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Abstract: Soft sets provide a strong mathematical foundation for managing 

uncertainty and inventing solutions to parametric data problems. Soft set operations 

are fundamental elements within soft set theory. In this paper, we introduce a new 

product operation for soft sets, called the “soft lambda-product,” and thoroughly 

examine its algebraic properties in relation to various types of soft equalities and 

subsets. By studying the distribution of the soft lambda-product over different soft set 

operations, we further investigate its relationship with other soft set operations. We 

conclude with an example demonstrating the method’s effectiveness across various 

applications, employing the int-uni operator and int-uni decision function within the 

soft lambda-product for the int-uni decision-making method, which identifies an 

optimal set of elements from available options. This work significantly contributes to 

the soft set literature, as the theoretical foundations of soft computing methods rely on 

solid mathematical principles. 
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1. Introduction 

George Cantor developed modern set theory, which serves as the basis for all 

mathematics. Since mathematics demands accuracy in all notions, including sets, 

ambiguity is one issue associated with the idea of a set. For a long time, 

mathematicians, logicians, and philosophers have struggled with this ambiguity or 

representation of incomplete knowledge. In recent years, computer scientists have also 

been more concerned about it, especially in the field of artificial intelligence. 

Numerous mathematical techniques, including probability theory, fuzzy set theory [1], 

and interval mathematics, are available for modeling complex systems; nevertheless, 

each has its own set of drawbacks. Setting membership values is a known problem in 

fuzzy set theory, interval mathematics suffers with fluctuating uncertainty, and 

probability theory only works with stochastically stable systems. Furthermore, the 

efficiency of these tools is limited by their lack of parameterization, particularly in 

complicated fields like economics, environmental science, and the social sciences. In 

1999, Russian scholar Molodtsov [2] presented soft set theory as a completely general 

mathematical technique for describing uncertainty. Because there are no rigid 

restrictions on item descriptions, researchers are free to modify parameters as 

necessary, which significantly streamlines and improves decision-making, particularly 

in situations when information is lacking. Soft set theory distinguishes itself by 

overcoming the challenges and providing a wider range of applications in 

multidimensional disciplines. 
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A soft set, which consists of an approximate value set and a predicate, provides 

a rough description of an item. Although precise answers are required for models in 

classical mathematics, approximation techniques are employed for complicated 

models that lack precise solutions. Soft set theory, on the other hand, does not require 

a precise solution concept because the original description of an item is by nature 

approximate. Molodtsov [2] showed how versatile soft set theory is by effectively 

using it in a variety of fields, such as Riemann integration, operations research, game 

theory, and function smoothness. After Maji et al. [3] applied soft set theory to a 

decision-making issue for the first time, several researchers [4–10] created early soft 

set-based decision-making techniques. The “uni-int decision-making” method, a well-

known soft set-based technique, was first published by Çağman and Enginoğlu [11]. 

Later, soft matrix-based decision techniques for the OR, AND, AND-NOT, and OR-

NOT operations were presented [12]. Soft set theory has been widely used in decision-

making as these techniques have shown to be successful in managing uncertainty and 

other real-world issues [13–24]. 

The fundamentals of soft set theory have advanced significantly in the last several 

years. A thorough theoretical framework including soft subsets, soft set equality, and 

soft set operations like union, intersection, and AND/OR products was provided by 

Maji et al. [25]. These ideas were further developed by Pei and Miao [26], who 

redefined intersection and subset relations and looked at links to information systems. 

Other operations, such as restricted union, restricted intersection, restricted difference, 

and extended intersection, were added by Ali et al. [27]. Later works [28–41] 

addressed conceptual inconsistencies in earlier soft set research, suggested 

enhancements, and investigated the algebraic structure of soft sets. Whereas Eren and 

Çalışıcı [42] established a new kind of difference operation for soft sets, Stojanovic 

[43] investigated the extended symmetric difference of soft sets. Since then, other 

novel soft set operations have been proposed and examined [44–49]. 

The fundamental ideas of soft set theory are subsets and soft equality relations. 

The concept of soft subsets was first put out by Maji et al. [25] and subsequently 

expanded upon by Pei and Miao [26] and Feng et al. [29]. Two novel kinds of 

congruence relations and soft equal relations on soft sets were presented by Qin and 

Hong [50]. Maji’s soft distributive laws were modified by Jun and Yang [51], who 

further extended soft equal relations by using a wider variety of soft subsets. For 

consistency, J-soft equal relations were established in this study. Noting that not all 

soft equalities adhere to distributive rules, Liu et al. [52] were motivated by these 

advancements to propose soft L-subsets and soft L-equal relations. 

Building on past work, Feng et al. [53] extended the categories of soft subsets 

and explored the algebraic aspects of soft product operations, encompassing laws of 

distribution, commutativity, and association, among other qualities. Using soft L-

subsets, they investigated soft products like AND and OR products, looking at these 

operations under J-equality and L-equality. They also showed that commutative 

semigroup structures are compatible with soft L-equal relations. See [54–58] for 

further information on soft equal relations. Molodtsov’s initial idea of soft sets was 

improved by Çağman and Enginoğlu [11], who also established several products in 

soft set theory, such as uni-int decision functions, AND-products, OR-products, AND-

NOT-products, and OR-NOT-products. They used these items to propose a systematic 
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decision-making process for choosing the best possibilities among alternatives, 

offering a real-world illustration of how this strategy may deal with ambiguity. A 

thorough study of the AND-product was carried out by Sezgin et al. [59], who explored 

its algebraic characteristics (such as idempotent, commutative, and associative laws) 

and contrasted them with characteristics of various soft equalities, such as soft F, M, 

L, and J equalities. It was shown that the set of all soft sets over the universe constitutes 

a commutative hemiring with identity under soft L-equality when the restricted or 

extended union is combined with the AND-product. Additionally, they proved that 

this property also applies when the restricted or extended symmetric difference is 

paired with the AND-product, forming another commutative hemiring with identity 

within the framework of soft L-equality. 

Çağman and Enginoğlu [11] defined OR-NOT product for soft sets, the domain 

of the approximation function of which is ExE. They also show that this product is not 

commutative and associative under M-equality, but holds De Morgan Laws. 

This work presents a novel product operation in soft set theory, which we term 

the “soft lambda-product.” Unlike the OR-NOT product for soft sets defined in [11], 

the domain of the approximation function of soft lambda-product is the cartesian 

product of the parameter sets’ of the soft sets, that is, not ExE. We illustrate this 

operation with an example and analyze its algebraic features with respect to certain 

forms of equality and soft subsets, such as M-subset/equality, F-subset/equality, L-

subset/equality, and J-subset/equality. We also look at this product’s distributional 

characteristics over certain different soft set operations. Lastly, we apply the soft 

decision-making technique to soft lambda-product to choose the best possibilities in a 

decision-making situation, and we provide an example to show how successful it is. 

By developing theoretical underpinnings necessary for soft computing applications, 

this study adds to the body of literature on soft sets. The structure of the paper is as 

follows: An outline of the main ideas in soft set theory is given in Section 2. In the 

third section, we present the soft lambda-product and explore its algebraic 

characteristics in relation to several soft equalities and subsets. The use of int-uni and 

soft lambda-product decision operators in decision-making is examined with a 

practical example of how this approach may handle uncertainty in Section 4. The last 

part contains concluding observations. 

2. Preliminaries 

Definition 1. [1] Let 𝑈  be the universal set, 𝐸  be the parameter, and 𝑃(𝑈)  be the 

power set of 𝑈 and 𝒦 ⊆ 𝐸. A pair (𝔍, 𝒦) is called a soft set over 𝑈 where 𝔍 is a set-

valued function such that 𝔍: 𝒦 → 𝑃(𝑈). 

Although Çağman and Enginoğlu [11] modified Molodstov’s concept of soft sets, 

we continue to use the original definition of soft set in our work. Throughout this 

paper, the collection of all the soft sets defined over U is designated as SE(U). Let 𝒦 

be a fixed subset of E and S𝒦(U) be the collection of all those soft sets over U with 

the fixed parameter set 𝒦. That is, while in the set S𝒦(U), there are only soft sets 

whose parameter sets are 𝒦; in the set SE(U), there are soft sets whose parameter sets 

may be any set. From now on, for the sake of convenience, soft set(s) will be 

recognized as SS(s), and parameter set(s) by PS(s). 
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Definition 2. [27] Let (𝔍, 𝒦) be an SS over 𝑈. (𝔍, 𝒦) is called a relative null SS (with 

respect to the PS 𝒦), denoted by ∅𝒦, if 𝔍(𝓀) = ∅ for all 𝓀 ∈ 𝒦 and (𝔍, 𝒦) is called 

a relative whole SS (with respect to the PS 𝒦), denoted by 𝑈𝒦 if 𝔍(𝓀) = 𝑈 for all 𝓀 ∈

𝒦. The relative whole SS 𝑈𝐸  with respect to the universe set of parameters 𝐸 is called 

the absolute SS over 𝑈 

The empty SS over U is the unique SS over U with an empty PS, represented by 

∅∅. Note ∅∅ and ∅ℳ are different [31]. In the following, we always consider SSs with 

non-empty PSs in the universe U, unless otherwise stated. 

