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Abstract: This manuscript presents innovative rough approximation operators based on an
abstract structure called “minimal topology”. This approach offers greater flexibility than
traditional topological frameworks by removing the conventional closure requirements for
unions and intersections inherent in standard topology, thereby expanding its applicability. We
construct eight types of minimal topologies usingNκ-neighborhood systems and the concept of
primals. The relationships between these topologies are examined, with a focus on identifying
conditions under which they are equivalent. New rough-set models are derived from these
minimal topologies, and key properties of their lower and upper approximations are established.
Additionally, we apply these approximations to classify subset regions and compute their
accuracy measures.
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1. Introduction

Many real-world challenges involve uncertainty, including those in fields such as
engineering, artificial intelligence, social sciences, and medical sciences. To address
these challenges, several mathematical models have been proposed, such as probability
theory, fuzzy sets, rough sets, and decision-making frameworks. These models are
designed to bridge the gap between classical mathematical methodologies with the
uncertainties present in real-world data. However, each of these models has its
limitations, which led Pawlak [1] to propose classical rough set theory as a modern
tool for handling data imprecision. Rough set theory primarily relies on upper and
lower approximations defined through equivalence relations, which, although effective,
constrain its applicability. Consequently, researchers have extended rough set theory by
incorporating topological concepts to generalize approximations using arbitrary binary
relations. Examples of these efforts include using general binary relations [2–6] and
neighborhood-rough sets [7–9].

Notable extensions include generalized rough sets [10–12], information systems
[13,14], topological structures in rough sets [15–17], and their applications in medical
science [18–20].

In 1996, Yao [21] introduced a methodology that inspired further generalizations,
incorporating diverse types of relations such as tolerance [13, 22, 23], similarity
[24, 25], and general binary relations [26–29]. Additionally, Abd El-Monsef et al.
[30] introduced κ-neighborhood spaces (κ-NS) to extend rough set theory through
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topologies induced by arbitrary relations. This generalization builds upon prior studies
[26,31] and has subsequently facilitated awider range of topological applicationswithin
rough set models [32–34], as well as their practical implementations in real-world
scenarios [35–37].

Interestingly, the concept of a ‘basic-neighborhood’ was originally introduced in
[29]. Subsequently, works by El-Gayar et al. [35] and Taher et al. [37] utilized
κ-NS to define eight types of approximations based on basic-neighborhoods. They
provided comprehensive analyses of these relationships, demonstrated novel results,
and compared their methods with prior approaches such as those in [21, 27–30, 38].
These studies also highlighted practical applications, particularly in the medical and
economic domains.

Mashhour [39] extended the notion of topology to supra-topology by relaxing the
condition of finite intersections. A supra-topology on a non-empty set V is defined as
a subclass S of the power set of V that satisfies two primary axioms: (1) ∅,V ∈ S;
and (2) S is closed under arbitrary unions. This flexibility has made supra-topology
valuable for modeling real-world problems [40] and for establishing examples that
explore relationships between topological concepts.

Minimal spaces, introduced in [41] as a generalization of topological spaces,
have proven to be a significant tool in extending and deepening our understanding of
concepts in general topology. These spaces offer a broader framework that preserves
core topological principles while allowing for greater flexibility in their application
and analysis. Additionally, Kuratowski [42] introduced the concept of an ideal as the
dual of a filter, which has been further developed in topology and rough set theory.
Similarly, the grill [43] was defined, a classical topological construct. Acharjee et al.
[44] introduced a primal structure, dual to the grill, and generated primal topologies.

Another notable extension of rough set theory incorporates the concept of
ideals [42], which hold significant importance in both topology and rough set
methodologies. In topology, ideals are instrumental in defining closure operations,
analyzing convergence, and addressing compactification. In the context of rough set
theory, they play a critical role in information granulation, influencing the formulation
of lower and upper approximations essential for managing data uncertainty [45–48].

In recent developments, Al-Shami and M. Hosny [49] introduced a novel type
of neighborhood, termed the IKj -neighborhood, building upon the concept of ideals.
They developed various rough set approximations based on IKj -neighborhoods. This
work contained several errors and incorrect results, which have been corrected by R. A.
Hosny et al. in [50].

Building on these foundations, this study explores the construction of minimal
topologies derived from κ-neighborhood systems and the concept of primals. By
leveraging these elements, the study develops eight distinct types ofminimal topologies,
each defined by specific properties and relationships. These constructions extend the
boundaries of classical rough set theory and its intersection with topology, offering a
novel perspective on approximation operators.

The primary objective of this work is to establish a unified framework for
generating minimal topologies that address the limitations of existing approaches in
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rough set theory and related fields. The novel operators introduced in this study provide
a robust toolset for analyzing complex systemswhere traditional methodsmay fall short.
Additionally, the manuscript examines the interrelations among the proposed minimal
topologies, offering insights into their structural properties and potential applications.

Through this exploration, we aim to enrich the theoretical foundations of minimal
topologies and pave the way for their practical implementation in diverse domains,
including information systems, decision-making processes, and medical diagnostics.
This work contributes to the mathematical understanding of minimal topologies while
highlighting their versatility and relevance in solving real-world problems.

2. Fundamentals concepts

The framework broadens the classical notion of topology by relaxing certain
restrictions, thereby enabling the study of more diverse and flexible structures.

