves (Canis lupus) in the Northern 

Hemisphere, because the two species have mutual benefits in either finding, killing 

and opening (by wolves) of the hunted prey (especially deer and wild hog). Therefore, 

it shouldn’t be surprising that after the disappearance since 1924 from the Netherlands 

[48] and from North-West Europe (with the exception of Scotland and Ireland, as well 

as a few rare observations), the Northern Raven convincingly re-appeared in the mid-
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2010s in the Netherlands [49]. Not only a remarkable increase of sightings but also an 

exponential increase in breeding numbers of the Northern Raven was reported [49]. 

Also the Wolf disappeared from the Netherlands (already since 1869) [50], and, 

although the first-found specimen was found to be the victim of a wildlife crime and 

probably didn’t enter the Netherlands by itself [50], the species did return one year 

later in 2014 (news confirmed in a multitude of newspapers and local news media). 

The alleged East-European origin of the first wolf of 2013 was based on the 

examination of its DNA haplotype and of the 87Sr/86Sr isotopes retrieved from both the 

dead wolf and the beaver remains in its stomach [50]. So, the re-appearance of the 

Wolf in the Netherlands, occurred quite simultaneously with the return of the Northern 

Ravens (own observations and [49]).  

Less well-known is what caused the settlement of territorial wolves and the rapid 

increase of wolve pack numbers in the central region of the Netherlands (known as the 

Veluwe area) since 2018, whereas in the remaining parts of the Netherlands, only 

solitary or small groups of at most a couple of wolves where found roaming the area. 

According to the Dutch data authority, the Centraal Planbureau voor de Leefomgeving 

(PBL also known as Bij12), the distribution of wolves since 2014 corresponds with 

the distribution of large forested areas in scarcely populated regions, and therefore, 

with infrequent encounters between humans and wolves [51] (see Figure 1). 

  
Figure 1. Geographical distribution of Wolves (Canis lupus) in the Netherlands in the 

period 2014–2023, based on Dutch national records of confirmed Wolf sightings and 

traces (5 × 5 km2 squares; blue areas represent confirmed cases) [51]. 

The central region (Veluwe) of the Wolf distribution area, appears to be also the 

dominant geographical region for the distribution of Red Deer (Cervus elaphus) 
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(Figure 2), as well as for the distribution of the Wild Hogs (Sus scrofa), with the 

exception of the population at the Natural Park De Meinweg at the border between the 

province of Limburg and Germany (Figure 3). These regions correspond with areas 

where, for more than a century, large populations of Red Deer and Wild Hogs lived in 

(semi-) fenced areas. The origin of these fenced territories dates back to 1895, when 

the building of fenced preserves started in the forests of Hoog-Soeren and Wiessel, 

and until 1952, new forest areas became fenced at Vierhouten, the High Veluwe and 

in the Dutch Crown domains [52]. During the preceding centuries, nobilities and 

especially the Dutch royal domains, had played a prominent role in the preserving of 

game animals, although the Red Deer population gradually declined from pre-

historical times until the eighteenth century, mostly due to deforestation and land 

cultivation [53]. Deforestation forced the deer to flee the river delta and to withdraw 

into the dunes of the provinces North- and South-Holland, where they also disappeared 

around 1750 [53]. Following the re-introduction and fence-closing activities, as well 

as the gradual enlargement of the forest occupied territory, the population of Red Deer 

increased in the twentieth century (after another low during the war years [1940–

1945]), but mostly remained confined to the Veluwe region. The smaller Roe Deer 

(Capreolus capreolus), however, already re-populated the Dutch forests at large, 

starting from 1855 [52]. In the recent decades, in the dunes of North-Holland, also a 

stable population of Fallow Deer (Dama dama) had settled, causing a lot of nuisances 

to the local human residents. 

 

Figure 2. Geographical distribution of Red Deer (Cervus elaphus) in The 

Netherlands, from 1970–1988. 

Note: Data obtained by Dutch national record collection and collected records of volunteer data. 

Translation of the legend in Dutch: Filled circles represent persistent populations (also to the present), 

open circles represent wandering specimen, or so-called ‘wisselwild’ [52]. 
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Figure 3. Wild Hog (Sus scrofa) in The Netherlands, from 1970–1988.  

Note: Data obtained by Dutch national record collection and collected records of volunteer data. 

Translation of the legend in Dutch: Filled circles represent persistent populations (also to the present), 

open circles represent wandering specimen, or so-called ‘wisselwild’ [52]. 

So, although the availability of prey species (deer, wild hog, beaver, etc.) for a 

top predator like the European Wolf has largely exceeded the fenced preserves of the 

Veluwe, it appeared that only in the latter region, the social animals were inclined to 

form territorial, socially-hunting packs. This is also known from wolves in other 

continents, like in the North-American Yellowstone National Park [54]. Recent studies 

in Yellowstone reported hunting packs with an average pack size of 10 to 11 wolves, 

predominantly chasing Elk (Wapiti, Cervus canadensis), Bison (Bison bison), Mule 

Deer (Odocoileus hemionus) and other ungulates. In absence of the larger prey species, 

“solitary wolves in search of a territory or mate are usually very shy” [50], and are 

compelled to feed on smaller prey. Nonetheless, the recent winter low of the Roe Deer 

(Capreolus capreolus) population (2024–2025), allegedly following a Bluetongue 

epidemic spilled-back from domestic sheep to wild deer, may or may not be related to 

the much reported low in the Dutch wolf population at the end of 2024. For, almost 

25% of the record of the wolf population in the Netherlands (approximately ca. 20 

animals) were reported ‘missing’ (news from Dutch national data authority, reported 

in several local newspapers). This reported low, however, could also be the result of 

illegal practices (see also [50]), or a temporal fluctuation resulting from unknown 

causes, that aren’t explained in any of the models. The enormous distances traversed 

by wandering wolves, often exceeding hundreds of kilometers daily [50], may equally 
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well be explained by the wolf’s need to find new foraging areas. 

