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Abstract: Enumeration of plane trees and noncrossing trees was recently unified by considering
d-dimensional plane trees in which ordinary plane trees are 1-dimensional plane trees and
noncrossing trees are 2-dimensional plane trees. Also, recently variants of k-plane trees and
k-noncrossing trees were introduced and enumerated according to number of nodes, root degree,
label of the eldest or youngest child of the root, length of the leftmost path and number of
forests with a given number of components. In this paper, we have generalized a variant of
k-plane trees and k-noncrossing trees to a d-dimensional version and obtained closed formulas
for the trees based on the aforementioned parameters. We have used symbolic method to find
the generating functions, obtained the right substitution to solve the generating functions and
applied Lagrange-Bürmann inversion to obtain the formulas. The results of this paper unify
known results in the counting of k-plane trees and k-noncrossing trees.

Keywords: k1-plane tree; d-dimensional k1-plane tree; root degree; eldest child; youngest
child; leftmost path; forest
MSC Classifcation: 05C05; 05C30

1. Introduction

Trees, which are acyclic connected simple graphs, are one of the most studied
discrete structures both in combinatorial mathematics and computer science. These
trees include labelled trees, plane trees,m-ary trees and noncrossing trees among other
classes of trees. Of much interest in this paper are plane trees and noncrossing trees. A
plane tree (also called ordered tree) is a tree in which one of its nodes is identified as the
root and all its subtrees posses an ordering [1]. On the other hand, a noncrossing tree
is a plane tree with nodes on the circumference of a circle so that edges do not intersect
inside the circle [2].

Consider a plane tree P . A node e in P resides on level ℓ ≥ 0 if there are ℓ edges
on the path from the root to e. This implies that the root is on level 0. A node i is a child
(resp. parent) of node j if i is adjacent to j and j resides on level ℓ whenever i resides
on level ℓ + 1 (resp. ℓ − 1). A non-root node with no child is a leaf and an internal
node has at least one child. The degree of a node in a tree is the number of nodes that
are adjacent to it. A degree sequence of a tree is a sequential arrangement of degrees of
all nodes in the tree. A collection of trees is a forest. Plane trees have been enumerated
according to a number of parameters: number of nodes [1], root degree, leaves [3], level
of a node [3, 4], degree sequence [5], forests [6] et cetera. Plane trees are one of the
many structures counted by well studied Catalan numbers [7, A000108] and have been

1



Mathematics and Systems Science 2025, 3(2), 3273.

generalized by assigning labels to the nodes such that certain coherence conditions are
satisfied [8,9]. In [8], Gu and Prodinger generalized plane trees by introducing 2-plane
trees. These are plane trees in which the nodes are labelled 1 or 2 such that the sum of
labels of adjacent vertices does not exceed 3. They found a counting formula for these
trees given the number of nodes and label of the root. The work was extended in [9]
by Gu et al. The authors introduced and studied k-plane trees which are plane trees
with nodes labelled with integers in the set {1, 2, . . . , k} such that the sum of labels of
adjacent nodes does not exceed k+ 1. The aforesaid authors enumerated k-plane trees
by number of nodes and label of the root. It is worth noting that 1-plane trees are plane
trees. In 2024, Oduol et al. [10] introduced the set of k1-plane trees and enumerated
them by number of nodes, root degree, label of the eldest child of the root, label of the
youngest child of the root, length of the leftmost path and number of forests. These are
k-plane trees in which all nodes labelled 1 must be on the left of all others. In this work,
we generalize k1-plane trees and enumerate them according to the stated parameters.

Consider a noncrossing tree T . A degree of a node r of T is the number of edges
incident to it. A node of degree 1 is called an endpoint and a non-root endpoint is a leaf.
An arrangement of all degrees of a tree is its degree sequence. Let (u, v) be an edge in
a noncrossing tree such that there are ℓ and ℓ + 1 edges on the path from the root to u
and v respectively. If u < v (resp. u > v) then (u, v) is an ascent (resp. a descent). In
2002, Panholzer and Prodinger introduced (l, r)-representation of a noncrossing tree in
[11]. This is a representation of a noncrossing tree as a plane tree where each non-root
node in the noncrossing tree is labelled r (resp. l) in the plane tree if it is an ascent (resp.
a descent) node and the root of the plane tree corresponds to node 1 in the noncrossing
tree. This is depicted in Figure 1.
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Figure 1. The (l, r)-representation of a noncrossing tree.

Since their introduction in 1998, noncrossing trees have been enumerated by
number of parameters such as number of nodes [2], leaves, degree sequence, forests
[12], descents [13], endpoints, maximum degree [14].

As noted for plane trees, noncrossing trees have also been generalized by giving
labels to the nodes of the trees such that a coherence condition is satisfied [15,16]. In
2009, Yan and Liu [15] introduced and enumerated 2-noncrossing trees. These are
noncrossing trees in which the nodes are labelled 1 or 2 such that if (i, j) is an ascent
on the path from the root (node 1), then i+ j ≤ 3. The authors enumerated these trees
by number of nodes and label of the root. A year later, Pang and Lv [16] generalized
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the result of Yan and Liu by introducing and studying the set of k-noncrossing trees. A
k-noncrossing tree is a noncrossing tree in which the nodes are given integer labels in
the set {1, . . . , k} satisfying the property that if (u, v) is an ascent on the path from the
root then the sum of u and v is no more than k+1. The authors obtained the number of
k-noncrossing trees in which the root label and the number of nodes are given. It is also
worth mentioning that 1-noncrossing trees are just ordinary noncrossing trees. In 2024,
Oduol et al. [17] introduced the set of k1-noncrossing trees. A k1-noncrossing tree is a
k-noncrossing tree in which in its (l, r)-representation, all ascents and descents labelled
1 are on the left of all other ascents and descents. Therein [17], the authors enumerated
k1-noncrossing trees by number of nodes, root degree, label of the eldest child of the
root, label of the youngest child of the root, length of the leftmost path and forests with
a given number of components. In this work, we generalize k1-noncrossing trees and
enumerate them according to the listed statistics.

The concept of butterflies introduced by Flajolet and Noy [12] has been a
revelation in the enumeration of noncrossing trees. Formally, a butterfly comprises
two ordered noncrossing trees that share a root. This means that for each node, there is
a right wing and a left wing of a butterfly and each wing is a noncrossing tree. Okoth
and Kasyoki [18] considered noncrossing trees having butterflies with d wings instead
of two wings. There is only one right wing and the remaining d − 1 wings are all left
wings. They called such a tree a d-dimensional plane tree. We note that the wings of
the d-dimensional plane tree are labelled such that the left wing is the first wing and the
rightmost wing is the last wing. For a convention, a wing of a butterfly rooted at the
root is a right wing. Figure 2 shows a 3-dimensional plane tree with 12 nodes.
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Figure 2. A 3-dimensional plane tree on 12 nodes where the labels are the wings in
which a given node belongs.