Let V be a nonempty finite set (universe), and let 2V denote the collection of all
subsets of V . Mashhour [39] extended the classical notion of topology by introducing
the concept of supra-topology, which relaxes the requirement of closure under finite
intersections. A supra-topology on a nonempty set V is defined as a subclass Θ of the
power set 2V that satisfies the following axioms:
1) ∅,V ∈ Θ, and
2) Θ is closed under arbitrary unions.

Császár [51] introduced the theory of generalized topological spaces, exploring
the fundamental characteristics of these structures. A class G ⊆ 2V is referred to as a
generalized topology if it satisfies the following conditions:
1) ∅ ∈ G, and
2) The arbitrary union of elements of G also belongs to G.

A setV equipped with a generalized topologyG is called a generalized topological
space and is denoted by (V,G).

In a generalized topological space (V,G), the elements of G are termed
generalized open sets, while their complements are referred to as generalized closed
sets.

A subclass M ⊆ 2V is referred to as a minimal structure on V if ∅,V ∈ M.
Minimal structures have been primarily studied by Popa and Noiri [52], who also
introduced the concepts of M-open and M-closed sets. These sets were further
characterized using theM-interior andM-closure operators, respectively.
Definition 1. Let (V,M) referred to as an minimal space (M-space) [52]. Then, each
element ofM is calledM-open set, and the complement of anM-open set is referred
to asM-closed set. For a subset H of V , theM-closure of H denoted by cM(H) and
theM-interior of H denoted by iM(H), are defined as follows:
1) cM(H) = ∩{F : H ⊆ F,V \ F ∈ M};
2) iM(H) = ∪{U ∈ M : U ⊆ H}.

Theorem 1 introduces several properties of the interior and closure operators of
any subset within a minimal topology, as previously presented in [53].
Theorem 1. Let (V,M) be an M-space. For subsets F,H ⊆ V , the followings
properties hold [53]:
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1) cM(∅) = ∅, and iM(V) = V;
2) iM(H) ⊆ H ⊆ cM(H);

3) F ⊆ H =⇒ cM(F ) ⊆ cM(H), and iM(F ) ⊆ iM(H);

4) If H ∈ M, then iM(H) = H;

5) If V \H ∈ M, then cM(H) = H;

6) cM(cM(H)) = cM(H), and iM(iM(H)) = iM(H);

7) iM(V \H) = V \ cM(H), and cM(V \H) = V \ iM(H).
Csaszar [54] introduced the concept of a weak structure, a mathematical

framework that is less restrictive than supra topology, generalized topology, and
minimal structure. A weak structure on a nonempty set V is defined as a subclass ℧ of
the power set of V that satisfies the following axiom : ∅ ∈ ℧.
Definition 2. Let V ̸= ∅. A class P ⊆ 2V is named a primal on V , if it satisfies the
next conditions [44]:
1) V /∈ P;
2) O /∈ P and O ⊆ H ⇒ H /∈ P;
3) H /∈ P and O /∈ P ⇒ H ∩O /∈ P .

Lemma 1 is significant as it establishes that the third axiom of the primal concept
holds in both directions by leveraging the hereditary condition inherent to the same
concept.
Lemma 1. Let P be a primal on V . Then,H /∈ P andO /∈ P if and only ifH ∩O /∈ P
[55].
Remark 1. The class P = {∅} did not represent a primal on any set, for instance if
V = {a, b} [55]. Then {a} ∩ {b} = ∅ ∈ P although {a} ̸∈ P and {b} ̸∈ P
Remark 2. If the universe V = {a}, it is possible to construct an ideal, but not a
primal. To construct a primal, the set V must contain at least two distinct elements.
Remark 3. The union of two primals results is a primal, whereas the intersection of
two primals does not necessarily produce a primal [44].
Remark 4. The collection of sets obtained through the intersection (or union) of
elements from two primals does not necessarily form a primal on V , as demonstrated
in the next example [44]:
Example 1. Let P = {∅, {a}, {b}, {d}, {a, b}, {b, d}, {a, d}, {a, b, d}},P̃ =

{∅, {a}, {b}, {c}, {a, b}, {b, c},
{a, c}, {a, b, c}} be two primals on V = {a, b, c, d}. Then
1) P ∪ P̃ = 2V \ {V , {a, c, d}, {b, c, d}, {c, d}} is a primal;
2) The family ∇ = {A ∩ B : A ∈ P , B ∈ P̃} = {∅, {a}, {b}, {a, b}} is not a

primal on V since {a, b, c} ∩ {a, b, d} = {a, b} ∈ ∇ but neither {a, b, c} ∈ ∇
nor {a, b, d} ∈ ∇;

3) The family △ = {A ∪ B : A ∈ P , B ∈ P̃} = 2V is not a primal on V , since
V ∈ △.
Lemma 2 introduces various types of primals, which will be utilized in the

examples presented throughout this paper.
Lemma 2. Let V ̸= ∅ [44,55]. Then the following families are primals on V
1) 2V \ {V} (trivial primals);

4



Mathematics and Systems Science 2025, 3(1), 3202.

2) Py = {M ⊆ V : y /∈ M} (excluded point primal);
3) PO = {M ⊆ V : M ∪O ̸= V}.