The concept of soft subset, which we refer to here as soft M-subset to prevent 

confusion, was initially defined by Maji et al. [25] in the following extremely strict 

way: 

Definition 3. [25] Let (𝔍, 𝒦) and (𝔖, 𝒵) be two SSs over 𝑈. (𝔍, 𝒦) is called a soft 

M-subset of (𝔖, 𝒵)  denoted by (𝔍, 𝒦)  ⊆̃𝑀 (𝔖, 𝒵)  if 𝒦 ⊆ 𝒵  and 𝔍(𝓀) = 𝔖(𝓀)  for 

all 𝓀  ∈ 𝒦 . Two SSs (𝔍,  𝒦)  and (𝔖, 𝒵)  are said to be soft M-equal, denoted by 

(𝔍, 𝒦) =𝑀 (𝔖, 𝒵) if (𝔍, 𝒦)  ⊆̃𝑀 (𝔖, 𝒵) and (𝔖, 𝒵) ⊆̃𝑀 (𝔍, 𝒦). 

Definition 4. [26] Let (𝔍, 𝒦) and (𝔖, 𝒵) be two SSs over 𝑈. (𝔍, 𝒦) is called a soft F-

subset of (𝔖, 𝒵) denoted by (𝔍, 𝒦)  ⊆̃𝐹 (𝔖, 𝒵) if 𝒦 ⊆ 𝒵 and 𝔍(𝓀) ⊆ 𝔖(𝓀) for all 𝓀 

∈ 𝒦 . Two SSs ( 𝔍,  𝒦)  and (𝔖, 𝒵)  are said to be soft F-equal, denoted by 

(𝔍, 𝒦) =𝐹 (𝔖, 𝒵) if (𝔍, 𝒦)  ⊆̃𝐹 (𝔖, 𝒵) and (𝔖, 𝒵) ⊆̃𝐹 (𝔍, 𝒦). 

It is important to note that the definitions of soft F-subset and soft F-equal were 

originally introduced by Pei and Miao in [26]. However, some papers on soft subsets 

and soft equalities mistakenly attribute these definitions to Feng et al. in [29]. 

Consequently, the letter “F” is used to reference this connection. 

In Liu et al. [52], it was shown that the soft equality relations =M and =F are 

equivalent. In other words, ((Ծ, ℳ) =M (𝔉, 𝒟)  if and only if (Ծ, ℳ) =F (𝔉, 𝒟). 

Since they have the same set of parameters and approximation function, two SSs that 

satisfy this equivalence are actually identical [52], meaning that (Ծ, ℳ) =M (𝔉, 𝒟) 

implies (Ծ, ℳ) = (𝔉, 𝒟). 

Jun and Yang [51] expanded the concepts of F-soft subsets and soft F-equal 

relations by relaxing the restrictions on parameter sets (PSs). Although Jun and Yang 

[51] referred to these as the generalized soft subset and generalized soft equal relation 

we refer to them as soft J-subsets and soft J-equal relations, taking the initial letter of 

Jun. 

Definition 5. [51] Let (𝔍, 𝒦) and (𝔖, 𝒵) be two SSs over 𝑈. (𝔍, 𝒦) is called a soft J-

subset of (𝔖, 𝒵) denoted by (𝔍, 𝒦) ⊆̃𝐽 (𝔖, 𝒵) if for all 𝓀 ∈ 𝒦 , there exists 𝓏 ∈ 𝒵 

such that  𝔍(𝓀) ⊆ 𝔖(𝓏). Two SSs (𝔍, 𝒦) and (𝔖, 𝒵) are said to be soft J-equal, 

denoted by (𝔍, 𝒦) =𝐽 (𝔖, 𝒵) if (𝔍, 𝒦)  ⊆̃𝐽 (𝔖, 𝒵) and (𝔖, 𝒵) ⊆̃𝐽 (𝔍, 𝒦). 

It was demonstrated by Liu et al. [52] that (Ծ, ℳ) ⊆̃M (𝔉, 𝒟) ⇒

(Ծ, ℳ) ⊆̃F (𝔉, 𝒟) ⇒ (Ծ, ℳ) ⊆̃J (𝔉, 𝒟), but the converse may not be true.  

Liu et al. [52] introduced a new type of soft subset, referred to as soft L-subsets 

and soft L-equality, which generalizes both soft M-subsets and ontology-based soft 

subsets. This new concept was inspired by the ideas of soft J-subsets [51] and 

ontology-based soft subsets [30]. 

Definition 6. [52] Let (𝔍, 𝒦) and (𝔖, 𝒵) be two SSs over 𝑈. (𝔍, 𝒦) is called a soft L-

subset of (𝔖, 𝒵) denoted by (𝔍, 𝒦) ⊆̃𝐿 (𝔖, 𝒵) if for all 𝓀 ∈ 𝒦 , there exists 𝓏 ∈ 𝒵 
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such that  𝔍(𝓀) = 𝔖(𝓏). Two SSs (𝔍, 𝒦) and (𝔖, 𝒵) are said to be soft J-equal, 

denoted by (𝔍, 𝒦) =𝐿 (𝔖, 𝒵) if (𝔍, 𝒦)  ⊆̃𝐿 (𝔖, 𝒵) and (𝔖, 𝒵) ⊆̃𝐿 (𝔍, 𝒦). 

Concerning the relationships among various types of soft subsets and soft 

equalities, (𝔍, 𝒦)  ⊆̃M (𝔖, 𝒵) ⇒ (𝔍, 𝒦)  ⊆̃F (𝔖, 𝒵) ⇒ (𝔍, 𝒦)  ⊆̃J (𝔖, 𝒵) and 

(𝔍, 𝒦)  =M (𝔖, 𝒵) ⇒ (𝔍, 𝒦)  =L (𝔖, 𝒵) ⇒ (𝔍, 𝒦)  =J (𝔖, 𝒵)  [52]. However, the 

converses may not be true. Also, it is well-known that (𝔍, 𝒦)  =M (𝔖, 𝒵) if and only 

if (𝔍, 𝒦)  =F (𝔖, 𝒵) 

We can thus conclude that soft M-equality (and therefore soft F-equality) 

represents the strictest form of soft equality, while soft J-equality is the weakest. 

Positioned between these two is the concept of soft L-equality [52]. 

For further information on soft F-equality, soft M-equality, soft J-equality, soft 

L-equality, and other definitions of soft subsets and soft equal relations in the 

literature, please refer to [50–58]. 

Definition 7. [27] Let (𝔍, 𝒦) be an SS over 𝑈. The relative complement of (𝔍, 𝒦), 

denoted by (𝔍, 𝒦)𝑟,  is defined by (𝔍, 𝒦) 𝑟 = (𝔍𝑟, 𝒦) , where 𝔍𝑟: 𝒦 → 𝑃(𝑈)  is a 

mapping given by 𝔍𝑟(𝓀) = 𝑈\𝔍(𝓀) for all 𝓀 ∈ 𝒦. From now on, 𝑈\𝔍(𝓀)=[𝔍(𝓀)]′ 

is designated by 𝔍’(𝓀) for the sake of designation. 

Definition 8. [25] Let (𝔍, 𝒦) and (𝔖, 𝒵) be two SSs over 𝑈. The AND-product (∧-

product) of ( 𝔍, 𝒦)  and (𝔖, 𝒵) , denoted by ( 𝔍, 𝒦)𝛬(𝔖, 𝒵) , is defined by 

(𝔍, 𝒦)𝛬(𝔖, 𝒵) = (Ջ, 𝒦𝑥𝒵), where for all (𝓀, 𝓏) ∈ 𝒦𝑥𝒵, Ջ(𝓀, 𝓏) = 𝔍(𝓀) ∩ 𝔖(𝓏). 

Definition 9. [25] Let (𝔍, 𝒦) and (𝔖, 𝒵) be two SSs over 𝑈. The OR-product (∨-

product) of (𝔍, 𝒦) and (𝔖, 𝒵), denoted by (𝔍, 𝒦) ∨ (𝔖, 𝒵), and is defined by (𝔍, 𝒦) ∨

(𝔖, 𝒵) = (Ջ, 𝒦𝑥𝒵), where for all (𝓀, 𝓏) ∈ 𝒦𝑥𝒵, Ջ(𝓀, 𝓏) = 𝔍(𝓀) ∪ 𝔖(𝓏) 

Çağman [60] presented the notions of inclusive complement and exclusive 

complement as new ideas in set theory and used comparison to study their links. In 

[60], these novel ideas were also used in group theory. Some novel complements were 

introduced by Sezgin et al. [61], who also looked into their relationships and applied 

them to group theory. 

Definition 10. [61] Let 𝐴 and 𝐵 be two subsets of the universe. Then, 𝐴 lambda B is 

defined by 𝐴𝜆𝐵: =  𝐴 ∪ 𝐵′. 