It is important to note that a 1-dimensional plane tree is just a plane tree and it
has no left wing. Moreover, a noncrossing tree is a 2-dimensional plane tree. In [19],
Nyariaro et al. generalized k-plane trees and k-noncrossing trees by introducing the set
of d-dimensional k-plane trees.
Definition 1. A d-dimensional k-plane tree is a noncrossing tree (in its
(l, r)-representation) with the property that butterflies rooted at all internal nodes
have d wings such that if (u, v) is an ascent in the right wing then u+ v ≤ k + 1 [19].
Here, all children of the root are in the right wing.

The authors of [19] enumerated the set of d-dimensional k-plane trees by number
of nodes, root degree, label of the eldest child of the root, label of the youngest child of
the root, length of the leftmost path and forest with a given number of components. In
Figure 3, we have a 3-dimensional 4-plane tree on 12 nodes with root labelled 2.
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Figure 3. A3-dimensional 4-plane tree on 12 nodes with root labelled 2 where ij means
that the node belongs to the i-th wing and is labelled j for j ∈ {1, 2, 3, 4}.

We remark that a 1-dimensional k-plane tree and a 2-dimensional k-plane tree are
a k-plane tree and a k-noncrossing tree respectively. In the following definition, we
introduce the main object of our study.
Definition 2. A d-dimensional k1-plane tree is a d-dimensional k-plane tree in which
all the vertices labelled 1 must be on the left of all others.

We note that a 1-dimensional k1-plane tree is a k1-plane tree and a 2-dimensional
k1-plane tree is a k1-noncrossing tree. In Figure 4, we get a 3-dimensional 31-plane
tree on 12 nodes with root labelled 2.
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Figure 4. A 3-dimensional 41-plane tree on 12 nodes with root labelled 2 where ij
means that the node belongs to the i-th wing and is labelled j for j ∈ {1, 2, 3, 4}.

Let N(z) and B(z) be respectively the generating functions for d-dimensional
plane trees and butterflies where z marks a node. Each tree is a node together with a
sequence of butterflies. This translates to

N(z) =
z

1−B(z)
(1)

Since each butterfly consists of d noncrossing trees glued together, then

B(z) =
N(z)d

zd−1
(2)

We note thatN(z)d is divided by zd−1 since when we glue together d noncrossing
trees (at a node) to form a butterfly, the number of nodes reduces by d−1. The division
is done to avoid over counting of nodes. Substituting (2) in Equation (1), we obtain

N(z) =
z

1− N(z)d

zd−1

(3)
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which is the generating function for d-dimensional plane trees. Let
N(z)

( d
√
z)d−1

=M(z)

so that (3) reduces to

M(z) =
( d
√
z)d−1

1−M(z)d
.

The following theorem enables the extraction of the coefficient of zn in the
generating functionM(z).
Theorem 1 (Lagrange-Bürmann inversion, [6,20]). LetM(z) be a generating function
satisfying M(z) = zψ(M(z)), where ψ(0) ̸= 0. Then, n[zn]F (M(z)) =

[mn−1](F ′(m)ψ(m)n) where F is an arbitrary analytic function.
In this paper, we use generating functions (and Lagrange-Bürmann inversion) to

enumerate d-dimensional k1-plane trees according to the number of nodes in Section 2
and root degree in Section 3. In Sections 4 and 5, we enumerate these trees by label of
the eldest or youngest child of the root and length of the leftmost path respectively. The
work is extended to obtain enumerative formulas for these trees by number of forests
in Section 6. Section 7 gives a brief summary of the results and an array of ideas on
how the work could be extended.

2. Number of nodes

In the sequel, we get our first result.
Theorem 2. There are

1

d(n− 1) + 1

n−2∑
a=0

(k − i)(d(n− 1) + 1) + da(i− 1)

n− a− 1

(
d(n− 1) + a

a

)(
(k − 1)(d(n− 1) + 1)− i

n− a− 2

)
(4)

d-dimensional k1-plane trees with n nodes whose root is labelled i.

Proof. Consider the set of d-dimensional k1-plane trees. If one of the endpoints of
an ascent edge (in the first wing) in d-dimensional k1-plane tree is labelled i then the
other endpoint must have a label no more than k − i + 1. Let Ni(z) = Ni be the
generating function for d-dimensional k1-plane trees with roots labelled by i where z
marks a node. Let Bi(z) be the generating function of a butterfly rooted at a node
labelled i where z marks a node. Since only the trees in the d-th wing satisfy the ascent
rule, then the trees in the first d−1wings can be considered to have the root labelled 1.
SoBi(z) =

Nd−1
1 Ni

zd−1 . The division by zd−1 is to ensure that nodes are not over counted.
For each d-dimensional k1-plane tree with root labelled i, there is a sequence of subtrees
with roots labelled 1 that appear on the left, followed by a sequence of subtrees with
roots labelled j for j = 2, 3, . . . , k − i+ 1 that are attached to the root (marked by z).
By the product rule, the generating function for Ni is thus given by

Ni(z) = z · 1

1− Nd
1

zd−1

· 1

1− Nd−1
1

zd−1 (N2 + · · ·+Nk−i+1)
(5)

To obtain the suitable substitution to solve the system of the functional equations
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(5), let Ni(z) =
( d
√
z)d−1 d

√
w

(1 + w)i−1
and z =

( d
√
z)d−1 d

√
w(1− w)

(1 + w)k−1
. From the system (5),

we have

Ni(z) = z · 1

1− (( d√z)d−1 d√w)d

zd−1

· 1

1− (( d
√
z)d−1 d

√
w)d−1

zd−1

(
( d
√
z)d−1 d

√
w

1 + w
+ · · ·+ ( d

√
z)d−1 d

√
w

(1 + w)k−i

) ,
which is the same as

Ni(z) = z · 1

1− w
· 1

1− w

1 + w

(
1 + 1

1+w + · · ·+ 1
(1+w)k−i−1

) .
Summing the geometric series, we get

Ni(z) = z · 1

1− w
· 1

1− (1− (1 + w)i−k)
= z · 1

1− w
· 1

(1 + w)i−k

=
( d
√
z)d−1 d

√
w(1− w)

(1 + w)k−1
· 1

1− w
· 1

(1 + w)i−k
=

( d
√
z)d−1 d

√
w

(1 + w)i−1
.

Since the substitutions Ni(z) =
( d
√
z)d−1 d

√
w

(1 + w)i−1
and z =

( d
√
z)d−1 d

√
w(1− w)

(1 + w)k−1

satisfy (5) and the latter is independent of i then these are the rights substitutions to solve
the system of functional equations (5). This implies thatw = z(1−w)−d(1+w)d(k−1).