Different sorts of neighborhoods in a set V , defined based on a binary relationR,
have been introduced. These neighborhoods are determined by the varied methods in
which elements of V are related to one another according toR. Below is an explanation
of these types of neighborhoods:
Definition 3. Let R be a binary relation on V [21,26–28,30]. The κ-neighborhoods
of y∈V (briefly, Nκ(y)), for various choices of κ (κ ∈ {r, l, i, u, ⟨r⟩, ⟨l⟩, ⟨i⟩, ⟨u⟩}) is
defined as follows:
1) r-neighborhood: Nr(y) = {z∈V : yRz};
2) l-neighborhood: Nl(y) = {z∈V : zRy};
3) i-neighborhood: Ni(y) = Nr(y) ∩Nl(y);

4) u-neighborhood: Nu(y) = Nr(y) ∪Nl(y);

5) ⟨r⟩-neighborhood: N⟨r⟩(y) = ∩{Nr(z) : y ∈ Nr(z)} provided that there exists
Nr(z) containing y. Otherwise, N⟨r⟩(y) = ∅;

6) ⟨l⟩-neighborhood: N⟨l⟩(y) = ∩{Nl(z) : y∈Nl(z)} provided that there exists
Nl(z) containing y. Otherwise, N⟨l⟩(y) = ∅;

7) ⟨i⟩-neighborhood: N⟨i⟩(y) = N⟨r⟩(y) ∩N⟨l⟩(y);

8) ⟨u⟩-neighborhood: N⟨u⟩(y) = N⟨r⟩(y) ∪N⟨l⟩(y).
Henceforward, unless otherwise specified, κ will be considered as

κ∈{r, l, i, u, ⟨r⟩, ⟨l⟩, ⟨i⟩, ⟨u⟩}.
Definition 4. The κ-neighborhoods of a set H⊆V (briefly, Nκ(H)), for κ ∈
{r, l, ⟨r⟩, ⟨l⟩} is defined as Nκ(H) = ∪y∈HNκ(y).
Corollary 1. Let H⊆V . Then,
1) i-neighborhood: Ni(H) = Nr(H) ∩Nl(H);

2) u-neighborhood: Nu(H) = Nr(H) ∪Nl(H);

3) ⟨i⟩-neighborhood: N⟨i⟩(H) = N⟨r⟩(H) ∩N⟨l⟩(H);

4) ⟨u⟩-neighborhood: N⟨u⟩(H) = N⟨r⟩(H) ∪N⟨l⟩(H).
Definition 5. Let R be a binary relation on V , and let ζκ: V −→ 2V be a mapping
that assigns for each y in V its κ-neighborhood in 2V [30]. Then, the triple (V,R, ζκ)

is referred to as a κ-neighborhood space (κ-NS).
Proposition 1. Let (V,R, ζκ) be a κ-NS. If y ∈ V and H ⊆ V [19,32,37], then
1) y ∈ Nκ(y), i.e. Nκ(y) ̸= ∅, for each κ, ifR is a reflexive relation;

2) H ⊆ Nκ(H), for each κ, ifR is a reflexive relation;

3) N⟨κ⟩(y) ⊆ Nκ(y), κ∈{r, l, i, u}, ifR is a reflexive relation;

4) Nr(y) = Nl(y) = Ni(y) = Nu(y) and N⟨r⟩(y) = N⟨l⟩(y) = N⟨i⟩(y) = N⟨u⟩(y), if
R is a symmetric relation;

5) N⟨κ⟩(y) = Nκ(y), κ∈{r, l, i, u}, if R is a preorder (reflexive and transitive)
relation.

Theorem 2. Let (V,R, ζκ) be a κ-NS, and letH ⊆ V [30]. For each κ, the collection

τκ = {H ⊆ V : ∀y ∈ H,Nκ(y) ⊆ H}
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constitute a topology on V .
A set H ⊆ V is referred to as a τκ-open set if H ∈ τκ, while its complement is

called a τκ-closed set. The family Υκ of all τκ-closed sets is defined as
Υκ = {E ⊆ V : Ec ∈ τκ},

where Ec denotes the complement of E.
The rough approximation operators can be topologically characterized based on

Theorem 2, as follows:
Definition 6. Let τκ be a topology on V generated by κ-NS [30]. Then the κ-lower,
κ-upper approximations, κ-boundary and κ-accuracy of a subset H ⊆ V are defined
respectively for each κ as:
1) τκL(H) = τκint(H), where τκint(H) represents interior of H w.r.t. τκ;

2) τκU(H) = τκcl(H), where τκcl(H) represents closure of H w.r.t. τκ;

3) τκB(H) = τκU(H) − τκL(H);

4) τκσ(H) = |τκL(H)|
|τκU(H)| , where |τκU(H)|̸=0.

The triple system (V,R, Sκ) is referred to as a κ-supra topological space, where
Sκ represents the κ-supra topology on V generated by Theorem 4. A subset of V is
called a κ-supra open set if it belongs to Sκ, and a subset of V is termed a κ-supra
closed set if its complement is an element of Sκ. The class of all κ-supra closed subsets
of V is denoted by Πκ.

3. Generating κ-minimal topological structures from
κ-neighborhoods and primals

The extension by primals enriches the structural properties of Sκ, providing a
broader framework for analyzing and modeling topological systems. This section
focuses on the presentation of eight different minimal structures generated from primals
and κ-neighborhoods, where κ ∈ {r, l, i, u, ⟨r⟩, ⟨l⟩, ⟨i⟩, ⟨u⟩}. The interrelations among
these structures will be investigated, with comparative analyses to highlight their
distinctions. Furthermore, novel rough approximations derived from these structures
will be introduced, and their key properties will be examined.

