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Abstract: The second-order nonlinear diffusion parabolic partial differential equations models
have been widely applied in image restoration. However, the numerical results in the literature
treat only the case without source term. In this paper, we have developed a general calculation
code which is based in a consistent explicit approximation finite difference method scheme.
Furthermore, the paper provides satisfying answers with a nonlinear source term relying on the
image solution and its gradient. Numerical experiments are presented to show the robustness of
the cases with source term to obtain better results in image denoising restoration using measures
as Peak Signal-to-Noise Ratio (PSNR) and SNR of filtering and noisy image.
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1. Introduction

The Perona-Malik equation, introduced in 1987 [1], is seen as among the earliest
efforts to derive a model incorporating local information within a PDE framework. It
has sparked significant interest within the image processing community [2–9]. Perona
and Malik developed a nonlinear diffusion model, termed ‘anisotropic’ to address
issues such as edge blurring localization problems that arise in linear diffusion models.
They implemented a diffusion process where the diffusivity is guided by derivatives
of the evolving image. The formulation that has garnered considerable interest is the
mathematically rigorous one by Catté et al. [10], which we will elaborate on in the
second section.

Althoug nonlinear second-order PDEs successfully address the limitations of
traditional 2D filters by preventing image blurring, preserving the edges effectively,
and exhibiting good localization properties, they frequently suffer from another
undesirable effect: the so-called staircase, or blocky, effect. In recent years, numerous
second-order nonlinear diffusion-based restoration techniques have been proposed to
mitigate this effect. Notable examples include various enhanced versions of the
Perona-Malik algorithm and TV denoising, such as those discussed in [2,6,9].

In this paper, we summed up the existing nonlinear diffusion models and
theoretical results on existence and uniqueness in the literature [2, 8, 11–14]. The
Section 3, a consistent explicit numerical approximation scheme based on the finite
difference method has been developed for the proposed PDE models. We use an
explicit scheme with Dirichlet, Neumann boundary conditions. In Section 4, the
nonlinear second-order diffusion-based filtering technique proposed here has been
tested on some medical images affected by Gaussian noise, salt and pepper and
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Speckle noises, satisfactory restoration results being achieved by using measures as
Peak Signal-to-Noise Ratio (PSNR) of filtering and noisy image.

2. Nonlinear diffusion models in image processing

In 2009, the study of Morfu [15] was focused on the contrast enhancement and
noise filtering. He considers the Fisher equation, which generally allows simulating
the transport mechanisms in living cells, but also enhances the contrast and segmenting
images.

After that in 2014, the work of Noureddine Alaa et al. [11] are to modify the model
of Morfu . The proposed model is as follows:

∂u
∂t − div[g(|∇uσ|)∇u] = f(t, x, u) in QT

u(0, x) = u0(x) ≥ 0 in Ω
∂u
∂ν = 0 on ΣT

(1)

where Ω =]0, 1[×]0, 1[, QT =]0, T [×Ω and ΣT =]0, T [×∂Ω, where (T > 0),

Gσ(x) =
1√
2πσ

e−(
|x|2
4σ

), x ∈ R2, σ > 0 and ∇uσ = ∇(u ∗Gσ) = u ∗ ∇Gσ.

The general case f = (t, x, u,∇u) was treated by Al-hamzah and Yebari [13]
under the following assumptions:

(Hg) g : [0,+∞[→ [0,+∞[ is a smooth non-increasing function, where g(0) > 0

and lim
s→+∞

g(s) = 0.

(Hf )1 f : QT ×R×RN → R is measurable and f(t, x, ...) : R×RN → R are locally
Lipshitz continuous: (∃r > 0, for almost (t, x) ∈ QT / |f(t, x, u, p) − f(t, x, û,p̂)| ≤
M(r)[|u− û|+ ∥p− p̂∥]) for all 0 ≤ |u|, |û|, ∥p∥, ∥p̂∥ ≤ r. (Hf )2 for almost (t, x) ∈

QT , f(t, x, 0, 0) ≥ 0.

(Hf )3 ∀(u, p) ∈ R× RN and for almost (t, x) ∈ QT , uf(t, x, u, p) ≤ 0.

(Hf )4 |f(t, x, u,∇u)| ≤ C(|u|)[F (t, x) + |∇u|2] where C : [0,+∞[→ [0,+∞[ is

non-decreasing, F ∈ L1(QT ) and |∇u|2 = ( ∂u
∂x1

)2 + ( ∂u
∂x2

)2.