We use Lagrange-Bürmann inversion to extract the coefficient of zn in w.
We have,

[zn]Ni =[zn]
( d
√
z)d−1 d

√
w

(1 + w)i−1
= [zn−(d−1)/d] d

√
w(1 + w)−(i−1)

=
1

n− d−1
d

[wn−1−(d−1)/d]

(
1

d( d
√
w)d−1

(1 + w)−(i−1) − (i− 1) d
√
w(1 + w)−i

)
(1− w)−d(n−(d−1)/d)(1 + w)d(k−1)(n−(d−1)/d)

=
1

d(n− 1) + 1
[wn−1] (1− (d(i− 1)− 1)w) (1− w)−(d(n−1)+1)(1 + w)(k−1)(d(n−1)+1)−i.

By binomial theorem, we obtain

[zn]Ni =
1

d(n− 1) + 1
[wn−1] (1− (d(i− 1)− 1)w)

∑
a,b≥0

(
d(n− 1) + a

a

)(
(k − 1)(d(n− 1) + 1)− i

b

)
wa+b

=
1

d(n− 1) + 1

∑
a≥0

(
d(n− 1) + a

a

)[(
(k − 1)(d(n− 1) + 1)− i

n− a− 1

)
−(d(i− 1)− 1)

(
(k − 1)(d(n− 1) + 1)− i

n− a− 2

)]
=

1

d(n− 1) + 1

n−2∑
a=0

(k − i)(d(n− 1) + 1) + da(i− 1)

n− a− 1

(
d(n− 1) + a

a

)(
(k − 1)(d(n− 1) + 1)− i

n− a− 2

)
.

□

6



Mathematics and Systems Science 2025, 3(2), 3273.

Setting i = 1 in Equation (4), we find that there are

1

d(n− 1) + 1

n−1∑
a=0

(
d(n− 1) + a

a

)(
(k − 1)(d(n− 1) + 1)

n− a− 1

)
(6)

d-dimensional k1-plane trees with n nodes whose root is labelled 1. By setting d = 1

and d = 2 in Equation (6), we rediscover the formulas for the number of k1-plane trees
and k1-noncrossing trees on n nodes whose root is labelled 1 which were obtained in
[10] and [17] respectively.

Also setting i = k in Equation (4), we get the formula for d-dimensional k1-plane
trees with n nodes such that the root is labelled k as

1

d(n− 1) + 1

n−1∑
a=0

a

n− 1

(
d(n− 1) + a

a

)(
d(k − 1)(n− 1)

n− a− 1

)
(7)

Further setting d = 1 in Equation (7), we get

1

n

n−1∑
a=0

a

n− 1

(
n+ a− 1

a

)(
(k − 1)(n− 1)

n− a− 1

)
(8)

as the formula for the number of k1-plane trees withn nodes such that the root is labelled
k. Equation (8) was obtained by Oduol et al. in [10]. Moreover, setting d = 2 in
Equation (7), we have

1

2n− 1

n−1∑
a=0

a

n− 1

(
2n+ a− 2

a

)(
(k − 1)(2n− 2)

n− a− 1

)
(9)

as the formula for the number of k1-noncrossing trees with n nodes such that the root
is labelled k. Equation (9) was derived by Oduol et al. in [17].

Now, we get the formula

1

d(n− 1) + 1

(
(d+ 1)(n− 1)

n− 1

)
(10)

for the number of d-dimensional plane trees on n nodes upon letting k = 1 in Equation
(7). This formula was obtained by Okoth and Kasyoki in [18] with the cases d = 1 and
d = 2 obtained earlier in [3] and [2] respectively.

3. Root degree

In this section, we enumerate the set of d-dimensional k1-plane trees according to
root degree.
Theorem 3. There are

r

n− 1

n−r−1∑
a=0

(d(k − 1)− i+ 1)(n− 1) + a(i− 1)

d(k − 1)(n− 1)− (i− 1)r

(
d(n− 1) + a− 1

a

)(
d(k − 1)(n− 1)− (i− 1)r

n− r − a− 1

)
(11)

d-dimensional k1-plane trees on n nodes with root labelled j of degree r such that all
children of the root are labelled i.

7
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Proof. Let Ni(z) = Ni be the generating function for d-dimensional k1-plane trees
with roots labelled by i where z marks a node. Let Bi(z) be the generating function of
a butterfly rooted at a node labelled i where z marks a node. Since only the trees in the
d-th wing satisfy the ascent rule, then the trees in the first d−1wings can be considered
to have the root labelled 1. So Bi(z) =

Nd−1
1 Ni

zd−1 . The division by zd−1 is to ensure that
we avoid over counting nodes. Since the root is marked z then the generating function
for d-dimensional k1-plane trees with root degree r such that all the children of the

root are labelled i is z
(

Nd−1
1 Ni

zd−1

)r

. As in the previous section, we use the substitution

Ni(z) =
( d
√
z)d−1 d

√
w

(1 + w)i−1
where w = z(1− w)−d(1 + w)d(k−1).

We now extract the coefficient of zn in z
(

Nd−1
1 Ni

zd−1

)r

:

[zn]z

(
Nd−1

1 Ni

zd−1

)r

= [zn−1]

(
Nd−1

1 Ni

zd−1

)r

= [zn−1]

(
(( d
√
z)d−1 d

√
w)d−1

zd−1

)r (
( d
√
z)d−1 d

√
w

(1 + w)i−1

)r

= [zn−1]wr(1 + w)−(i−1)r.

By Lagrange-Bürmann inversion, we obtain

[zn]z

(
Nd−1

1 Ni

zd−1

)r

=
1

n− 1
[wn−2]

(
rwr−1(1 + w)−(i−1)r − (i− 1)rwr(1 + w)−(i−1)r−1

)
(1− w)−d(n−1)(1 + w)d(k−1)(n−1)

=
r

n− 1
[wn−r−1] (1− (i− 2)w) (1− w)−d(n−1)(1 + w)d(k−1)(n−1)−(i−1)r−1.

Binomial theorem gives

[zn]z

(
Nd−1

1 Ni

zd−1

)r

=
r

n− 1
[wn−r−1] (1− (i− 2)w)

∑
a,b≥0

(
d(n− 1) + a− 1

a

)(
d(k − 1)(n− 1)− (i− 1)r − 1

b

)
wa+b

=
r

n− 1

∑
a≥0

(
d(n− 1) + a− 1

a

)
[(
d(k − 1)(n− 1)− (i− 1)r − 1

n− r − a− 1

)
− (i− 2)

(
d(k − 1)(n− 1)− (i− 1)r − 1

n− r − a− 2

)]
=

r

n− 1

n−r−1∑
a=0

(d(k − 1)− i+ 1)(n− 1) + a(i− 1)

d(k − 1)(n− 1)− (i− 1)r

(
d(n− 1) + a− 1

a

)
(
d(k − 1)(n− 1)− (i− 1)r

n− r − a− 1

)
.