The significance of Theorem 3 stems from its role in establishing Theorem 4,
previously introduced in [56], where researchers incorporated the universal set to derive
the super-topology.
Theorem 3. Let (V,R, ζκ) be a κ-NS. Then, for every κ, the class

S◦κ = {H ⊆V : H ⊆ Nκ(H)}
is a κ-generalized topology on V .

By incorporating the universal set V into the collection S◦κ, we obtain a κ-supra
topology Sκ on V for every κ, a concept that has been previously introduced and
explored in [56].
Theorem 4. Let (V,R, ζκ) be a κ-NS [56]. Then for each κ, the class

Sκ = {V} ∪ {H ⊆ V : H ⊆ Nκ(H)}

produces κ-supra topology on V .
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For each κ, the Sκ-lower, Sκ-upper approximations, and Sκ-accuracy of a set H
are respectively SκL(H) = Sκint(H), SκU(H) = Sκcl(H), Sκσ(H) = |SκL(H)|

|SκU(H)| , where
|SκU(H)|̸=0 [56].

The significance of Theorem 5 lies in its role in extending Theorem 3 through
the application of a primal concept. This leads to the emergence of a new structure,
known as the weak structure, which, upon the inclusion of the universal set, results in
the minimal topology, as demonstrated in Theorem 6.
Theorem 5. Let (V,R, ζκ) be a κ-NS, and let P be a primal on V . Then, for every κ,
the class

S◦Pκ = {H ⊆V : H \Nκ(H) ∈P}
is a κ-weak structure on V .

Proof. It is evident that ∅ belong to S◦Pκ . □
By including the universal setV in the collection S◦Pκ , the resulting structure forms

a κ-minimal structure on V .
Theorem 6. Let (V,R, ζκ) be a κ-NS, and let P be a primal on V . Then, for every κ,
the class

SPκ = {V} ∪ {H ⊆V : H \Nκ(H) ∈P}
is a κ-minimal structure on V .

Proof. Clearly V and ∅ belong to SPκ . □
The definition of SPκ utilizes the interplay between κ-neighborhood systems

and the primal P to establish a structural framework that satisfies the axioms of
minimal structures. This approach facilitates the exploration of generalized topological
concepts.

The triple system (V,R, SPκ ) is referred to as a κ-minimal topological structure
(abbreviated as κ-MTS), where SPκ is a κ-minimal topology on V , as constructed in
Theorem 6. A subset H of V is called a κ-minimal open if H ∈ SPκ , and it is termed
a κ-minimal closed if its complement belongs to SPκ . The collection of all κ-minimal
closed subsets of V is denoted by ΥP

κ .
Example 2. Let V = {a, b, c, d} and R = {(a, b), (a, c), (c, c), (d, b)}. If
P = 2V \ {V , {a, d}, {a, b, d}, {a, c, d}}, then SP⟨i⟩ = SP⟨r⟩ = SPi = SPr =

{∅,V, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {b, c}, {b, d}, {c, d}, {a, b, c}, {b, c, d}},
SPu = SPl = {∅,V, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {b, c}, {b, d}, {c, d}, {a, b, c},
{a, b, d}, {a, c, d}, {b, c, d}}, SP⟨u⟩ = SP⟨l⟩ = 2V .

It is essential to emphasize that the collection described in Theorem 6 does not
necessarily constitute a topology. To substantiate this observation, we present the
following remark:
Remark 5. Example 2 demonstrates that SPκ is not necessarily a topology.
1) {a, b}, {b, d} ∈ SPr , but the union {a, b, d} /∈ SPr ;
2) {a, b, d}, {a, c, d} ∈ SPl , but the intersection {a, d} /∈ SPl .

Recall that a relation R is referred to as inverse serial if every element in the set
has a nonempty l-neighborhood.
Corollary 2. IfR is a inverse serial on V , then S◦Pr = SPr .

One of the key findings of this study is the established relationship between
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the primal structure and the κ-minimal topology, as demonstrated in the following
proposition.
Proposition 2. Let (V,R, SPκ ) be a κ-MTS. Then, for every κ, the inclusion P ⊆ SPκ
is satisfied.

Proof. Let H ∈ P , then H \Nκ(H) ∈ P . This implies that H ∈ SPκ . Consequently,
P ⊆ SPκ . □
Remark 6. Example 2 illustrates that SPκ ⊈ P , for each κ.
Theorem 7. Let (V,R, SPκ ) be a κ-MTS, and let F,H ⊆ V . If F /∈ SPκ andH /∈ SPκ ,
then F ∪H /∈ SPκ .

Proof. Suppose F /∈ SPκ and H /∈ SPκ . This implies thatF,H are proper subsets of V
and satisfy F \ Nκ(F ) /∈ P and H \ Nκ(H) /∈ P . By the definition of a primal, it
follows that (F∩H)\(Nκ(F )∪Nκ(H)) /∈ P , which further implies (F∪H)\(Nκ(F )∪
Nκ(H)) /∈ P . Using Lemma 1 in [56], we conclude that (F ∪H) \Nκ(F ∪H) /∈ P .
Hence, F ∪H /∈ SPκ . □
Proposition 3. Let (V,R, SPκ ) be a κ-MTS. Then the following results hold.
1) SPi = SPr ∩ SPl ⊆ SPr ∪ SPl = SPu .
2) SP⟨i⟩ = SP⟨r⟩ ∩ SP⟨l⟩ ⊆ SP⟨r⟩ ∪ SP⟨l⟩ = SP⟨u⟩.