Remark 1. A typical examples where the result of this paper can be applied are
(i) Three of the diffusivity Perona and Malik [1] are

g(s) =
1

1 + s2
+ α, g(s) =

1√
1 + s2

+ α, or g(s) = exp(−(1 +
s

λ
)) + α

where λ is a threshold (contrast) parameter that separates forward and backward
diffusion, α is a threshold (contrast) parameter in the work of (Aboulaich et al. [1]).
(ii) f(t, x, u,∇u) = −βu(u− a)2τ (1− u)2γ + a11u|∇u|τ , 1 ≤ τ < 2, where β, γ >

0, τ, γ ̸= 1
2 and 0 < a < 1, a11 ≤ 0.

3. Discretisation

In this section, the proposed nonlinear diffusion model is discretized by using the
finit-difference method, a consistent explicit numerical approximation scheme is
developed for the proposed PDE models.

The case K(u) = g(|∇u|). For the temporal discretization of the time derivative
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we have:
∂u

∂t
(i, j) =

un+1(i, j)− un(i, j)

dt

dt time steps size, for the discrete divergence approximation:

div(K(un)∇un) =
∂

∂x
(K(un)

∂un

∂x
) +

∂

∂y
(K(un)

∂un

∂y
)

suppose ∂
∂x(K(un)∂u

n

∂x ) = Dxxu
n

Kxp = kx(u
n)i+ 1

2
=

K(un)(i+ 1, j) +K(un)(i, j)

2

Kxm = kx(u
n)i− 1

2
=

K(un)(i, j) +K(un)(i− 1, j)

2

and
[
∂

∂x
un]+(i, j) = Dxu

n
p =

un(i+ 1, j)− un(i, j)

dx

[
∂

∂x
un]−(i, j) = Dxu

n
m =

un(i, j)− un(i− 1, j)

dx

that leads to

∂

∂x
(K(un)

∂un

∂x
)(i, j) = Dxxu

n(i, j) =
kx(u

n)i+ 1
2
[ ∂
∂xu

n]+(i, j)− kx(u
n)i− 1

2
[ ∂
∂xu

n]−(i, j)

dx

suppose ∂
∂y (K(un)∂u

n

∂y ) = Dyyu
n

Kyp = ky(u
n)i+ 1

2
=

K(un)(i, j + 1) +K(un)(i, j)

2

Kym = ky(u
n)i− 1

2
=

K(un)(i, j) +K(un)(i, j − 1)

2

and
[
∂

∂y
un]+(i, j) = Dyu

n
p =

un(i, j + 1)− un(i, j)

dy

[
∂

∂x
un]−(i, j) = Dyu

n
m =

un(i, j)− un(i, j − 1)

dy

that leads to

∂

∂y
(K(un)

∂un

∂y
)(i, j) = Dyyu

n(i, j) =
ky(u

n)i+ 1
2
[ ∂
∂yu

n]+(i, j)− ky(u
n)i− 1

2
[ ∂
∂yu

n]−(i, j)

dy

Finally, we obtain the explicit scheme

un+1(i, j) = un(i, j) + dt(Dxxu
n(i, j) +Dyyu

n(i, j)) + dt(fn(i, j))

where
fn(i, j) = f(xi, yj , tn), u

n(i, j) = u(xi, yj , tn), xi = (i−1)dx, yj = (j−1)dy,

tn = (n−1)dt, n = 1, ..., ntwherent−1 = tend
dt , i = 2 to nx−1, and j = 2 to ny−1.

Boundary conditions, Neumann conditions
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u(i, 1) = u(i, 2), where 2 ≤ i ≤ nx− 1 we have

un+1(i, 1) = un(i, 2) + dt(Dxxu
n(i, 2) +Dyyu

n(i, 2)) + dt(fn(i, 2))

u(i, ny) = u(i, ny − 1), 2 ≤ i ≤ nx− 1 we have

un+1(i, ny) = un(i, ny − 1) + dt(Dxxu
n(i, ny − 1) +Dyyu

n(i, ny − 1)) + dt(fn(i, ny − 1))

u(1, j) = u(2, j), where 2 ≤ j ≤ ny − 1 we have

un+1(1, j) = un(2, j) + dt(Dxxu
n(2, j) +Dyyu

n(2, j)) + dt(fn(2, j))

u(nx, j) = u(nx− 1, j), 2 ≤ j ≤ ny − 1 we have

un+1(nx, j) = un(nx− 1, j) + dt(Dxxu
n(nx− 1, j) +Dyyu

n(nx− 1, j)) + dt(fn(nx− 1, j))

4. Experiments for medical images

The nonlinear second-order diffusion-based filtering technique proposed here
has been tested on some medical images affected by Gaussian noise, salt and pepper
and Speckle noises, satisfactory restoration results being achieved. We obtain the best
results for the nonlinear models on images filtering and noises for α = 0, on all type
of filters presenting in the literature [2,14,16] and the case f = −u(1− u)2 − u|∇u|.
With

g(s) =
1

1 + s2
+ α, g(s) =

1√
1 + s2

+ α, or g(s) = exp(−(1 +
s

λ
)) + α

where λ is a threshold (contrast) parameter that separates forward and backward
diffusion.