□
Setting d = 1 in Equation (11), we find the following corollary that was obtained

by Oduol et al. in [10].
Corollary 1. There are

8
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r

n− 1

n−r−1∑
a=0

(k − i)(n− 1) + a(i− 1)

(k − 1)(n− 1)− (i− 1)r

(
(n− 1) + a− 1

a

)(
(k − 1)(n− 1)− (i− 1)r

n− r − a− 1

)
,

k1-plane trees on n nodes with root labelled j such that the root has r children, all of
which are labelled i.

Also, setting d = 2 in Equation (11), we rediscover the formula for the number
of k1-noncrossing trees with a given root degree. The result was initially obtained by
Oduol et al. in [17].
Corollary 2. The number of k1-noncrossing trees on n nodes with root labelled j such
that the root degree is r and all the children of the root are labelled i is given by

r

n− 1

n−r−1∑
a=0

(2k − i− 1)(n− 1) + a(i− 1)

2(k − 1)(n− 1)− (i− 1)r

(
2(n− 1) + a− 1

a

)(
2(k − 1)(n− 1)− (i− 1)r

n− r − a− 1

)
.

Setting i = k in Equation (11), we find that there are

r

n− 1

n−r−1∑
a=0

(d− 1)(n− 1) + a

d(n− 1)− r

(
d(n− 1) + a− 1

a

)(
(k − 1)(d(n− 1)− r)

n− r − a− 1

)
(12)

d-dimensional k1-plane trees on n nodes with root labelled 1 such that the root has
degree r and all the children of the root are labelled k.Now, if we set k = 1 in Equation
(12), then we have that there are

r

n− 1

(
d(n− 1) + (n− r − 1)− 1

n− r − 1

)
=

r

n− 1

(
(d+ 1)(n− 1)− r − 1

n− r − 1

)
(13)

d-dimensional plane trees on n nodes with a root of degree r. Equation (13) was derived
by Okoth and Kasyoki in [18].

We get the following result upon setting i = 1 in Equation (11):
Corollary 3. There are

r

n− 1

n−r−1∑
a=0

(
d(n− 1) + a− 1

a

)(
d(k − 1)(n− 1)

n− r − a− 1

)
(14)

d-dimensional k1-plane trees on n nodes with root labelled k such that the root is of
degree r.

We also arrive at Equation (13) by setting k = 1 in Equation (14). If d = 1 and
d = 2 in Equation (14) we obtain the formulas

r

n− 1

n−r−1∑
a=0

(
n+ a− 2

a

)(
(k − 1)(n− 1)

n− r − a− 1

)
,

and

r

n− 1

n−r−1∑
a=0

(
2n+ a− 3

a

)(
2(k − 1)(n− 1)

n− r − a− 1

)
,

9
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for the number of k1-plane trees and k1-noncrossing trees on n nodes with root labelled
k and of degree r which were initially obtained in [10] and [17] respectively.

We find a more general result in the following theorem.
Theorem 4. There are

1

n− 1

n−r−1∑
a=0

(rd(k − 1)− t)(n− 1) + at

d(k − 1)(n− 1)− t

(
d(k − 1)(n− 1)− t

n− a− r − 1

)(
d(n− 1) + a− 1

a

)(
r − r1

r2, r3, . . . , rk−i+1

)
(15)

d-dimensional k1-plane trees on n nodes whose root is labelled i and the root has r
children, rj of them are labelled j where j = 1, 2, . . . , k − i+ 1 and t := r2 + 2r3 +

· · ·+ (k − i)rk−i+1.

Proof. Let Ni(z) be the generating function for d-dimensional k1-plane trees rooted
at a node labelled i, where z marks a node. Let Bi(z) be the generating function of a
butterfly rooted at a node labelled i where z marks a node. Since only the trees in the
d-th wing satisfy the ascent rule, then the trees in the first d−1wings can be considered
to have the root labelled 1. SoBi(z) =

Nd−1
1 Ni

zd−1 . Since the root is marked z and there are
ri subtrees rooted at the children of the root for i = 1, 2, . . . , k, the generating function
for the required d-dimensional k1-plane trees in which the position of the subtrees is
not taken into consideration is

z

(
N1(z)

d

zd−1

)r1 (N1(z)
d−1N2(z)

zd−1

)r2

· · ·
(
N1(z)

d−1Nk−i+1(z)

zd−1

)rk−i+1

= z(1−d)r+1N
r(d−1)
1 N r1

1 N
r2
2 · · ·N rk−i+1

k−i+1 .

We extract the coefficient zn in the generating function.

[zn]z(1−d)r+1N
r(d−1)
1 N r1

1 N
r2
2 · · ·N rk−i+1

k−i+1 = [zn+(d−1)r−1]N
r(d−1)
1 N r1

1 N
r2
2 · · ·N rk−i+1

k−i+1

= [zn+(d−1)r−1](( d
√
z)d−1 d

√
w)r(d−1)(( d

√
z)d−1 d

√
w)r1 ·

(
( d
√
z)d−1 d

√
w

1 + w

)r2

· · ·
(
( d
√
z)d−1 d

√
w

(1 + w)k−i

)rk−i+1

= [zn+(d−1)r−1]zr(d−1)wr ·
(

1

1 + w

)r2

· · ·
(

1

(1 + w)k−i

)rk−i+1

= [zn−1]wr(1 + w)−t,

where w = z(1− w)−d(1 + w)d(k−1) and t := r2 + 2r3 + · · ·+ (k − i)rk−i+1.
By Lagrange-Bürmann inversion, we have,

[zn]z(1−d)r+1N
r(d−1)
1 N r1

1 N
r2
2 · · ·N rk−i+1

k−i+1 =
1

n− 1
[wn−2](rwr−1(1 + w)−t − twr(1 + w)−t−1)

(1− w)−d(n−1)(1 + w)d(k−1)(n−1)

=
1

n− 1
(r[wn−r−1](1 + w)d(k−1)(n−1)−t − t[wn−r−2](1 + w)d(k−1)(n−1)−t−1)

(1− w)−d(n−1)

=
1

n− 1

∑
a≥0

[
r

(
d(k − 1)(n− 1)− t

n− a− r − 1

)
− t

(
d(k − 1)(n− 1)− t− 1

n− a− r − 2

)](
d(n− 1) + a− 1

a

)

=
1

n− 1

n−r−1∑
a=0

(dr(k − 1)− t)(n− 1) + at

d(k − 1)(n− 1)− t

(
d(k − 1)(n− 1)− t

n− a− r − 1

)(
d(n− 1) + a− 1

a

)
.