Proof. We will provide a proof for the first statement, noting that the second statement
can be demonstrated using a similar way.
1) Let H ∈ SPi . By definition, either H = V or H \ Ni(H) ∈P . Since Ni(H) =

Nr(H) ∩ Nl(H), it follows that H \ (Nr(H) ∩ Nl(H)) ∈P . This implies that
H \ Nr(H) ∈P and H \ Nl(H) ∈P . Consequently, H ∈ SPr ∩ SPl . Clearly,
SPr ∩ SPl ⊆ SPr ∪ SPl . Since SPu = SPr ∪ SPl , the proof is complete. □
Example 2 shows that the converse of Proposition 3 needs not to be true.

Theorem 8. Let (V,R, SPκ ) be a κ-MTS. Then, for every κ, the inclusion Sκ ⊆ SPκ
holds.

Proof. Let H ∈ Sκ, for every κ. By definition, either H = V or H ⊆ Nκ(H). This
implies that, H = V or H \ Nκ(H) = ∅. Since ∅ ∈ P , it follows that H ∈SPκ .
Therefore, we conclude that Sκ ⊆ SPκ , for every κ.
Remark 7. According to Theorem 8, the present work serves as a generalization of
the results established in [56]. However, the converse of Theorem 8 does not hold, as
demonstrated by the following example.
Example 3. Continued from Example 2. S⟨i⟩ = Si = Sr = {∅,V, {c}}, Sl =

{∅,V, {c}, {a, c}}, Su = {∅,V, {c}, {a, b}, {a, c}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d}},
S⟨r⟩ = {∅,V, {b}, {c}, {b, c}}, S⟨l⟩ = {∅,V, {a}, {c}, {d}, {a, c}, {a, d}, {c, d}, {a, c,
d}} and S⟨u⟩ = 2V . Consequently, SPκ ⊈ Sκ, for each κ.
Proposition 4. Let P, P̃ be two primals on (V,R). If P ⊆ P̃ , then SPκ ⊆ SP̃κ , for any
κ.

Proof. Direct to prove. □
Example 4 confirms that the converse of Proposition 4 needs not to be true.

Example 4. Continued fromExample 2. IfP = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c},
{a, b, c}}, P̃ = 2V \ {V , {b, d}, {a, b, d}, {b, c, d}} are two primals on V . Suppose
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that κ = r. Then, SPr = {∅,V, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}, and
SP̃r = 2V . Hence, SP̃r ⊈ SPr .
Theorem 9. Let (V,R, SPκ ) be a κ-MTS. Then,
1) SPκ is a discrete topological space, for each κ, ifR is a reflexive relation on V;
2) SPr = SPl = SPi = SPu and SP⟨r⟩ = SP⟨l⟩ = SP⟨i⟩ = SP⟨u⟩, ifR is a symmetric relation

on V .

Proof. 1) Since R is a reflexive relation on V , it follows from Proposition 1 that
H ⊆ Nκ(H) for each κ. Consequently, H ∈ SPκ , indicating that every subset
of V is an element of SPκ i.e SPκ = 2V . As a result, SPκ constitutes the discrete
topology on V .

2) According to Proposition 1, the proof is explicit. □
Corollary 3. Let (V,R, SPκ ) be a κ-MTS. If R is a reflexive relation on V , then SPκ
= Sκ.
Definition 7. Let SPκ be a κ-minimal topological space generated by κ-NS and a primal
P . For any subset H ⊆V , the κ-minimal interior and κ-minimal closure of H are
defined as follows, respectively:

SPκ int(H) = ∪{G ∈ SPκ : G ⊆H},
SPκ cl(H) = ∩{F ∈ ΥP

κ : H ⊆F}.
In the subsequent part, we introduce innovative approximation models founded on

the κ-minimal topology, which is constructed using κ-neighborhood systems (κ-NS)
and the primal P . Additionally, we explore several key properties of these models
and provide an algorithm to demonstrate the computation of SPκ -accuracy values. To
emphasize the importance of these models, we show that they not only enhance
the approximation process but also yield accuracy metrics that surpass those of the
Al-Shami and Alshammari model [56], regardless of the underlying relation.
Definition 8. Let H be a subset of a κ-MTS (V,R, SPκ ). For each κ, the SPκ -lower
approximation, SPκ -upper approximation, and SPκ -accuracy of H are assigned as
follows:
1) SPκL(H) = SPκ int(H);

2) SPκU(H) = SPκ cl(H);

3) SPκ σ̂(H) = |SPκ L(H)|
|SPκ U(H)| , where |S

P
κU(H)|̸=0.