Subsequently, the lambda operation was applied to SS theory to introduce new 

SS operations [62–64]. Let “⊙” represent set operations such as ∩,∪,\,△ . The 

following definitions are provided for restricted, extended, and soft binary piecewise 

operations. 

Definition 11. [27] Let (𝔍, 𝒦) and (𝔖, 𝒵) be SSs over 𝑈. The restricted ⊙ operation 

of ( 𝔍, 𝒦)  and (𝔖, 𝒵) , denoted by (𝔍, 𝒦) ⊙𝑅 (𝔖, 𝒵)  is defined by 

(𝔍, 𝒦) ⊙𝑅 (𝔖, 𝒵) = (Ջ, 𝒞) , where 𝒞 = 𝒦 ∩ 𝒵  and if 𝒞 ≠ ∅ , then for all 𝒸 ∈  𝒞 , 

Ջ( 𝒸) = 𝔍( 𝒸) ⊙ 𝔖( 𝒸); if 𝒞 = ∅, then (𝔍, 𝒦) ⊙𝑅 (𝔖, 𝒵) = ∅∅. 

Definition 12. [27,43,62] Let (𝔍, 𝒦)  and (𝔖, 𝒵)  be SSs over 𝑈 . The extended ⊙ 

operation of ( 𝔍, 𝒦)  and (𝔖, 𝒵) , denoted by (𝔍, 𝒦) ⊙𝜀 (𝔖, 𝒵)  is defined by 

(𝔍, 𝒦) ⊙𝜀 (𝔖, 𝒵) = (Ջ, 𝒞), where 𝒞 = 𝒦 ∪ 𝒵 and for all 𝒸 ∈ 𝒞,  

Ջ( 𝒸) = {

𝔍( 𝒸),  𝒸 ∈ 𝒦\ 𝒵

𝔖( 𝒸),  𝒸 ∈ 𝒵\𝒦

𝔍( 𝒸)  ⊙ 𝔖( 𝒸),  𝒸 ∈ 𝒦 ∩  𝒵

. 
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Definition 13. [44,49,64] Let (𝔍, 𝒦)  and (𝔖, 𝒵)  be SSs over 𝑈 . The soft binary 

piecewise ⊙ operation of (𝔍, 𝒦) and (𝔖, 𝒵), denoted by (𝔍, 𝒦) ⊙̃ (𝔖, 𝒵) is defined 

by (𝔍, 𝒦) ⊙̃ (𝔖, 𝒵) = (Ջ, 𝒦), where for all 𝒸 ∈ 𝒦,  

Ջ( 𝒸) = {
𝔍( 𝒸),  𝒸 ∈ 𝒦\ 𝒵

𝔍( 𝒸)  ⊙ 𝔖( 𝒸),  𝒸 ∈ 𝒦 ∩  𝒵
. 

For more about the soft algebraic structures of SSs, hypersoft sets, picture fuzzy 

soft sets, we refer to [65–89]. 

3. Soft lambda-product and its algebraic properties 

We proposed the soft lambda-product, a novel product for SSs, in this part. We 

provide an example and analyze its algebraic characteristics in depth with respect to 

specific kinds of soft equalities and soft subsets. 

Definition 14. Let (𝔍, 𝒦) and (𝔖, 𝒵) be SSs over 𝑈. The soft lambda-product of (𝔍, 

𝒦)  and (𝔖, 𝒵) , denoted by ( 𝔍,  𝒦)𝑉𝜆(𝔖, 𝒵) , is defined by (𝔍, 𝒦)𝑉𝜆(𝔖, 𝒵) = 

(Ջ, 𝒦 × 𝒵), where for all (𝓀,𝓏 )∈ 𝒦𝑥𝒵, 

Ջ(𝓀,𝓏) = 𝔍(𝓀)λ𝔖(𝓏). 

Here, 𝔍 (𝓀)λ𝔖(𝓏) = 𝔍(𝓀)∪ 𝔖′(𝓏). 

Here note that Çağman and Enginoğlu [11] defined 𝑂𝑅 − 𝑁𝑂𝑇 −product for SSs 

in a similar way to soft lambda-product as follows: 

Definition 15. [11] Let (Ծ, ℳ) and (𝔉, 𝒟) be SSs over 𝑈 . The ∨̅-product (𝑂𝑅 −

𝑁𝑂𝑇 −product) of (Ծ, ℳ) and (𝔉, 𝒟), denoted by (Ծ, ℳ) ∨̅ (𝔉, 𝒟), is defined by 

(Ծ, ℳ) ∨̅ (𝔉, 𝒟) = (౮, 𝐸𝑥𝐸) , where for all (𝓂, 𝒹) ∈  𝐸𝑥𝐸 , ౮(𝓂, 𝒹) = Ծ(𝓂) ∪

𝔉′(𝒹). 

It is observed that while the domain of the approximation function of 𝑂𝑅 −

𝑁𝑂𝑇 − product of (Ծ, ℳ)  and (𝔉, 𝒟)  is ExE , the domain of the approximation 

function of soft lambda-product of (Ծ, ℳ) and (𝔉, 𝒟) is ℳx𝒟. 

Example 1. Let 𝐸 = {ℓ1 , ℓ2, ℓ3, ℓ4} be the PS, 𝒦 = {ℓ2, ℓ3}, and 𝒵 = {ℓ2, ℓ4} be the 

subsets of E, 𝑈 = {𝒻1, 𝒻2, 𝒻3, 𝒻4, 𝒻5} be the universal set, (𝔍, 𝒦) and (𝔖, 𝒵) be SSs 

over 𝑈 such that 

(𝔍,𝒦)= {(ℓ2, {𝒻1, 𝒻2, 𝒻3, 𝒻4, 𝒻5}), (ℓ3,{𝒻3, 𝒻5})} 

(𝔖, 𝒵) = {(ℓ2, {𝒻1, 𝒻2, 𝒻3})(ℓ4,{𝒻2, 𝒻3, 𝒻4})}. 

Let (𝔍, 𝒦)Vλ(𝔖, 𝒵) = (Ջ, 𝒦x𝒵). Then, 

(Ջ, 𝒦 × 𝒵)

= {((ℓ2, ℓ2), {𝒻1, 𝒻2, 𝒻3, 𝒻4, 𝒻5}), ((ℓ2, ℓ4), {𝒻1, 𝒻2, 𝒻3, 𝒻4, 𝒻5}), ((ℓ3, ℓ2), {𝒻3, 𝒻4, 𝒻5}), ((ℓ3, ℓ4), {𝒻1, 𝒻3, 𝒻5})}. 

Since it is more practical than writing in the list method style, the Table 1 method 

can be applied here: 

 

 

 

 



Mathematics and Systems Science 2025, 3(1), 3139.  

7 

Table 1. The table designation of the soft lambda-product’s result of the soft sets in 

Example 1. 

(𝔍, 𝒦) Λλ (𝔖, 𝒵) ℓ2 ℓ4 

ℓ2 {𝒻1, 𝒻2, 𝒻3, 𝒻4, 𝒻5} {𝒻1, 𝒻2, 𝒻3, 𝒻4, 𝒻5} 

ℓ3 {𝒻3, 𝒻4, 𝒻5} {𝒻1, 𝒻3, 𝒻5} 

Proposition 1. 𝑉𝜆-product is closed in 𝑆𝐸(𝑈). 

Proof 1. It is clear that Vλ-product in a binary operation in SE(U). In fact, let (𝔍, 𝒦) 

and (𝔖, 𝒵) be SSs over U. Then, 

Vλ: SE(U) × SE(U) → SE(U)((𝔍, 𝒦), (𝔖, 𝒵)) → (𝔍, 𝒦)Vλ(𝔖, 𝒵) = (Ջ, 𝒦x𝒵) = (Ջ, 𝒞). 

That is, (Ջ, 𝒞) is an SS over U, since the set SE(U) contains all the SS over U. 

Here, note that the set S𝒦(U) is not closed under Vλ-product, since if (𝔍, 𝒦), (𝔖, 𝒦) 

are the elements of S𝒦(U), (𝔍, 𝒦)Vλ(𝔖, 𝒦) is an element of S𝒦x𝒦(U), not S𝒦(U). □ 

Proposition 2. Let (𝔍, 𝒦), (𝔖, 𝒵) and (Ջ, 𝒞) be SSs over 𝑈. Then,  

(𝔍, 𝒦)Vλ[(𝔖, 𝒵)Vλ(Ջ, 𝒞)] ≠M [(𝔍, 𝒦)Vλ(𝔖, 𝒵)]Vλ(Ջ, 𝒞). 

That is, Vλ-product is not associative in SE(U). 

Proof 2. We provided an example to show that Vλ-product is not associative in SE(U). 