10
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Now, since all the children labelled 1 for each internal node are on the left of all
others then there are (

r − r1
r2, r3, . . . , rk−i+1

)
,

ways of assigning labels to the children of the root so that there are rj children labelled
j for j = 1, 2, . . . , k − i+ 1. The proof follows by the product rule of counting. □

Equation (11) follows from Equation (15), by setting t = r(i− 1) and rj = 0 for
all j ̸= i. If t = 0 in Theorem 4 then r1 = r, r2 = r3 = · · · = rk−i+1 = 0. Then it
follows that there are

r

n− 1

n−r−1∑
a=0

(
d(k − 1)(n− 1)

n− a− r − 1

)(
d(n− 1) + a− 1

a

)
(16)

d-dimensional k1-plane trees on n nodes such that the root is labelled k and is of degree
r. Equation (16) was also obtained in Equation (14).

If k = 2 and i = 1 in Equation (15) then r1 + r2 = r and r2 = t. This implies
that r2 = r − r1 and t = r − r1.We then obtain that there are

1

n− 1

n−r−1∑
a=0

((d− 1)r + r1)(n− 1) + a(r − r1)

d(n− 1)− r + r1

(
d(n− 1)− r + r1
n− a− r − 1

)(
d(n− 1) + a− 1

a

)
(17)

d-dimensional 21-plane trees on n nodes with root labelled 1 and r children of which
r1 are labelled 1. Summing over all values of r1 and r in (17), we find the total number
of d-dimensional 21-plane trees on n nodes with root labelled 1.

If k = 2 and i = 2 in (15) then r1 = r and t = 0. It means that there

r

n− 1

n−r−1∑
a=0

(
d(n− 1)

n− a− r − 1

)(
d(n− 1) + a− 1

a

)
,

d-dimensional 21-plane trees on n nodes with root labelled 2 and r children all labelled
1.

4. Eldest or youngest child of the root

This section is dedicated to obtaining counting formulas for d-dimensional
k1-plane trees in which the label of the eldest or youngest child of the root is taken into
consideration. We start with the case in which the eldest child of the root is labelled 1.
Theorem 5. The number of d-dimensional k1-plane trees on n nodes whose root is
labelled i such that the eldest child of the root is labelled 1 is given by

1

d(n− 1) + 1

n−2∑
a=0

(dk + k − i− d)(d(n− 1) + 1) + da(i− 1)

(k − 1)(d(n− 1) + 1)− i+ 1

(
d(n− 1) + a

a

)(
(k − 1)(d(n− 1) + 1)− i+ 1

n− a− 2

)
. (18)

Proof. Deletion of the edge connecting the root to its eldest child implies that the
required generating function is a product of the generating function of the butterfly
rooted at the eldest child of the root and that of the d-dimensional k1-plane tree with
root labelled i. The generating function of the trees in the statement of the theorem

11
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is thus given by
N1(z)

d

zd−1
· Ni(z). Again, as in Section 2, the right substitution is

Ni(z) =
( d
√
z)d−1 d

√
w

(1 + w)i−1
wherew = z(1−w)−d(1+w)d(k−1).We extract the coefficient

of zn in the generating function.

[zn]
N1(z)

d

zd−1
·Ni(z) = [zn]

(
( d
√
z)d−1 d

√
w
)d

zd−1
· (

d
√
z)d−1 d

√
w

(1 + w)i−1
= [zn+d−1]z(d+1)(d−1)/dw(d+1)/d(1 + w)1−i

= [z(d(n−1)+1)/d]w(d+1)/d(1 + w)1−i.

Application of Lagrange Bürmann inversion gives

[zn]
N1(z)

d

zd−1
·Ni(z)

=
1

(d(n− 1) + 1)/d
[w(d(n−1)+1)/d−1]

(
d+ 1

d
w1/d(1 + w)1−i − (i− 1)(1 + w)−iw(d+1)/d

)
(1− w)−d((d(n−1)+1)/d)(1 + w)d(k−1)((d(n−1)+1)/d)

=
1

d(n− 1) + 1
[wn−2] (d+ 1− w(d(i− 2)− 1)) (1− w)−(d(n−1)+1)(1 + w)(k−1)(d(n−1)+1)−i

=
1

d(n− 1) + 1
[wn−2] (d+ 1− w(d(i− 2)− 1))∑

a,b≥0

(
d(n− 1) + a

a

)(
(k − 1)(d(n− 1) + 1)− i

b

)
wa+b

=
1

d(n− 1) + 1

n−3∑
a=0

(
d(n− 1) + a

a

)[
(d+ 1)

(
(k − 1)(d(n− 1) + 1)− i

n− a− 2

)
−(d(i− 2)− 1)

(
(k − 1)(d(n− 1) + 1)− i

n− a− 3

)]
=

1

d(n− 1) + 1

n−2∑
a=0

[
(dk + k − i− d)(d(n− 1) + 1) + da(i− 1)

(k − 1)(d(n− 1) + 1)− i+ 1

(
d(n− 1) + a

a

)
(
(k − 1)(d(n− 1) + 1)− i+ 1

n− a− 2

)]
.

□
Setting i = 1 in Theorem 18, we get the following corollary.

Corollary 4. The number of d-dimensional k1-plane trees on n nodes whose root is
labelled 1 such that the eldest child of the root is also labelled 1 is given by

d+ 1

d(n− 1) + 1

n−2∑
a=0

(
d(n− 1) + a

a

)(
(k − 1)(d(n− 1) + 1)

n− a− 2

)
(19)

If we set d = 1 in Equation (18), we obtain that there are

1

n

n−2∑
a=0

(2k − i− 1)n+ a(i− 1)

(k − 1)n− i+ 1

(
n+ a− 1

a

)(
(k − 1)n− i+ 1

n− a− 2

)
,

k1-plane trees on n nodes in which the root is labelled i and the eldest child of the root
is labelled 1. This result was also obtained by the authors of [10].

12
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Also, setting d = 2 in Equation (18), we obtain the following corollary.
Corollary 5. There are

1

2n− 1

n−2∑
a=0

(3k − i− 2)(2n− 1) + 2a(i− 1)

(k − 1)(2n− 1)− i+ 1

(
2(n− 1) + a

a

)(
(k − 1)(2n− 1)− i+ 1

n− a− 2

)
,

k1-noncrossing trees on n nodes in which the root is labelled i and the eldest child of
the root is labelled 1 (see [17]).

We now enumerate d-dimensional k1-plane trees according to the label of the
youngest child of the root.
Theorem 6. The number of d-dimensional k1-plane trees on n nodes whose root is
labelled i such that the youngest child of the root is labelled j ̸= 1 is given by

1

d(n− 1) + 1

n−2∑
a=0

[
(dk + k − i− j − d+ 1)(d(n− 1) + 1) + da(i+ j − 2)

(k − 1)(d(n− 1) + 1)− i− j + 2

(
d(n− 1) + a

a

)
(
(k − 1)(d(n− 1) + 1)− i− j + 2

n− a− 2

)] (20)

Proof. Deletion of the edge connecting the root to its youngest child implies that the
required generating function is a product of the generating function of the butterfly
rooted at the youngest child of the root and that of the d-dimensional k1-plane tree with
root labelled i. The generating function of the trees in the statement of the theorem is

thus given by
N1(z)

d−1Nj(z)

zd−1
·Ni(z). As verified in Section 2, the right substitution

to solve the generating function isNi(z) =
( d
√
z)d−1 d

√
w

(1 + w)i−1
where w = z(1−w)−d(1 +

w)d(k−1).We now proceed to extract the coefficient of zn in the generating function.