It is demonstrable that the accuracy measure SPκ σ̂(H) satisfies the condition
0 ≤ SPκ σ̂(H) ≤ 1. When SPκ σ̂(H) approaches 1, it indicates that the SPκ -lower
and SPκ -upper approximations of H are nearly equal. This implies a higher level of
agreement between the approximations, leading to increased accuracy in representing
the subset H . If SPκ σ̂(H) = 1, then H is classified as an SPκ -exact set. Elsewise,
H is termed an SPκ -rough set, signifying the presence of uncertainty or imprecision
in its approximation. The statements in the following proposition illustrate the
effectiveness of the proposed approximations in retaining a significant number of
properties associated with Pawlak approximations.
Proposition 5. Let SPκ be a κ-minimal topological space generated by a κ-NS and a
primal P . Then, for H, H́ ∈ 2V , the following holds:
1) SPκL(∅) = SPκU(∅) = ∅ and SPκL(V) = SPκU(V) = V;
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2) SPκL(H) ⊆ H ⊆ SPκU(H);

3) SPκL(H) ⊆ SPκL(H́) and SPκU(H) ⊆ SPκU(H́), if H ⊆ H́;

4) SPκL(H ∩ H́) ⊆ SPκL(H)∩SPκL(H́) and SPκU(H)∪SPκU(H́) ⊆ SPκU(H ∪ H́);

5) SPκL(H)∪SPκL(H́) ⊆ SPκL(H ∪ H́) and SPκU(H ∩ H́) ⊆ SPκU(H)∩SPκU(H́);

6) SPκL(SPκL(H)) = SPκL(H) and SPκU(SPκU(H)) = SPκU(H);

7) SPκL(Hc) = (SPκU(H))c and SPκU(Hc) = (SPκL(H))c.

Proof. Straightforward. □
Remark 8. It should be noted that the reverse relations of item (5) of the above
Proposition need not be true, as illustrated in the application example in Section 4.
Proposition 6. Let H be a subset of a κ-MTS (V,R, SPκ ). For each κ, the following
statements hold:
1) SκL(H) ⊆ SPκL(H);

2) SPκU(H) ⊆ SκU(H);

3) Sκσ(H) ≤ SPκ σ̂(H).

Proof. In view of Theorem 8, the proof is clear. □
Proposition 7. Let H be a subset of a κ-MTS (V,R, SPκ ). For each κ, the following
statements hold:
1) If H ∈ SPκ , then SPκL(H) = H;

2) If H ∈ ΥP
κ , then SPκU(H) = H .

Proof. Direct to prove. □
The following propositions are self-evident, and therefore, the proof is omitted.

Proposition 8. Let H be a subset of a κ-MTS (V,R, SPκ ). For each κ, the following
statements hold:
1) SPi L(H) ⊆ SPr L(H) ⊆ SPuL(H) and SPi L(H) ⊆ SPl L(H) ⊆ SPuL(H);

2) SPuU(H) ⊆ SPr U(H) ⊆ SPi U(H) and SPuU(H) ⊆ SPl U(H) ⊆ SPi U(H);

3) SPi σ̂(H) ≤ SPr σ̂(H) ≤ SPu σ̂(H) and SPi σ̂(H) ≤ SPl σ̂(H) ≤ SPu σ̂(H);

4) SP⟨i⟩L(H) ⊆ SP⟨r⟩L(H) ⊆ SP⟨u⟩L(H) and SP⟨i⟩L(H) ⊆ SP⟨l⟩L(H) ⊆ SP⟨u⟩L(H);

5) SP⟨u⟩U(H) ⊆ SP⟨r⟩U(H) ⊆ SP⟨i⟩U(H) and SP⟨u⟩U(H) ⊆ SP⟨l⟩U(H) ⊆ SP⟨i⟩U(H);

6) SP⟨i⟩σ̂(H) ≤ SP⟨r⟩σ̂(H) ≤ SP⟨u⟩σ̂(H) and SP⟨i⟩σ̂(H) ≤ SP⟨l⟩σ̂(H) ≤ SP⟨u⟩σ̂(H).

Theorem 10. Let P, P̃ be two primals on (V,R) and let H ⊆ V . If P ⊆ P̃ , then the
following statements hold:
1) SPκL(H) ⊆ SP̃κL(H);

2) SPκU(H) ⊇ SP̃κU(H);

3) SPκ σ̂(H) ≤ SP̃κ σ̂(H).

In Algorithm Figure 1 and the accompanying Flowchart in Figure 2, we detail the
procedure for determining whether a subset within a κ-minimal topology is SPκ -exact
or SPκ -rough. This method offers a systematic approach to assess the characteristics of
subsets based on their alignment with the minimal κ-approximation framework.
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Figure 1. Algorithm for identifying SPκ -exact and SPκ -rough sets within the framework k-minimal topological structure
(V,R, SPκ ).

11



Mathematics and Systems Science 2025, 3(1), 3202.

Figure 2. Flowchart for identifying SPκ -exact and SPκ -rough subsets in κ-minimal topologies.
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4. Dengue fever: A case study on symptom analysis and
approximation models

Dengue fever is a significant global health concern, caused by a virus transmitted
to humans through infected mosquitoes [57]. Symptoms generally manifest on the third
day of infection, with recovery typically occurring within 2 to 7 days. According to
the World Health Organization (WHO), this disease has spread to over 120 countries,
leading to a significant number of fatalities worldwide, particularly in Asia and South
America [58]. Given its global impact, this study employs the proposed approach to
analyze dengue fever data.

The dataset, illustrated inTable 1, captures critical aspects of the disease. Columns
identify dengue fever symptoms : joint and muscle aches (o1), headache with vomiting
(o2), skin rashes (o3), and fever (o4), categorized into three levels: normal (n), high (h),
and very high (vh). The decision column (D) indicates whether a patient is infected or
not. Rows correspond to the patients under study, denoted as V = {ϵi : i = 1, 2, ..., 8}.
A check mark (✓) signifies the presence of a symptom, while (×) indicates its absence.

Table 1. Dengue fever information system.