The example depicted above not only illustrates the inherent difficulties of nature 

preservation and wildlife management, it is also an illustration of the difficulties of 

applying mathematical models to complex biological issues like ecosystems. 

Moreover, the constant interference of anthropogenic factors with natural ecosystems, 

such as in conservation, (de)forestation or agriculture issues, points to the trivial 

conclusion that, especially in the forgotten lacunae and border zones of human 

controlled land use, nature finds its uncontrolled escapes and opportunities for 

unpredicted adaptation. But, on the other hand, landsliding and apocalyptic 

catastrophes that spare no living being (like volcanic eruptions, tsunamis, and 

sometimes also a pandemic has a similar outcome), obviously have an all-enveloping 

effect and global fall-out. Recent human pandemics (related to the Coronavirus and 

related species) and zoonotic epidemics (e.g., Ebola-epidemic) have shown the global 

impact and spreading speed of the viruses and other pathogenic organisms. According 

to classical epidemiological studies, the so-called hair-trigger effect would predict an 

all-encompassing effect, provided a threshold condition is surpassed [20,29]. 

However, in case of the COVID-19 pandemic, factors related to the regulation of 

global human transport and compliance to protective measures were considered of 

primary importance to contain the pandemic [11].  

In matters of ecosystem preservation, catastrophes appear as shock waves 

comparable to the ripples of waves reaching the river banks after a river boat passing. 

In the example of the Northern Raven accompanying the territorial expansion of the 

European Wolf (see above), the association is fast, almost immediate, only hampered 

by the time needed for finding suitable breeding locations. The idiosyncratic nature of 

these correlations was also mentioned by Hengeveld [21,22]. Other examples of 

ripples in the occupation of habitats, are for instance witnessed in many bird species, 

such as the Greenfinch (Carduelis chloris) (see also Section 1. Introduction). The latter 

species showed a sudden drop in numbers in 2006 in the UK, and a few years later 

(2009) also in the Netherlands. The reported cause was an infectious disease, caused 

by an infection with a Protozoan parasite (Trichomonas gallinae), which is common 

in doves and other bird species [55,56]. Apparently, the spread of the epidemic is 

facilitated by the widespread use of bird-tables for feeding, where doves, greenfinches 

and Trichomonas sp. meet and the infection is proliferated. A sudden drop, however, 

may be followed by a sudden recovery of a population, as mentioned above. The 

idiosyncratic nature of these interactions between species, follows from the 

characteristic time frame of the interspecies contact effects and reactive processes. 

Some species may indeed quickly recover, whereas other species are doomed to 

disappear after even a minor dip in abundance numbers. 

In other than the common Finch species of the family of Fringillidae, such as in 

the Brambling (Fringilla montifringilla), the Linnet (Carduelis cannabina), and to 

some degree also the Siskin (Carduelis spinus), a more gregarious, wandering 

behavior is displayed in (large and mixed) forested areas, especially during the 

European winter period [48]. These species also show less opportunistic adherence to 

human settlements. It follows that the occurrence of the latter species may be less 

predictable for human observation (e.g., observable at the man-made bird-tables). The 

fortuitous encounters with them mostly follow the pattern of succession of the seasons 



Mathematics and Systems Science 2025, 3(3), 3384.  

17 

and the eventual location of the animal’s food sources in the forests.  

6. Conclusion 

In the present paper, the physical world of biological ecosystems is confronted 

with the realm of mathematical modeling. Two important characteristics stand out, 

namely the seemingly coincidental appearance of disturbances (called idiosyncrasies) 

and the persistent interference of human activities on the natural ecosystems (also 

called the anthropogenic footprint or the topology of the Anthropocene) [57]. So, when 

applying the mathematical tools to the ecosystems studied, such as reaction-diffusion 

and time-fractional diffusion modeling [25,26,32], Laplace transforms [14], (finite) 

flow matrices [32], Verhulst (logistic) dynamics [37], the idealized mathematical 

models show both striking similarities and unpredicted, species-specific deviations 

[21,22]. Moreover, in the cases of the often problematic correlations between big game 

and large predator species, also the historical origins (and human role in these historic 

influences) are important to understand the present ecosystem dynamics, in addition 

to the actual dynamics in the area (see Section 5. Historical contingencies and species-

specific deviations). 

The role in biodiversity resilience of the less controlled lacunae and border zones 

between human-controlled areas forms an interesting paradigm for further research, 

provided the human interference factor can be ruled out, e.g., by taking away fences 

and cattle-grids that block the spread of ungulates but not the spread of big predators. 

The mathematical approach presented in the present study, using a combination of 

reaction-diffusion, flow matrices and Verhulst logistic growth dynamics, therefore 

may offer a compelling framework for mathematical modeling of actual ecosystems. 

Finally, it remains a challenge to improve the modeling tools in order to prevent further 

deterioration of the global biosphere in the context of a changing climate. 
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