Let E =  {ℓ1 , ℓ2, ℓ3, ℓ4} be PS, 𝒦 = {ℓ2, ℓ3}, 𝒵 = {ℓ1} and 𝒞 = {ℓ4} be the subsets 

of E, U = {𝒻1, 𝒻2, 𝒻3, 𝒻4, 𝒻5} be the universal set, (𝔍, 𝒦), (𝔖, 𝒵) and (Ջ, 𝒞) be SSs 

over üzere U such that (𝔍, 𝒦) = {(ℓ2, {𝒻3, 𝒻4}), (ℓ3, {𝒻1})}, (𝔖, 𝒵) = {(ℓ1, ∅)} and 

(Ջ, 𝒞) = {(ℓ4, {𝒻1, 𝒻3, 𝒻5})}. We show that  

(𝔍, 𝒦)Vλ[(𝔖, 𝒵)Vλ(Ջ, 𝒞)] ≠M [(𝔍, 𝒦)Vλ(𝔖, 𝒵)]Vλ(Ջ, 𝒞). 

Let (𝔖, 𝒵)Vλ(Ջ, 𝒞) = (ζ, 𝒵 × C). Then, 

(ζ, 𝒵 × C) = {((ℓ1, ℓ4), { 𝒻2, 𝒻4})}. 

Assume that (𝔍, 𝒦)Vλ(ζ, 𝒵 × C) = (𝔈, 𝒦 × (𝒵 × C)). Thus, 

(𝔈, 𝒦 × (𝒵 × C)) = {((ℓ2, (ℓ1, ℓ4)), {𝒻1,𝒻3,𝒻4, 𝒻5}) , ((ℓ3, (ℓ1, ℓ4)), (𝒻1, 𝒻3, 𝒻5))}. 

Let (𝔍, 𝒦)Vλ(𝔖, 𝒵) = (Ճ, 𝒦 ×  𝒵). Thereby, 

(Ճ, 𝒦 ×  𝒵) = {((ℓ2, ℓ1), {𝒻1, 𝒻2, 𝒻3, 𝒻4, 𝒻5}), ((ℓ3, ℓ1), {𝒻1, 𝒻2, 𝒻3, 𝒻4, 𝒻5})}. 

Suppose that (Ճ, 𝒦 ×  𝒵)Vλ(Ջ, 𝒞) = (ζ, (𝒦 ×  𝒵) × 𝒞). Hence, 

(ζ, (𝒦 ×  𝒵) × 𝒞) = {(((ℓ2, ℓ1), ℓ4), {𝒻1, 𝒻2, 𝒻3, 𝒻4, 𝒻5}) , (((ℓ3, ℓ1), ℓ4), {𝒻1, 𝒻2, 𝒻3, 𝒻4, 𝒻5})}. 

Thus, (𝔈, 𝒦 × (𝒵 × C)) ≠M (ζ, (𝒦 ×  𝒵) × 𝒞) . Similarly, (𝔈, 𝒦 × (𝒵 ×

C)) ≠L (ζ, (𝒦 ×  𝒵) × 𝒞) and (𝔈, 𝒦 × (𝒵 × C)) ≠J (ζ, (𝒦 ×  𝒵) × 𝒞). □ 

Proposition 3. Let ( 𝔍, 𝒦)  and (𝔖, 𝒵)  be SSs over 𝑈 . Then, 

(𝔍, 𝒦)𝑉𝜆(𝔖, 𝒵) ≠𝑀 (𝔖, 𝒵)𝑉𝜆(𝔍, 𝒦) . Namely, 𝑉𝜆 -product is not commutative in 

𝑆𝐸(𝑈). 

Proof 3. Let (𝔍, 𝒦)Vλ(𝔖, 𝒵) = (Ջ, 𝒦 × 𝒵)  and (𝔖, 𝒵)Vλ(𝔍, 𝒦) = (Ճ, 𝒵 × 𝒦) . 

Since 𝒦 × 𝒵 ≠ 𝒵 × 𝒦, the rest of the proof is obvious. □ 
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Proposition 4. Let ( 𝔍, 𝒦)  and (𝔖, 𝒵)  be SSs over 𝑈 . Then, 

(𝔍, 𝒦)𝑉𝜆(𝔖, 𝒵) ≠𝐽 (𝔖, 𝒵)𝑉𝜆(𝔍, 𝒦). That is, 𝑉𝜆-product is not commutative in 𝑆𝐸(𝑈) 

under J-equality. 

Proof 4. We provided an example to show that Vλ-product is not commutative under 

J-equality in SE(U). Let E =  {ℓ1 , ℓ2, ℓ3, ℓ4} be the PS, 𝒦 = {ℓ2, ℓ3}, and 𝒵 = {ℓ1} 

be the subsets of E, U = {𝒻1, 𝒻2, 𝒻3, 𝒻4, 𝒻5} be the universal set and (𝔍, 𝒦), and (𝔖, 𝒵) 

be SSs over U such that (𝔍, 𝒦) = {(ℓ2, {𝒻3, 𝒻4}), (ℓ3, {𝒻1})}, (𝔖, 𝒵) = {(ℓ1, ∅)}. We 

show that  

(𝔍, 𝒦)Vλ(𝔖, 𝒵) ≠J (𝔖, 𝒵)Vλ(𝔍, 𝒦). 

Let (𝔍, 𝒦)Vλ(𝔖, 𝒵) = (𝒲, 𝒦 × 𝒵), where 

(𝒲, 𝒦 × 𝒵) = {((ℓ2, ℓ1), {𝒻1, 𝒻2, 𝒻3, 𝒻4, 𝒻5}), ((ℓ3, ℓ1), {𝒻1, 𝒻2, 𝒻3, 𝒻4, 𝒻5})}. 

Assume that (𝔖, 𝒵)Vλ(𝔍, 𝒦) = (ℋ, 𝒵 × 𝒦), where 

(ℋ, 𝒵 × 𝒦) = (((ℓ1, ℓ2), {𝒻1, 𝒻2, 𝒻5})((ℓ1, ℓ3), {𝒻2, 𝒻3, 𝒻4, 𝒻5})). 

Hence, (𝔍, 𝒦)Vλ(𝔖, 𝒵) ≠J (𝔖, 𝒵)Vλ(𝔍, 𝒦) . Moreover, 

(𝔍, 𝒦)Vλ(𝔖, 𝒵) ≠L (𝔖, 𝒵)Vλ(𝔍, 𝒦). □ 

Proposition 5. Let ( 𝔍, 𝒦)  be an SS over 𝑈 . Then, 

(𝔍, 𝒦)𝑉𝜆∅∅ =𝑀 ∅∅𝑉𝜆(𝔍, 𝒦) =𝑀 ∅∅ . Namely, ∅∅ -the empty SS-is the absorbing 

element of 𝑉𝜆-product in 𝑆𝐸(𝑈). 

Proof 5. Let ∅∅ = (Ջ, ∅)  and (𝔍, 𝒦)Vλ∅∅ = (𝔍, 𝒦)Vλ(Ջ, ∅) = (𝔖, 𝒦 × ∅) =

(𝔖, ∅). Since ∅∅ is the only SS whose PS is ∅, (𝔖, ∅) = ∅∅ is obtained. Similarly, 

∅∅Vλ(𝔍, 𝒦) =M ∅∅. □ 

Proposition 6. Let (Ծ, 𝒦) be an SS over 𝑈. Then, 𝑈𝒦𝑉𝜆(Ծ, 𝒦) =𝐿 𝑈𝒦 . That is, 𝑈𝒦 

is the left absorbing element of ∨𝜆-product in 𝑆𝒦(𝑈) under L-equality. 

Proof 6. Let U𝒦 = (Ꮙ, 𝒦) and (Ꮙ, 𝒦)Vλ(Ծ, 𝒦) = (₴, 𝒦x𝒦). Then, for all 𝓀 ∈ 𝒦, 

Ꮙ(𝓀) = U and for all (𝓀, 𝓏) ∈ 𝒦x𝒦 , ₴(𝓀, 𝓏) = Ꮙ(𝓀) ∪ Ծ′(𝓏)=U ∪ Ծ′(𝓏) = U. 

Since, for all (𝓀, 𝓏) ∈ 𝒦x𝒦 , there exists 𝓀 ∈ 𝒦  such that ₴(𝓀, 𝓏) = U = Ꮙ(𝓀), 

implying that U𝒦Vλ(Ծ, 𝒦) ⊆̃L U𝒦 . Moreover, for all 𝓀 ∈ 𝒦 , there exists (𝓀, 𝓏) ∈

𝒦x𝒦 such that Ꮙ(𝓀) = U = ₴(𝓀, 𝓏), implying that U𝒦 ⊆̃L U𝒦Vλ(Ծ, 𝒦). Thereby, 

U𝒦Vλ(Ծ, 𝒦) =L U𝒦. □ 

Proposition 7. Let (Ծ, 𝒦) be an SS over 𝑈. Then, (Ծ, 𝒦)𝑉𝜆𝑈𝒦 =𝐿 (Ծ, 𝒦). That is, 

𝑈𝒦 is the right identity element of ∨𝜆-product in 𝑆𝒦(𝑈) under L-equality. 