V o1 o2 o3 o4 Dengue fever

ϵ1 ✓ ✓ ✓ h ✓
ϵ2 ✓ × × h ×
ϵ3 ✓ × × h ✓
ϵ4 × × × vh ×
ϵ5 × ✓ ✓ h ×
ϵ6 ✓ ✓ × vh ✓
ϵ7 ✓ ✓ × n ×
ϵ8 ✓ ✓ × vh ✓

4.1. Quantifying symptom similarity
Tomeasure the similarity between patients based on their symptoms, the attributes

{o1, o2, o3, o4} are transformed into numerical values reflecting the degree of similarity
as shown in Table 2. The similarity degree function between two patients c, d, denoted
as µ(c, d), is computed using the formula:

µ(c, d) =

∑m
i=1(ai(c) = ai(d))

m
,

wherem denotes the total number of symptoms (attributes).
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Table 2. Similarity degrees between symptoms of patients.

V ϵ1 ϵ2 ϵ3 ϵ4 ϵ5 ϵ6 ϵ7

ϵ1 1 0.5 0.5 0 0.75 0.5 0.5
ϵ2 0.5 1 1 0.5 0.25 0.5 0.5
ϵ3 0.5 1 1 0.5 0.25 0.5 0.5
ϵ4 0 0.5 0.5 1 0.25 0.5 0.25
ϵ5 0.75 0.25 0.25 0.25 1 0.25 0.25
ϵ6 0.5 0.5 0.5 0.5 0.25 1 0.75
ϵ7 0.5 0.5 0.5 0.25 0.25 0.75 1

4.2. Defining a relation
A relationR is proposed based on expert recommendations, defined as follows:

(c, d) ∈ R ⇔ 1 > s(c, d) > 0.7,

where µ(c, d) quantifies the ratio of the sum of similar symptoms between c, d relative
to the total number of symptoms.

The relation and the threshold value can be adjusted according to system experts’
preferences. Notably, the proposed relation R is symmetric but lacks additional
properties. As a result, Pawlak’s approximation space is insufficient to effectively
describe this system.

4.3. Neighborhood systems and analysis
Using Definition 4, the Nr neighborhood can be computed for each patient ϵi,

where i = 1, 2, ..., 8. Based on these neighborhoods, we construct:
1) The supra topology Sr The supra topology Sr, which captures broader

relationships among patient symptoms.
Sr = {∅, {ϵ1, ϵ2}, {ϵ1, ϵ3}, {ϵ1, ϵ5}, {ϵ1, ϵ6}, {ϵ1, ϵ7}, {ϵ2, ϵ4}, {ϵ2, ϵ6}, {ϵ2, ϵ7}, {ϵ3, ϵ4}, {ϵ3, ϵ6},
{ϵ3, ϵ7}, {ϵ4, ϵ6}, {ϵ6, ϵ7}, {ϵ1, ϵ2, ϵ3}, {ϵ1, ϵ2, ϵ4}, {ϵ1, ϵ2, ϵ5}, {ϵ1, ϵ2, ϵ6}, {ϵ1, ϵ2, ϵ7}, {ϵ1, ϵ3, ϵ4},
{ϵ1, ϵ3, ϵ5}, {ϵ1, ϵ3, ϵ6}, {ϵ1, ϵ3, ϵ7}, {ϵ1, ϵ4, ϵ6}, {ϵ1, ϵ5, ϵ6}, {ϵ1, ϵ5, ϵ7}, {ϵ1, ϵ6, ϵ7}, {ϵ2, ϵ3, ϵ4},
{ϵ2, ϵ3, ϵ6}, {ϵ2, ϵ3, ϵ7}, {ϵ2, ϵ4, ϵ6}, {ϵ2, ϵ4, ϵ7}, {ϵ2, ϵ6, ϵ7}, {ϵ3, ϵ4, ϵ6}, {ϵ3, ϵ4, ϵ7},
{ϵ3, ϵ6, ϵ7}, {ϵ4, ϵ6, ϵ7}, ...,V}.

2) The minimal topology SPr , which integrates the primal structure P for more
refined analyses.

If Pϵ3 = {M ⊆ V : ϵ3 /∈ M} is a primal, then SPr = {∅, {ϵ1}, {ϵ2}, {ϵ4}, {ϵ5}, {ϵ6}, {ϵ7}, {ϵ1, ϵ2},
{ϵ1, ϵ3}, {ϵ1, ϵ4}, {ϵ1, ϵ5}, {ϵ1, ϵ6}, {ϵ1, ϵ7}, {ϵ2, ϵ4}, {ϵ2, ϵ5}, {ϵ2, ϵ6}, {ϵ2, ϵ7}, {ϵ3, ϵ4}, {ϵ3, ϵ6},
{ϵ3, ϵ7}, {ϵ4, ϵ5}, {ϵ4, ϵ6}, {ϵ4, ϵ7}, {ϵ5, ϵ6}, {ϵ5, ϵ7}, {ϵ6, ϵ7}, {ϵ1, ϵ2, ϵ3}, {ϵ1, ϵ2, ϵ4}, {ϵ1, ϵ2, ϵ5},
{ϵ1, ϵ2, ϵ6}, {ϵ1, ϵ2, ϵ7}, {ϵ1, ϵ3, ϵ4}, {ϵ1, ϵ3, ϵ5}, {ϵ1, ϵ3, ϵ6}, {ϵ1, ϵ3, ϵ7}, {ϵ1, ϵ4, ϵ5}, {ϵ1, ϵ4, ϵ6},
{ϵ1, ϵ4, ϵ7}, {ϵ1, ϵ5, ϵ6}, {ϵ1, ϵ5, ϵ7}, {ϵ1, ϵ6, ϵ7}, {ϵ2, ϵ3, ϵ4}, {ϵ2, ϵ3, ϵ6}, {ϵ2, ϵ3, ϵ7}, {ϵ2, ϵ4, ϵ5},
{ϵ2, ϵ4, ϵ6}, {ϵ2, ϵ4, ϵ7}, {ϵ2, ϵ5, ϵ6}, {ϵ2, ϵ5, ϵ7}, {ϵ2, ϵ6, ϵ7}, {ϵ3, ϵ4, ϵ5}, {ϵ3, ϵ4, ϵ6}, {ϵ3, ϵ4, ϵ7},
{ϵ3, ϵ5, ϵ6}, {ϵ3, ϵ5, ϵ7}, {ϵ3, ϵ6, ϵ7}, {ϵ4, ϵ5, ϵ6}, {ϵ4, ϵ5, ϵ7}, {ϵ4, ϵ6, ϵ7}, {ϵ5, ϵ6, ϵ7}, ...,V}.