We remark that the model proposed by Aboulaich et al. [2] gives a better solution
for a small values of α and they had taken h = dx = dy = 1. While in this work we
get better results for α = 0 Figures 1 and 2. As shown in Figures 3 and 4, we obtain
bad image restoration when setting large α. The performance of this PDE filtering
approach has been assessed by using measures as Peak Signal-to-Noise Ratio (PSNR).
the values provided by our technique and other filtering approaches are displayed in
Tables 1–4. One can see the convolution with the Gaussian filter Gσ, represents the
best enhancement result, with g(s) = exp(−(1 + s

λ)), where λ = 0.01.

Figure 1. Influence of the parameter α = 0 on the restored image after noise-type (salt
and pepper).
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Figure 2. Influence of the parameter α = 0 on the restored image after noise-type (salt
and pepper).

Figure 3. Influence of the parameter α = 10 on the restored image.

Figure 4. Influence of the parameter α = 10 on the restored image.

PSNR values achieved by the nonlinear restoration method are displayed In the
following tables.

Some restoration results provided by these techniques are displayed in Figure 1.
The original [443× 443]. The results produced by the [3× 3], 2D filters.

Table 1. Evaluation of the noise suppression by the nonlinear restoration method.

g(s) = 1
1+s2

g(s) = 1√
1+s2

g(s) = e−(1+ s
λ
) σ

f = 0
PSNR 20.8626 20.7568 20.7528 0.0090
SNR 11.0666 10.9608 10.9568

f = 1− u2
PSNR 20.7948 20.7247 20.7070 0.0090
SNR 10.9988 10.9287 10.9110

f = −u(1− u)2 − u|∇u|
PSNR 20.8305 20.7638 20.7574 0.0090
SNR 11.0345 10.9679 10.9614

Some restoration results provided by these techniques are displayed in Figure 2.
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The original [256× 256]. The results produced by the [3× 3], 2D filters.

Table 2. Evaluation of the noise suppression by the nonlinear restoration method.

g(s) = 1
1+s2

g(s) = 1√
1+s2

g(s) = e−(1+ s
λ
) σ

f = 0
PSNR 20.8880 20.6875 20.6362 0.9000
SNR 10.6348 10.4343 10.3831

f = 1− u2
PSNR 20.7390 20.8943 20.6852 0.0090
SNR 10.4859 10.6411 10.4321

f = −u(1− u)2 − u|∇u|
PSNR 20.8859 20.7015 20.6495 0.0090
SNR 10.6328 10.4483 10.3963

Some restoration results provided by these techniques are displayed in Figure 3.
The original [607× 607]. The results produced by the [3× 3], 2D filters.

Table 3. Evaluation of the noise suppression by the nonlinear restoration method.

g(s) = 1
1+s2

g(s) = 1√
1+s2

g(s) = e−(1+ s
λ
) σ

f = 0
PSNR 21.6877 21.6718 21.6569 0.9950
SNR 15.0082 14.9924 14.9774

f = 1− u2
PSNR 21.7085 21.6550 21.6348 0.9500
SNR 15.0290 14.9756 14.9553

f = −u(1− u)2 − u|∇u|
PSNR 21.6978 21.7412 21.6544 0.0100
SNR 15.0184 15.0618 14.9749

Some restoration results provided by these techniques are displayed in Figure 4.
The original [512× 512]. The results produced by the [3× 3], 2D filters.

Table 4. Evaluation of the noise suppression by the nonlinear restoration method.

g(s) = 1
1+s2

g(s) = 1√
1+s2

g(s) = e−(1+ s
λ
) σ

f = 0
PSNR 20.7650 20.7397 20.7007 0.0002
SNR 12.5775 12.5523 12.5132

f = 1− u2
PSNR 20.7790 20.6878 20.6865 0.0002
SNR 12.5916 12.5004 12.4991

f = −u(1− u)2 − u|∇u|
PSNR 20.7794 20.7323 20.7236 0.0010
SNR 12.5920 12.5449 12.5361

5. Conclusion

This paper develops a general calculation code for testing all type of filters
presenting in the literature [2,14]. To the best of our knowledge, the numerical results
in the literature treat only the case without source term. This work provides satisfying
answers with a nonlinear source term relying on the image solution and its gradient.
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The method introduced in this paper has been validated by comparing the exact
solution with the numerical solution. Furthermore, a consistent explicit numerical
approximation scheme based on the finite difference method has been developed for
the proposed PDE models. The result showed that the cases with source term are the
most accurate models appears using measures as Peak Signal to-Noise Ratio (PSNR)
of filtering and noisy image, as shown in Tables 1–4, and Figures 1–4.
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