[zn]
N1(z)

d−1Nj(z)

zd−1
Ni(z) = [zn]

(
( d
√
z)d−1 d

√
w
)d

zd−1(1 + w)j−1
· (

d
√
z)d−1 d

√
w

(1 + w)i−1

= [zn+d−1]z(d+1)(d−1)/dw(d+1)/d(1 + w)2−i−j

= [z(d(n−1)+1)/d]w(d+1)/d(1 + w)2−i−j .

By Lagrange-Bürmann inversion, we have

[zn]
N1(z)

d−1Nj(z)

zd−1
Ni(z)

=
1

(d(n− 1) + 1)/d
[w(d(n−1)+1)/d−1]

(
d+ 1

d
w1/d(1 + w)2−i−j − (i+ j − 2)(1 + w)1−i−jw(d+1)/d

)
(1− w)−d((d(n−1)+1)/d)(1 + w)d(k−1)((d(n−1)+1)/d)

=
1

d(n− 1) + 1
[wn−2] (d+ 1− w(d(i+ j − 3)− 1)) (1− w)−(d(n−1)+1)(1 + w)(k−1)(d(n−1)+1)−i−j+1.

Making use of binomial theorem, we get

13
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[zn]
N1(z)

d−1Nj(z)

zd−1
Ni(z)

=
1

d(n− 1) + 1
[wn−2] (d+ 1− w(d(i+ j − 3)− 1))∑

a,b≥0

(
d(n− 1) + a

a

)(
(k − 1)(d(n− 1) + 1)− i− j + 1

b

)
wa+b

=
1

d(n− 1) + 1

n−3∑
a=0

(
d(n− 1) + a

a

)[
(d+ 1)

(
(k − 1)(d(n− 1) + 1)− i− j + 1

n− a− 2

)
−(d(i+ j − 3)− 1)

(
(k − 1)(d(n− 1) + 1)− i− j + 1

n− a− 3

)]
=

1

d(n− 1) + 1

n−2∑
a=0

[
(dk + k − i− j − d+ 1)(d(n− 1) + 1) + da(i+ j − 2)

(k − 1)(d(n− 1) + 1)− i− j + 2

(
d(n− 1) + a

a

)
(
(k − 1)(d(n− 1) + 1)− i− j + 2

n− a− 2

)]
.

□
The following result follows by letting d = 1 in Equation (20).

Corollary 6. There are

1

n

n−2∑
a=0

(2k − i− j)n+ a(i+ j − 2)

(k − 1)n− i− j + 2

(
n+ a− 1

a

)(
(k − 1)n− i− j + 2

n− a− 2

)
,

k1-plane trees on n nodes such that the root is labelled i and the youngest child of the
root is labelled j ̸= 1, [10].

Upon setting d = 2 in Equation (20), we obtain the following result.
Corollary 7. The number of k1-noncrossing trees on n nodes such that the root is
labelled i and the youngest child of the root is labelled j ̸= 1 is given by (see [17])

1

2n− 1

n−2∑
a=0

(3k − i− j − 1)(2n− 1) + 2a(i+ j − 2)

(k − 1)(2n− 1)− i− j + 2

(
2n+ a− 2

a

)(
(k − 1)(2n− 1)− i− j + 2

n− a− 2

)
.

5. Leftmost path

We now switch our attention to enumeration of d-dimensional k1-plane trees
according to the length of the leftmost path.
Theorem 7. The number of d-dimensional k1-plane trees on n nodes whose root is
labelled i such that there is a leftmost path of length ℓ ≥ 1 and all nodes on the path
except the root are labelled 1 is given by

1

d(n− 1) + 1

n−ℓ−1∑
a=0

(dℓk + k − i− dℓ)(d(n− 1) + 1) + da(i− 1)

(k − 1)(d(n− 1) + 1)− i+ 1

(
d(n− 1) + a

a

)(
(k − 1)(d(n− 1) + 1)− i+ 1

n− a− ℓ− 1

)
(21)

Proof. Deletion of the ℓ edges on the leftmost path implies that the desired generating
function is a product of the generating function of the ℓ butterflies rooted at the non-root
vertices on the path and the generating function of the d-dimensional k1-plane tree with

14
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root labelled i. The generating function for the trees in which there is a leftmost path of

length ℓ is thus
(
N1(z)

d

zd−1

)ℓ

Ni(z). From Section 2, the right substitution to solve the

generating function is Ni(z) =
( d
√
z)d−1 d

√
w

(1 + w)i−1
where w = z(1 − w)−d(1 + w)d(k−1).

So,

[zn]

(
N1(z)

d

zd−1

)ℓ

·Ni(z) = [zn]

((
( d
√
z)d−1 d

√
w
)d

zd−1

)ℓ

· (
d
√
z)d−1 d

√
w

(1 + w)i−1

= [zn+ℓ(d−1)]z(dℓ+1)(d−1)/dw(dℓ+1)/d(1 + w)1−i

= [z(d(n−1)+1)/d]w(dℓ+1)/d(1 + w)1−i.

We apply Lagrange Bürmann inversion to get

[zn]

(
N1(z)

d

zd−1

)ℓ

·Ni(z)

=
1

(d(n− 1) + 1)/d
[wn−ℓ−1]

(
dℓ+ 1

d
wℓ−1+1/d(1 + w)1−i − (i− 1)(1 + w)−iw(dℓ+1)/d

)
(1− w)−d((d(n−1)+1)/d)(1 + w)d(k−1)((d(n−1)+1)/d)

=
1

d(n− 1) + 1
[wn−ℓ−1] (dℓ+ 1− w(d(i− ℓ− 1)− 1)) (1− w)−(d(n−1)+1)(1 + w)(k−1)(d(n−1)+1)−i.

By binomial theorem, we have

[zn]

(
N1(z)

d

zd−1

)ℓ

·Ni(z) =
1

d(n− 1) + 1
[wn−ℓ−1] (dℓ+ 1− w(d(i− ℓ− 1)− 1))∑

a,b≥0

(
d(n− 1) + a

a

)(
(k − 1)(d(n− 1) + 1)− i

b

)
wa+b

=
1

d(n− 1) + 1

n−ℓ−2∑
a=0

(
d(n− 1) + a

a

)[
(dℓ+ 1)

(
(k − 1)(d(n− 1) + 1)− i

n− a− ℓ− 1

)
−(d(i− ℓ− 1)− 1)

(
(k − 1)(d(n− 1) + 1)− i

n− a− ℓ− 2

)]
=

1

d(n− 1) + 1

n−ℓ−1∑
a=0

[
(dℓk + k − i− dℓ)(d(n− 1) + 1) + da(i− 1)

(k − 1)(d(n− 1) + 1)− i+ 1

(
d(n− 1) + a

a

)
(
(k − 1)(d(n− 1) + 1)− i+ 1

n− a− ℓ− 1

)]
.