It is evident that Sr ⊆ SPr . Table 3 provides a comparative analysis of the accuracy
measures derived from SPr and Sr for some subsets of V . The results clearly indicate
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that incorporating the concept of primal structures within SPr leads to a higher degree of
accuracy compared to the approximations obtained solely from Sr. This improvement
highlights the significance of integrating primal elements into the minimal topological
framework to enhance precision and refine the resulting approximations.

Table 3. Comparison between accuracy measures obtained from Sr, and SPr for some
subsets of V .

H ⊆ V Srσ(H) SPr σ̂(H)

{ϵ1} 0 1
{ϵ2, ϵ3} 0 0.5
{ϵ1, ϵ3, ϵ4} 0.75 1
{ϵ1, ϵ3, ϵ6} 0.75 1
{ϵ1, ϵ4, ϵ5} 0.66 1
{ϵ2, ϵ4, ϵ5, ϵ7} 0.75 1

5. Conclusion

This study tackles the challenge of managing uncertainty in real-world systems
by extending the classical rough set framework. Traditional rough set theory, with
its reliance on rigid equivalence relations, often falls short when addressing the
imprecision inherent in complex data. By integrating κ-neighborhood systems with
primal structures, we have constructed eight novel minimal topologies—parameterized
by κ ∈ {r, l, i, u, ⟨r⟩, ⟨l⟩, ⟨i⟩, ⟨u⟩}—which provide a more flexible and less restrictive
approximation space.

Our theoretical contributions offer enriched structural properties through the
extension by primals, enabling a broader framework for analyzing and modeling
topological systems. Detailed comparative analyses of these minimal structures reveal
their interrelations and distinct characteristics, while the introduction of novel rough
approximations underscores the practical potential of our approach.

Furthermore, the application of this framework to dengue fever data demonstrates
its versatility. Dengue fever, a critical global health concern with widespread impact in
Asia, South America, and beyond, serves as a compelling case study for the proposed
methodology. By applying our enhanced approximation techniques, we provide fresh
insights into the data patterns associated with the disease, highlighting the framework’s
capability to handle real-world complexities.

In summary, this work significantly advances the theoretical foundations of rough
set theory and opens new avenues for practical applications across diverse fields such
as engineering, artificial intelligence, and medical diagnostics.

5.1. Key contributions
The main contributions of this research include:

1) Novel minimal topologies: Eight distinct minimal topologies were constructed
using Nκ-neighborhood systems and primals. These constructions relax the
traditional union and intersection conditions, broadening the applicability of

15



Mathematics and Systems Science 2025, 3(1), 3202.

topological methods.
2) Interrelations and conditions: The relationships among these minimal

topologies were systematically analyzed, with specific conditions identified
under which some topologies coincide.

3) New rough set models: Utilizing the developed minimal topologies, innovative
rough set models were proposed, providing refined tools for handling uncertainty
in data.

4) Applications and metrics: The study demonstrated the classification of regions
within subsets and computed accuracy measures for these approximations,
highlighting the practical utility of the proposed theoretical framework.

5.2. Significance
This research bridges the gap between classical topology and rough set theory,

offering a versatile toolset for addressing uncertainties in diverse domains such as
artificial intelligence, engineering, and medical sciences. By relaxing traditional
constraints, the proposed minimal topologies enable more flexible and efficient
modeling of complex systems.

5.3. Future directions
The framework established in this study opens several avenues for further

investigation:
1) Enhanced computational techniques: Development of efficient algorithms for

implementing the proposed rough set models in large-scale datasets.
2) Integrationwith othermathematicalmodels: Exploration of synergies between

minimal topologies and alternative uncertainty modeling approaches, such as
fuzzy sets and probabilistic models.

3) Domain-specific applications: Adaptation and application of the developed
models to real-world problems, particularly in fields like bioinformatics,
decision-making, and pattern recognition, for instance in the fields [59–61].

4) Extensions to dynamic systems: Investigation of the applicability of minimal
topologies to evolving systems where the underlying structures change over time.
In conclusion, the minimal topologies introduced in this manuscript offer a robust

and adaptable framework for advancing the theoretical and practical dimensions of
rough set theory. The findings not only deepen our understanding of topological
constructs but also provide a foundation for innovative applications across various
disciplines.
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