Proof 7. Let U𝒦 = (Ꮙ, 𝒦) and (Ծ, 𝒦)Vλ(Ꮙ, 𝒦) = (₴, 𝒦x𝒦). Then, for all 𝓀 ∈ 𝒦, 

Ꮙ(𝓀) = U  and for all (𝓀, 𝓏) ∈ 𝒦x𝒦 , ₴(𝓀, 𝓏) = Ծ(𝓀) ∪Ꮙ′(𝓏) = Ծ(𝓀) ∪ ∅ =

Ծ(𝓀). Since, for all (𝓀, 𝓏) ∈ 𝒦x𝒦, there exists 𝓀 ∈ 𝒦 such that ₴(𝓀, 𝓏) = Ծ(𝓀), 

implying that (Ծ, 𝒦)VλU𝒦 ⊆̃L (Ծ, 𝒦). Moreover, for all 𝓀 ∈ 𝒦, there exists (𝓀, 𝓏) ∈

𝒦x𝒦  such that  Ծ(𝓀) = ₴(𝓀, 𝓏) , implying that (Ծ, 𝒦) ⊆̃L (Ծ, 𝒦)VλU𝒦 . Thereby, 

(Ծ, 𝒦)VλU𝒦 =L (Ծ, 𝒦). □ 

Proposition 8. Let ( 𝔍, 𝒦)  be an SS over 𝑈 . Then, (𝔍, 𝒦)𝑉𝜆∅𝒦 =𝑀 𝑈𝒦×𝒦  and 

∅𝒦𝑉𝜆(𝔍, 𝒦) =𝑀 (𝔍, 𝒦 × 𝒦)𝑟. 

Proof 8. Let ∅𝒦 = (Ջ, 𝒦),  where for all 𝓀 ∈ 𝒦 , Ջ(𝓀) = ∅ . Assume that 

(𝔍, 𝒦)Vλ∅𝒦 = (𝔍, 𝒦)Vλ(Ջ, 𝒦) = (𝔖, 𝒦 × 𝒦),  where for all (𝓀, 𝓏) ∈ 𝒦 × 𝒦 , 
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𝔖(𝓀, 𝓏) = 𝔍(𝓀) ∪ Ջ′(𝓏) = 𝔍(𝓀) ∪ ∅′ = 𝔍(𝓀) ∪ U = U , implying that (𝔖, 𝒦 ×

𝒦) = (U, 𝒦 × 𝒦). Let ∅𝒦Vλ(𝔍, 𝒦) =M (𝔑, 𝒦 × 𝒦), where for all (𝓀, 𝓏) ∈ 𝒦 × 𝒦, 

𝔑(𝓀, 𝓏) = Ջ(𝓀) ∪ 𝔍′(𝓏) = ∅ ∪ 𝔍′(𝓏) = 𝔍′(𝓏). Thus, (𝔑, 𝒦 × 𝒦) = (𝔍, 𝒦 × 𝒦)r. 

□ 

Proposition 9. Let ( 𝔍, 𝒦)  be an SS over 𝑈 . Then, (𝔍, 𝒦)𝑉𝜆𝑈𝒦 =𝑀 (𝔍, 𝒦)  and 

𝑈𝒦𝑉𝜆(𝔍, 𝒦) =𝑀 𝑈𝒦×𝒦 . 

Proof 9. Let U𝒦 = (Ջ, 𝒦) , where for all 𝓀 ∈ 𝒦 , Ջ( 𝓀) = U . Assume that 

(𝔍, 𝒦)VλU𝒦 = (𝔍, 𝒦)Vλ(Ջ, 𝒦) = (𝔖, 𝒦 × 𝒦) , where for all (𝓀, 𝓏) ∈ 𝒦 × 𝒦 , 

𝔖(𝓀, 𝓏) = 𝔍(𝓀) ∪ Ջ′(𝓏) = 𝔍(𝓀) ∪ U′ = 𝔍(𝓀) ∪ ∅ = 𝔍(𝓀) . Thus, (𝔖, 𝒦 × 𝒦) =

(𝔍, 𝒦x𝒦) . Let U𝒦Vλ(𝔍, 𝒦) =M (𝔓, 𝒦x𝒦) , where for all (𝓀, 𝓏) ∈ 𝒦 × 𝒦 , 

𝔓(𝓀, 𝓏) = Ջ(𝓀) ∪ 𝔍′(𝓏) = U ∪ 𝔍′(𝓏) = U, thereby (𝔓, 𝒦x𝒦) = U𝒦×𝒦. □ 

Proposition 10. Let (𝔍, 𝒦) be an SS over 𝑈. Then, (𝔍, 𝒦) ⊆̃𝐽 (𝔍, 𝒦)𝑉𝜆(𝔍, 𝒦). That 

is, 𝑉𝜆-product is not idempotent in 𝑆𝐸(𝑈) under J-equality. 

Proof 10. Let (𝔍, 𝒦)Vλ(𝔍, 𝒦) =  (𝔖, 𝒦 × 𝒦) , where for all (𝓀, 𝓏) ∈ 𝒦 × 𝒦 , 

𝔖(𝓀, 𝓏) = 𝔍(𝓀) ∪ 𝔍′(𝓏). Since for all 𝓀 ∈ 𝒦, there exists (𝓀, 𝓏) ∈ 𝒦x𝒦 such that 

𝔍(𝓀) ⊆ 𝔖(𝓀, 𝓏) =  𝔍(𝓀) ∪  𝔍′(𝓏), (𝔍, 𝒦) ⊆̃J (𝔍, 𝒦)Vλ(𝔍, 𝒦) is obtained. □ 

Proposition 11. Let ( 𝔍, 𝒦)  and (𝔖, 𝒵)  be SSs over 𝑈 . 

Then, (𝔖, 𝒵)𝑟 ⊆̃𝐽 (𝔍, 𝒦)𝑉𝜆(𝔖, 𝒵) ve (𝔍, 𝒦) ⊆̃𝐽 (𝔍, 𝒦)𝑉𝜆(𝔖, 𝒵). 

Proof 11. Let (𝔍, 𝒦)Vλ(𝔖, 𝒵) = (Ջ, 𝒦 ×  𝒵) , where for all (𝓀, 𝓏) ∈ 𝒦 ×

 𝒵, Ջ(𝓀, 𝓏) = 𝔍(𝓀) ∪ 𝔖′(𝓏). Since for all 𝓏 ∈ 𝒵, there exists (𝓀, 𝓏) ∈ 𝒦 ×  𝒵 such 

that 𝔖′(𝓏) ⊆ 𝔍(𝓀) ∪ 𝔖′(𝓏), (𝔖, 𝒵)r ⊆̃J (𝔍, 𝒦)Vλ(𝔖, 𝒵) is obtained. Similarly, since 

for all 𝓀 ∈ 𝒦 , there exists (𝓀, 𝓏) ∈ 𝒦 ×  𝒵  such that 𝔍(𝓀) ⊆ 𝔍(𝓀) ∪ 𝔖′(𝓏) , 

(𝔍, 𝒦) ⊆̃J (𝔍, 𝒦)Vλ(𝔖, 𝒵) is obtained. □ 

Proposition 12. Let (𝔍, 𝒦) and (𝔖, 𝒵) be SSs over 𝑈. Then, [(𝔍, 𝒦)𝑉𝜆(𝔖, 𝒵)]𝑟 =

(𝔍, 𝒦)𝑟 ∧\ (𝔖, 𝒵)𝑟. 

Proof 12. Let (𝔍, 𝒦)Vλ(𝔖, 𝒵) = (Ջ, 𝒦 × 𝒵) , where for all (𝓀, 𝓏) ∈ 𝒦 ×  𝒵 , 

Ջ(𝓀, 𝓏) = 𝔍(𝓀) ∪ 𝔖′(𝓏). Thus, Ջ′(𝓀, 𝓏) =  𝔍′(𝓀) ∩ 𝔖(𝓏) = (𝔍)′(𝓀) ∩ (𝔖′)′(𝓏) , 

implying that (Ջ′, 𝒦 × 𝒵) = (𝔍, 𝒦)r ∧\ (𝔖, 𝒵)r. (For more about ∧\-product, please 

see [11]. □ 

Proposition 13. Let ( 𝔍, 𝒦)  and (𝔖, 𝒵)  be SSs over 𝑈 . Then, 

(𝔍, 𝒦) ∧\ (𝔖, 𝒵) ⊆̃𝐹 (𝔍, 𝒦)𝑉𝜆(𝔖, 𝒵). 