□
Setting d = 1 in Equation (21), we get the following corollary.

Corollary 8. The number of k1-plane trees on n nodes with root labelled i such that
there is a leftmost path of length ℓ ≥ 0 and all the other nodes on the path are labelled
1 is given by (see [10])

1

n

n−ℓ−1∑
a=0

(ℓk + k − i− ℓ)n+ a(i− 1)

(k − 1)n− i+ 1

(
n+ a− 1

a

)(
(k − 1)n− i+ 1

n− a− ℓ− 1

)
.

15
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Also, setting k = 1 in Equation (21), we obtain:
Corollary 9. The number of k1-noncrossing trees on n nodes with root labelled i such
that there is a leftmost path of length ℓ ≥ 0 and all the other nodes on the path are
labelled 1 is given by (see [17])

1

2n− 1

n−ℓ−1∑
a=0

(2ℓk + k − i− 2ℓ)(2n− 1) + 2a(i− 1)

(k − 1)(2n− 1)− i+ 1

(
2n+ a− 2

a

)(
(k − 1)(2n− 1)− i+ 1

n− a− ℓ− 1

)
.

If ℓ = 1 in Equation (21), we obtain the following result.
Corollary 10. The number of d-dimensional k1-plane trees on n nodes with root
labelled i such that the eldest child of the root is labelled 1 is given by

1

d(n− 1) + 1

n−2∑
a=0

(dk + k − i− d)(d(n− 1) + 1) + da(i− 1)

(k − 1)(d(n− 1) + 1)− i+ 1

(
d(n− 1) + a

a

)(
(k − 1)(d(n− 1) + 1)− i+ 1

n− a− 2

)
(22)

Equation (22) was already obtained in Equation (18). Moreover, if we let ℓ = 0

in Equation (21), then we find that there are

1

d(n− 1) + 1

n−1∑
a=0

(k − i)(d(n− 1) + 1) + da(i− 1)

(k − 1)(d(n− 1) + 1)− i+ 1

(
d(n− 1) + a

a

)(
(k − 1)(d(n− 1) + 1)− i+ 1

n− a− 1

)
(23)

d-dimensional k1-plane trees on n nodes such that the root is labelled i.

6. Forests

In this section, we enumerate forests of d-dimensional k1-plane trees. The nodes
of the forests are labelled by integers 1, 2, . . . , n. We shall refer to these forests as
labelled forests. The nodes of the forests are labelled so as to avoid redundancies in
counting unlabelled structures.
Theorem 8. The number of labelled forests of d-dimensional k1-plane trees on n nodes
with r components such that for each component, the root is labelled i is given by

rn!

d(n− r) + r

n−r∑
a=0

(k − i)(d(n− r) + r) + ad(i− 1)

d(k − 1)(n− r) + (k − i)r

(
d(n− r) + r + a− 1

a

)(
d(k − 1)(n− r) + (k − i)r

n− r − a

)
. (24)

Proof. Let Ni(z) be the generating function for d-dimensional k1-plane trees rooted
at a node labelled i, where z marks a node. Since each component of the forest
is a d-dimensional k1-plane tree then we extract the coefficient of zn in N r

i . As
shown in Section 2, the right substitution to solve the generating function is Ni(z) =
( d
√
z)d−1 d

√
w

(1 + w)i−1
where w = z(1− w)−d(1 + w)d(k−1).We proceed as follows:

[zn]N r
i = [zn]

(
( d
√
z)d−1 d

√
w

(1 + w)i−1

)r

= [z(dn−(d−1)r)/d]wr/d(1 + w)−(i−1)r.

By Lagrange-Bürmann inversion, we have

16
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[zn]N r
i =

1

(dn− (d− 1)r)/d
[w(dn−(d−1)r)/d−1]

(r
d
wr/d−1)(1 + w)−(i−1)r − (i− 1)rwr/d(1 + w)−(i−1)r−1

)
(1− w)−d((dn−(d−1)r)/d)(1 + w)d(k−1)((dn−(d−1)r)/d)

=
r

(dn− (d− 1)r)
[wn−r−1] (1− (d(i− 1)− 1)w) (1− w)−(dn−(d−1)r)

(1 + w)(k−1)(dn−(d−1)r)−(i−1)r−1

=
r

d(n− r) + r
[wn−r] (1− (d(i− 1)− 1)w)∑

a,b≥0

(
d(n− r) + r + a− 1

a

)(
d(k − 1)(n− r) + (k − i)r − 1

b

)
wa+b

=
r

d(n− r) + r

∑
a≥0

(
d(n− r) + r + a− 1

a

)
[(
d(k − 1)(n− r) + (k − i)r − 1

n− r − a

)
− (d(i− 1)− 1)

(
d(k − 1)(n− r) + (k − i)r − 1

n− r − a− 1

)]
=

r

d(n− r) + r

n−r∑
a=0

(k − i)(d(n− r) + r) + ad(i− 1)

d(k − 1)(n− r) + (k − i)r

(
d(n− r) + r + a− 1

a

)
(
d(k − 1)(n− r) + (k − i)r

n− r − a

)
.

The formula is multiplied by n! which is the number of ways of labelling the n
nodes. □

The proof of the following corollary follows by setting r = 1 in Equation (24).
Corollary 11. The number of labelled d-dimensional k1-plane trees on n nodes with
root labelled i is

n!

d(n− 1) + 1

n−1∑
a=0

(k − i)(d(n− 1) + 1) + ad(i− 1)

d(k − 1)(n− 1) + (k − i)

(
d(n− 1) + a

a

)(
d(k − 1)(n− 1) + (k − i)

n− a− 1

)
.

Corollary 12. The number of labelled forests of d-dimensional k1-plane trees on n
nodes with r components such that for each component, the root is labelled 1 is given
by

rn!

d(n− r) + r

n−r∑
a=0

(
d(n− r) + r + a− 1

a

)(
(k − 1)(d(n− r) + 1)

n− r − a

)
.

Proof. Set i = 1 in Equation (24). □
On setting i = k in Equation (24), we get the following corollary.

Corollary 13. The number of labelled forests of d-dimensional k1-plane trees on n
nodes with r components such that for each component, the root is labelled k is given
by

rn!

d(n− r) + r

n−r∑
a=0

a

n− r

(
d(n− r) + r + a− 1

a

)(
d(k − 1)(n− r)

n− r − a

)
.