Proof 13. Let (𝔍, 𝒦) ∧\ (𝔖, 𝒵) = (𝔈, 𝒦 ×  𝒵)  and (𝔍, 𝒦)Vλ(𝔖, 𝒵) = (ζ, 𝒦 ×  𝒵) , 

where for all (𝓀, 𝓏) ∈ 𝒦 ×  𝒵 , 𝔈(𝓀, 𝓏) = 𝔍(𝓀) ∩ 𝔖′(𝓏) and for all (𝓀, 𝓏) ∈ 𝒦 ×

 𝒵 , ζ(𝓀, 𝓏) = 𝔍(𝓀) ∪ 𝔖′(𝓏) . Thus, for all (𝓀, 𝓏) ∈ 𝒦 ×  𝒵 , 𝔈(𝓀, 𝓏) = 𝔍(𝓀) ∩

𝔖′(𝓏) ⊆ 𝔍(𝓀) ∪ 𝔖′(𝓏) = ζ(𝓀, 𝓏). This completes the proof. □ 

Proposition 14. Let (𝔍, 𝒦), (𝔖, 𝒵) and (Ջ, 𝒞) be SSs over 𝑈. If (𝔍, 𝒦) ⊆̃𝐹 (𝔖, 𝒵), 

then (𝔍, 𝒦)𝑉𝜆(Ջ, 𝒞) ⊆̃𝐹 (𝔖, 𝒵)𝑉𝜆(Ջ, 𝒞). 

Proof 14. Let (𝔍, 𝒦) ⊆̃F (𝔖, 𝒵). Then, 𝒦 ⊆  𝒵 and for all 𝓀 ∈ 𝒦, 𝔍(𝓀) ⊆ 𝔖(𝓀). 

Thus, 𝒦 × 𝒞 ⊆ 𝒵 × 𝒞 and for all (𝓀, 𝒸) ∈ 𝒦 × 𝒞, 𝔍(𝓀) ∪ Ջ′( 𝒸) ⊆ 𝔖(𝓀) ∪ Ջ′( 𝒸), 

completing the proof. □ 

Proposition 15. Let (𝔍, 𝒦), (𝔖, 𝒵), (Ջ, 𝒞) and (Ճ, 𝒲)  be SSs over 𝑈 . If 

(𝔍, 𝒦) ⊆̃𝐹 (𝔖, 𝒵)  and (Ջ, 𝒞)𝑟 ⊆̃𝐹 (Ճ, 𝒲)𝑟 , 

then (𝔍, 𝒦)𝑉𝜆(Ջ, 𝒞) ⊆̃𝐹 (𝔖, 𝒵)𝑉𝜆(Ճ, 𝒲).  

Proof 15. Let (𝔍, 𝒦) ⊆̃F (𝔖, 𝒵) and (Ջ, 𝒞)r ⊆̃F (Ճ, 𝒲)r. Thus, 𝒦 ⊆  𝒵, 𝒞 ⊆ 𝒲, for 
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all 𝓀 ∈ 𝒦, 𝔍(𝓀) ⊆ 𝔖(𝓀) and for all 𝒸 ∈  𝒞, Ջ′(𝒸) ⊆ Ճ′(𝒸). Thus, 𝒦 × 𝒞 ⊆ 𝒵 × 𝒲, 

and for all (𝓀, 𝒸) ∈  𝒦 × 𝒞 , 𝔍(𝓀) ∪ Ջ′( 𝒸) ⊆ 𝔖(𝓀) ∪ Ճ′( 𝒸) . This completes the 

proof. □ 

Proposition 16. Let (𝔍, 𝒦), (𝔖, 𝒦), (Ջ, 𝒦) and  (Ճ, 𝒦)  be SSs over 𝑈 . If 

(𝔍, 𝒦) ⊆̃𝐹 (𝔖, 𝒦)  and (Ջ, 𝒦) ⊆̃𝐹 (Ճ, 𝒦) , then 

(𝔍, 𝒦)𝑉𝜆(Ճ, 𝒦) ⊆̃𝐹 (𝔖, 𝒦)𝑉𝜆(Ջ, 𝒦). 

Proof 16. Let (𝔍, 𝒦) ⊆̃F (𝔖, 𝒦)  and (Ջ, 𝒦) ⊆̃F (Ճ, 𝒦) . Thus, for all 𝓀 ∈ 𝒦 , 

𝔍(𝓀) ⊆ 𝔖(𝓀) and for all ℓ ∈ 𝒦  için Ջ(ℓ) ⊆ Ճ(ℓ). Then, for all (𝓀, ℓ) ∈ 𝒦 × 𝒦 , 

𝔍(𝓀) ∪ Ճ′( ℓ) ⊆ 𝔖(𝓀) ∪ Ջ′( ℓ), completing the proof. □ 

Proposition 17. Let ( 𝔍, 𝒦)  and (𝔖, 𝒵)  be SSs over 𝑈 . Then, 

∅𝒦×𝒵 ⊆̃𝐹 (𝔍, 𝒦)𝑉𝜆(𝔖, 𝒵) and ∅𝒵×𝒦 ⊆̃𝐹 (𝔖, 𝒵)𝑉𝜆(𝔍, 𝒦). 

Proof 17. Let ∅𝒦×𝒵 = (ℰ, 𝒦 × 𝒵) and (𝔍, 𝒦)Vλ(𝔖, 𝒵) = (𝒮, 𝒦 × 𝒵), where for all 

(𝓀, 𝓏) ∈ 𝒦 × 𝒵 , ℰ(𝓀, 𝓏) = ∅  and for all (𝓀, 𝓏) ∈ 𝒦 × 𝒵  , 𝒮(𝓀, 𝓏) = 𝔍(𝓀) ∪

𝔖′ (𝓏). Since 𝒦 × 𝒵 ⊆ 𝒦 × 𝒵 and for all (𝓀, 𝓏) ∈ 𝒦 × 𝒵, ℰ(𝓀, 𝓏) = ∅ ⊆ 𝔍(𝓀) ∪

𝔖′ (𝓏) = 𝒮(𝓀, 𝓏),  ∅𝒦×𝒵 ⊆̃F (𝔍, 𝒦)Vλ(𝔖, 𝒵)  is obtained. Similarly, 

∅𝒵×𝒦 ⊆̃F (𝔖, 𝒵)Vλ(𝔍, 𝒦). □ 

Proposition 18. Let (𝔍, 𝒦) and (𝔖, 𝒵) be SSs over 𝑈. Then, ∅𝒦 ⊆̃𝐽(𝔍, 𝒦)𝑉𝜆(𝔖, 𝒵), 

∅𝒦 ⊆̃𝐽 (𝔍, 𝒦)𝑉𝜆(𝔖, 𝒵), and ∅𝐸 ⊆̃𝐽 (𝔍, 𝒦)𝑉𝜆(𝔖, 𝒵). 

Proof 18. Let ∅𝒦 = (ℰ, 𝒦) and (𝔍, 𝒦)Vλ(𝔖, 𝒵) = (𝒮, 𝒦 × 𝒵), where for all 𝓀 ∈ 𝒦, 

ℰ(𝓀) = ∅ and for all (𝓀, 𝓏) ∈ 𝒦 × 𝒵, 𝒮(𝓀, 𝓏) = 𝔍(𝓀) ∪ 𝔖′ (𝓏). Since for all 𝓀 ∈

𝒦 , there exists (𝓀, 𝓏) ∈ 𝒦 × 𝒵  such that ℰ(𝓀) = ∅ ⊆ 𝔍(𝓀) ∪ 𝔖′ (𝓏) =  𝒮(𝓀, 𝓏) , 

∅𝒦 ⊆̃J (𝔍, 𝒦)Vλ(𝔖, 𝒵) is obtained. Similarly, ∅𝒦 ⊆̃J(𝔍, 𝒦)Vλ(𝔖, 𝒵) and ∅E ⊆̃J(𝔍, 

𝒦)Vλ(𝔖, 𝒵) are obtained. □ 

Proposition 19. Let ( 𝔍, 𝒦)  and (𝔖, 𝒵)  be SSs over 𝑈 . Then, 

(𝔍, 𝒦)𝑉𝜆(𝔖, 𝒵) ⊆̃𝐹 𝑈𝒦×𝒵 and (𝔖, 𝒵)𝑉𝜆(𝔍, 𝒦) ⊆̃𝐹 𝑈𝒵×𝒦. 

Proof 19. Let U𝒦×𝒵 = (Ջ, 𝒦 × 𝒵) and (𝔍, 𝒦)Vλ(𝔖, 𝒵) = (Ճ, 𝒦 × 𝒵), where for all 

(𝓀, 𝓏) ∈ 𝒦 × 𝒵 , Ջ(𝓀, 𝓏) = U  and for all (𝓀, 𝓏) ∈ 𝒦 × 𝒵 , Ճ(𝓀, 𝓏) = 𝔍(𝓀) ∪

𝔖′ (𝓏) . Since 𝒦 × 𝒵 ⊆ 𝒦 × 𝒵  and for all (𝓀, 𝓏) ∈ 𝒦 × 𝒵 , Ճ(𝓀, 𝓏) = 𝔍(𝓀) ∪

𝔖′ (𝓏) ⊆ U = Ջ(𝓀, 𝓏) , (𝔍, 𝒦)Vλ(𝔖, 𝒵) ⊆̃F U𝒦×𝒵  is obtained. Similarly, 

(𝔖, 𝒵)Vλ(𝔍, 𝒦) ⊆̃F U𝒵×𝒦. □ 

Proposition 20. Let (𝔍, 𝒦) and (𝔖, 𝒵) be SSs over 𝑈. Then, (𝔍, 𝒦)𝑉𝜆(𝔖, 𝒵) ⊆̃𝐽 𝑈𝒦 

and (𝔍, 𝒦)𝑉𝜆(𝔖, 𝒵) ⊆̃𝐽 𝑈𝒵 . 

Proof 20. Let U𝒦 = (𝒲, 𝒦) and (𝔍, 𝒦)Vλ(𝔖, 𝒵) = (𝒳, 𝒦 × 𝒵), where for all 𝓀 ∈

𝒦, 𝒲(𝓀) = U and for all (𝓀, 𝓏) ∈ 𝒦 × 𝒵 için, 𝒳(𝓀, 𝓏) = 𝔍(𝓀) ∪ 𝔖′ (𝓏). Since for 

all (𝓀, 𝓏) ∈ 𝒦 × 𝒵 , there exists 𝓀 ∈ 𝒦  such that 𝒳(𝓀, 𝓏) = 𝔍(𝓀) ∪ 𝔖′(𝓏) ⊆ U =

𝒲(𝓀), (𝔍, 𝒦)Vλ(𝔖, 𝒵) ⊆̃J U𝒦 is obtained. Similarly, (𝔍, 𝒦)Vλ(𝔖, 𝒵) ⊆̃J U𝒵. □ 

Proposition 21. Let ( 𝔍, 𝒦)  and (𝔖, 𝒵)  be SSs over 𝑈 . Then, 

(𝔍, 𝒦)𝑉𝜆(𝔖, 𝒵) =𝑀 ∅𝒦×𝒵 if and only if (𝔍, 𝒦) =𝑀 ∅𝒦 and (𝔖, 𝒵) =𝑀 𝑈𝒵 . 

Proof 21. Let ∅𝒦×𝒵 = (ℰ, 𝒦 × 𝒵) and (𝔍, 𝒦)Vλ(𝔖, 𝒵) = (𝒳, 𝒦 × 𝒵), where for all 

(𝓀, 𝓏) ∈ 𝒦 × 𝒵  , ℰ(𝓀, 𝓏) = ∅  and for all (𝓀, 𝓏) ∈ 𝒦 × 𝒵 , 𝒳(𝓀, 𝓏) = 𝔍(𝓀) ∪

𝔖′ (𝓏) . Let (ℰ, 𝒦 × 𝒵) = (𝒳, 𝒦 × 𝒵) . Then, for all (𝓀, 𝓏) ∈ 𝒦 × 𝒵 , 𝔍(𝓀) ∪

𝔖′(𝓏) = ∅ . Thereby, for all 𝓀 ∈ 𝒦 , 𝔍(𝓀) = ∅  and for all 𝓏 ∈ 𝒵 , 𝔖′(𝓏) = ∅ . 

Therefore, for all 𝓀 ∈ 𝒦 , 𝔍(𝓀) = ∅ and for all 𝓏 ∈ 𝒵 , 𝔖 (𝓏) = U, implying that 

(𝔍, 𝒦) =M ∅𝒦 and (𝔖, 𝒵) =M U𝒵. 
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Conversely, let (𝔍, 𝒦) =M ∅𝒦  and (𝔖, 𝒵) =M U𝒵 . Thus, for all 𝓀 ∈ 𝒦 , 

𝔍(𝓀) = ∅ and for all 𝓏 ∈ 𝒵, 𝔖(𝓏) = U. Hence, for all (𝓀, 𝓏) ∈ 𝒦 × 𝒵, 𝒳(𝓀, 𝓏) =

𝔍(𝓀) ∪ 𝔖′ (𝓏) = ∅ ∪ ∅ = ∅, and so (𝔍, 𝒦)Vλ(𝔖, 𝒵) =M ∅𝒦×𝒵. □ 

Proposition 22. Let (𝔍, 𝒦) and (𝔖, 𝒵) be SSs over 𝑈. Then, (𝔍, 𝒦)𝑉𝜆(𝔖, 𝒵) =𝑀 ∅∅ 

if and only if (𝔍, 𝒦) =𝑀 ∅∅ or (𝔖, 𝒵) =𝑀 ∅∅. 

Proof 22. Let (𝔍, 𝒦)Vλ(𝔖, 𝒵) =M ∅∅. Thereby, 𝒦 × 𝒵 = ∅, and so 𝒦 = ∅ or 𝒵 =

∅. Since ∅∅ is the only SS with the empty PS, (𝔍, 𝒦) =M ∅∅ or (𝔖, 𝒵) =M ∅∅. 

Conversely, let (𝔍, 𝒦) = ∅∅  or (𝔖, 𝒵) = ∅∅ . Then, 𝒦 = ∅  or 𝒵 = ∅ . Since 

𝒦 × 𝒵 = ∅ and ∅∅ is the only SS with empty PS, (𝔍, 𝒦)Vλ(𝔖, 𝒵) =M ∅∅. □ 

4. Distributions of soft lambda-product over certaın types of soft 

set’s operatıons 

In this section, we investigate the distributions of soft lambda-product over 

restricted, extended, soft binary piecewise intersection and union operations, AND-

product and OR-product.  

Theorem 1. Let (𝔍, 𝒦), (𝔖, 𝒵) and (Ջ, 𝒞) be SSs over 𝑈. Then, we have the following 

distributions of soft lambda-product over restricted intersection and union operations: 

i) (𝔍, 𝒦)Vλ[(𝔖, 𝒵) ∪R (Ջ, 𝒞)] =M [(𝔍, 𝒦)Vλ(𝔖, 𝒵)] ∩R [(𝔍, 𝒦)Vλ(Ջ, 𝒞)], 

ii) (𝔍, 𝒦)Vλ[(𝔖, 𝒵) ∩R (Ջ, 𝒞)] =M [(𝔍, 𝒦)Vλ(𝔖, 𝒵)] ∪R [(𝔍, 𝒦)Vλ(Ջ, 𝒞)], 

iii) [(𝔖, 𝒵) ∩R (Ջ, 𝒞)]Vλ(𝔍, 𝒦) =M [(𝔖, 𝒵)Vλ(𝔍, 𝒦)] ∩R [(Ջ, 𝒞)Vλ(𝔍, 𝒦)], 

iv) [(𝔖, 𝒵) ∪R (Ջ, 𝒞)]Vλ(𝔍, 𝒦) =M [(𝔖, 𝒵)Vλ(𝔍, 𝒦)] ∪R [(Ջ, 𝒞)Vλ(𝔍, 𝒦)], 

Proof 23. (i) The PS of the left-hand side (LHS) is 𝒦x(𝒵 ∩  𝒞), and the PS of the 

right-hand side (RHS) is (𝒦x𝒵) ∩ (𝒦x𝒞). Since 𝒦x(𝒵 ∩  𝒞) = (𝒦x𝒵) ∩ (𝒦x𝒞), 

the first condition of the M-equality is satisfied. Let (𝔖, 𝒵) ∪R (Ջ, 𝒞) = (𝔈, 𝒵 ∩ 𝒞), 

where for all 𝔷 ∈ 𝒵 ∩ 𝒞, 𝔈( 𝔷) = 𝔖( 𝔷) ∪ Ջ( 𝔷). Let (𝔍, 𝒦)Vλ(𝔈, 𝒵 ∩ 𝒞) = (℘, 𝒦 ×

(𝒵 ∩ 𝒞)), where for all (𝓀, 𝔷) ∈ 𝒦 × (𝒵 ∩ 𝒞), ℘(𝓀, 𝔷) = 𝔍(𝓀) ∪ 𝔈′(𝔷). Thus, 

℘(𝓀, 𝔷) = 𝔍(𝓀) ∪ [𝔖(𝔷) ∪ Ջ( 𝔷)]′ = 𝔍(𝓀) ∪ [𝔖′( 𝔷) ∩ Ջ′( 𝔷)]. 

Let (𝔍, 𝒦)Vλ(𝔖, 𝒵) = (𝔐, 𝒦 × 𝒵)  and (𝔍, 𝒦)Vλ(Ջ, 𝒞) = (𝔓, 𝒦 × 𝒞) , where 

for all (𝓀, 𝓏) ∈ 𝒦 × 𝒵 , 𝔐(𝓀, 𝓏) = 𝔍(𝓀) ∪ 𝔖′(𝓏)  and for all (𝓀, 𝒸) ∈ 𝒦 × 𝒞 , 

𝔓(𝓀, 𝒸) = 𝔍(𝓀) ∪ Ջ′(𝒸) . Suppose that (𝔐, 𝒦 × 𝒵) ∩R (𝔓, 𝒦 × 𝒞) = (ℜ, (𝒦 ×

𝒵) ∩ (𝒦 × 𝒞)), where for all (𝓀, 𝔷) ∈ (𝒦 × 𝒵) ∩ (𝒦 × 𝒞) = 𝒦 × (𝒵 ∩ 𝒞), 

ℜ(𝓀, 𝔷) = 𝔐(𝓀, 𝔷) ∩ 𝔓(𝓀, 𝔷) = [𝔍(𝓀) ∪ 𝔖′(𝔷)] ∩ [𝔍(𝓀) ∪ Ջ′(𝔷)]. 