Corollary 14. The number of labelled forests of k1-plane trees on n nodes such that

17
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there are r components such that the root of each component is labelled j is given by

r(n− 1)!

n−r∑
a=0

(k − i)n+ a(i− 1)

(k − 1)(n− r) + (k − i)r

(
n+ a− 1

a

)(
(k − 1)(n− r) + (k − i)r

n− r − a

)
.

Proof. Set d = 1 in Equation (24). □
Upon setting d = 2 in Equation (24), we arrive at the following result.

Corollary 15. There are

rn!

2n− r

n−r∑
a=0

(k − i)(2n− r) + 2a(i− 1)

2(k − 1)(n− r) + (k − i)r

(
2n− r + a− 1

a

)(
2(k − 1)(n− r) + (k − i)r

n− r − a

)
,

labelled forests of k1-noncrossing trees on n nodes such that there are r components
and the root of each component is labelled i.

In the following theorem, we get a more generalized result.
Theorem 9. There are

n!

d(n− r) + r

n−r∑
a=0

(r(k − 1)− t)(d(n− r) + r) + adt

(k − 1)(d(n− r) + r)− t

(
(k − 1)(d(n− r) + r)− t

n− a− r

)(
d(n− r) + r + a− 1

a

)
(

r

r1, r2, . . . , rk−i+1

) (25)

labelled forests of d-dimensional k1-plane trees on n nodes such that there are r
components, rj of which have roots labelled j where j = 1, 2, . . . , k − i + 1 and
t := r2 + 2r3 + · · ·+ (k − i)rk−i+1.

Proof. Let Ni(z) be the generating function for d-dimensional k1-plane trees rooted
at a node labelled i, where z marks a node. Since there are rj d-dimensional k1-plane
trees as part of the forest for i = 1, 2, . . . , k, then the generating function for the desired
forest isN r1

1 N
r2
2 · · ·N rk−i+1

k−i+1 . As explained in Section 2, the right substitution to solve

the generating function isNi(z) =
( d
√
z)d−1 d

√
w

(1 + w)i−1
wherew = z(1−w)−d(1+w)d(k−1).

We extract the coefficient zn in the generating function.

[zn]N r1
1 N

r2
2 · · ·N rk−i+1

k−i+1 = [zn](( d
√
z)d−1 d

√
w)r1 ·

(
( d
√
z)d−1 d

√
w

1 + w

)r2

· · ·
(
( d
√
z)d−1 d

√
w

(1 + w)k−i

)rk−i+1

= [zn]z(d−1)r/dwr/d ·
(

1

1 + w

)r2

· · ·
(

1

(1 + w)k−i

)rk−i+1

= [zn−(d−1)r/d]wr/d(1 + w)−t

where t := r2 + 2r3 + · · ·+ (k − i)rk−i+1.
By Lagrange-Bürmann inversion, we have

18
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[zn]N r1
1 N

r2
2 · · ·N rk−i+1

k−i+1 =
1

n− (d− 1)r/d
[wn−(d−1)r/d−1]

(r
d
wr/d−1(1 + w)−t − twr/d(1 + w)−t−1

)
(1− w)−d(n−(d−1)r/d)(1 + w)d(k−1)(n−(d−1)r/d)

=
1

d(n− r) + r

(
r[wn−r](1 + w)(k−1)(d(n−r)+r)−t

−dt[wn−r−1](1 + w)(k−1)(d(n−r)+r))−t−1
)
(1− w)−(d(n−r)+r).

By binomial theorem, we arrive at

[zn]N r1
1 N

r2
2 · · ·N rk−i+1

k−i+1 =
1

d(n− r) + r

∑
a≥0

[
r

(
(k − 1)(d(n− r) + r)− t

n− a− r

)
− dt

(
(k − 1)(d(n− r) + r)− t− 1

n− a− r − 1

)]
(
d(n− r) + r + a− 1

a

)
=

1

d(n− r) + r

n−r∑
a=0

(r(k − 1)− t)(d(n− r) + r) + adt

(k − 1)(d(n− r) + r)− t

(
(k − 1)(d(n− r) + r)− t

n− a− r

)(
d(n− r) + r + a− 1

a

)
.

Since there are (
r

r1, r2, . . . , rk−i+1

)
,

choices for positions of the trees in the forest then the required formula follows by the
product rule of counting. □

If ri = r in Equation (25) then t = r(i− 1) and rj = 0 for all j ̸= i so that

n!r

d(n− r) + r

n−r∑
a=0

(k − i)(d(n− r) + r) + ad(i− 1)

(k − 1)(d(n− r) + r)− r(i− 1)

(
(k − 1)(d(n− r) + r)− r(i− 1)

n− a− r

)(
d(n− r) + r + a− 1

a

)
(26)

counts labelled forests of d-dimensional k1-plane trees with n nodes and r components
such that the roots of all the trees are labelled i. Equation (26) was also obtained in
Equation (24).
Corollary 16. There are

(n− 1)!
n−r∑
a=0

(r(k − 1)− t)n+ at

(k − 1)n− t

(
(k − 1)n− t

n− a− r

)(
n+ a− 1

a

)(
r

r1, r2, . . . , rk−i+1

)

labelled forests of k1-plane trees on n nodes such that there are r components, rj of
which have roots labelled j where j = 1, 2, . . . , k − i + 1 and t := r2 + 2r3 + · · · +
(k − i)rk−i+1, [10].

Proof. Set d = 1 in Equation (25). □
On setting d = 2 in Equation (25), we obtain the following result.

Corollary 17. There are

n!

2n− r

n−r∑
a=0

(r(k − 1)− t)(2n− r) + 2at

(k − 1)(2n− r)− t

(
(k − 1)(2n− r)− t

n− a− r

)(
2n− r + a− 1

a

)(
r

r1, r2, . . . , rk−i+1

)
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labelled forests of k1-noncrossing trees on n nodes such that there are r components,
rj of which have roots labelled j where j = 1, 2, . . . , k − i + 1 and t := r2 + 2r3 +

· · ·+ (k − i)rk−i+1.

7. Conclusion and future work

In this paper, we have enumerated a generalization of a variant of k-plane trees
according to the number of nodes, root degree, label of the eldest child of the root being
1, label of the youngest child of the root being j ̸= 1, the length of the leftmost path and
forests. The results obtained in this paper generalize results obtained earlier by Oduol
et al. [10,17]. Equivalent results for generalized k-plane trees have been obtained by
Nyariaro et al. in the working paper [19]. It still remains an open problem to enumerate
sets of k-plane trees and k-noncrossing trees according to degree sequences, number
of leaves, number of endpoints and descents. It would be interesting to enumerate the
generalized version of k-plane trees and their variants according to the aforementioned
parameters. Asymptotic results for the trees considered in this paper based on the
parameters used can also be investigated. Moreover, the study can be extended to
enumerate randomized trees. In the future, the applications of the results of this study
to algorithm designs and data structure optimization can be explored.
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