Thus, (𝔍, 𝒦)Vλ[(𝔖, 𝒵) ∪R (Ջ, 𝒞)] =M [(𝔍, 𝒦)Vλ(𝔖, 𝒵)] ∩R [(𝔍, 𝒦)Vλ(Ջ, 𝒞)]. 

Here, if 𝒵 ∩  𝒞 = ∅, then 𝒦x(𝒵 ∩  𝒞) = (𝒦x𝒵) ∩ (𝒦x𝒞) = ∅. Since the only 

SS with an empty PS is ∅∅ , then both sides are ∅∅ . Since (𝒦x𝒵) ∩ (𝒦x𝒞) =

𝒦x(𝒵 ∩  𝒞), if (𝒦x𝒵) ∩ (𝒦x𝒞)=∅, then 𝒦=∅ or 𝒵 ∩  𝒞 = ∅. By assumption, 𝒦 ≠

∅ . Thus, (𝒦x𝒵) ∩ (𝒦x𝒞) = ∅  implies that 𝒵 ∩  𝒞 = ∅ . Therefore, under this 

condition, both sides are again ∅∅. 

(iii) The PS of the LHS is (𝒵 ∩ 𝒞) × 𝒦, and the PS of the RHS is (𝒵 × 𝒦) ∩

(𝒞 × 𝒦), and since (𝒵 ∩ 𝒞) × 𝒦 = (𝒵 × 𝒦) ∩ (𝒞 × 𝒦), the first condition of M-

equality is satisfied. Let (𝔖, 𝒵) ∩R (Ջ, 𝒞) = (𝔈, 𝒵 ∩ 𝒞) , where for all 𝔷 ∈ 𝒵 ∩ 𝒞 , 

𝔈( 𝔷) = 𝔖( 𝔷) ∩ Ջ( 𝔷). Let (𝔈, 𝒵 ∩ 𝒞)Vλ(𝔍, 𝒦) = (℘, (𝒵 ∩ 𝒞) × 𝒦)), where for all 
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(𝔷, 𝓀) ∈ (𝒵 ∩ 𝒞) × 𝒦, ℘(𝔷, 𝓀) = 𝔈(𝔷) ∪ 𝔍′(𝓀). Thus, 

℘(𝔷, 𝓀) = [𝔖( 𝔷) ∩ Ջ( 𝔷)] ∪ 𝔍′(𝓀). 

Assume that (𝔖, 𝒵)Vλ(𝔍, 𝒦) = (𝔐, 𝒵 × 𝒦)  and (Ջ, 𝒞)Vλ(𝔍, 𝒦) = (𝔓, 𝒞 ×

𝒦) , where for all (𝓏, 𝓀) ∈ 𝒵 × 𝒦 , 𝔐(𝓏, 𝓀) = 𝔖(𝔷) ∪ 𝔍′(𝓀)  and for all (𝒸, 𝓀) ∈

𝒞 × 𝒦 , 𝔓(𝒸, 𝓀) = Ջ(𝒸) ∪ 𝔍′(𝓀) . Let (𝔐, 𝒵 × 𝒦 ) ∩R (𝔓, 𝒞 × 𝒦) = (ℜ, (𝒵 ×

𝒦) ∩ (𝒞 × 𝒦)), where for all (𝔷, 𝓀) ∈ (𝒵 × 𝒦) ∩ (𝒞 × 𝒦) = (𝒵 ∩ 𝒞) × 𝒦, 

ℜ(𝔷, 𝓀) = 𝔐(𝔷, 𝓀) ∩ 𝔓( 𝔷, 𝓀) = [𝔖(𝔷) ∪ 𝔍′(𝓀)] ∩ [Ջ(𝔷) ∪ 𝔍′(𝓀)]. 

Thus, [(𝔖, 𝒵) ∩R (Ջ, 𝒞)]Vλ(𝔍, 𝒦) =M ([𝔖, 𝒵)Vλ(𝔍, 𝒦)] ∩R [(Ջ, 𝒞)Vλ(𝔍, 𝒦)]. 

Here if 𝒵 ∩ 𝒞 = ∅, then (𝒵 ∩ 𝒞) × 𝒦 = (𝒵 × 𝒦) ∩ (𝒞 × 𝒦)=∅. Since the only 

SS with the empty parameter set is ∅∅, then both sides of the equality are ∅∅. Similarly 

since (𝒵 × 𝒦) ∩ (𝒞 × 𝒦) = (𝒵 ∩ 𝒞) × 𝒦 , if (𝒵 × 𝒦) ∩ (𝒞 × 𝒦) = ∅ , then 𝒵 ∩

𝒞 = ∅ or 𝒦 = ∅. By assumption 𝒦 ≠ ∅. Hence, (𝒵 × 𝒦) ∩ (𝒞 × 𝒦) = ∅ implies 

that 𝒵 ∩ 𝒞 = ∅. Thus, under this condition, both sides of the equality are again ∅∅. □ 

Note 1. The restricted SS operation cannot distribute over soft lambda-product as the 

intersection does not distribute over cartesian product and it is compulsory for two 

SSs to be M-equal that their PS should be the same. 

Theorem 2. Let (𝔍, 𝒦), (𝔖, 𝒵) and (Ջ, 𝒞) be SSs over 𝑈. Then, we have the following 

distributions of soft lambda-product over extended intersection and union operations: 

i) (𝔍, 𝒦)Vλ[(𝔖, 𝒵) ∩ε (Ջ, 𝒞)] =M [(𝔍, 𝒦)Vλ(𝔖, 𝒵)] ∪ε [(𝔍, 𝒦)Vλ(Ջ, 𝒞)], 

ii) (𝔍, 𝒦)Vλ[(𝔖, 𝒵) ∪ε (Ջ, 𝒞)] =M [(𝔍, 𝒦)Vλ(𝔖, 𝒵)] ∩ε [(𝔍, 𝒦)Vλ(Ջ, 𝒞)], 

iii) [(𝔖, 𝒵) ∪ε (Ջ, 𝒞)]Vλ(𝔍, 𝒦) =M [(𝔖, 𝒵)Vλ(𝔍, 𝒦)] ∪ε [(Ջ, 𝒞)Vλ(𝔍, 𝒦)], 

iii) [(𝔖, 𝒵) ∩ε (Ջ, 𝒞)]Vλ(𝔍, 𝒦) =M [(𝔖, 𝒵)Vλ(𝔍, 𝒦)] ∩ε [(Ջ, 𝒞)Vλ(𝔍, 𝒦)]. 

Proof 24. (i) The PS of the LHS is 𝒦x(𝒵 ∪ 𝒞), and the PS of the RHS is (𝒦x𝒵) ∪

(𝒦x𝒞). Since 𝒦x(𝒵 ∪  𝒞) = (𝒦x𝒵) ∪ (𝒦x𝒞), the first condition of the M-equality 

is satisfied. As 𝒦 ≠ ∅, 𝒵 ≠ ∅, and 𝒞 ≠ ∅, 𝒦x(𝒵 ∪ 𝒞) ≠ ∅ and (𝒦x𝒵) ∪ (𝒦x𝒞) ≠

∅ . No side can therefore be equivalent to an empty SS. Let (𝔖, 𝒵) ∩ε (Ջ, 𝒞) =

(𝔈, 𝒵 ∪ 𝒞), where for all 𝔷 ∈ 𝒵 ∪ 𝒞, 

𝔈( 𝔷) = {

𝔖( 𝔷),       𝔷 ∈  𝒵 −  𝒞

Ջ( 𝔷),       𝔷 ∈  𝒞 − 𝒵
𝔖( 𝔷) ∩ Ջ( 𝔷),    𝔷 ∈ 𝒵 ∩ 𝒞

. 

Let (𝔍, 𝒦)Vλ(𝔈, 𝒵 ∪ 𝒞) = (ℚ, 𝒦 × (𝒵 ∪ 𝒞)), where for all (𝓀, 𝔷) ∈ 𝒦 × (𝒵 ∪ 𝒞), 

ℚ(𝓀, 𝔷) =  𝔍(𝓀) ∪  𝔈′(𝔷). Thus, for all (𝓀, 𝔷) ∈ 𝒦 × (𝒵 ∪ 𝒞), 

ℚ(𝓀, 𝔷) = {

𝔍(𝓀) ∪ 𝔖′(𝔷),       (𝓀, 𝔷) ∈ 𝒦 × (𝒵 − 𝒞) 
𝔍(𝓀) ∪ Ջ′(𝔷),       (𝓀, 𝔷) ∈ 𝒦 × (𝒞 − 𝒵)

𝔍(𝓀) ∪ [𝔖′(𝔷) ∪ Ջ′(𝔷)], (𝓀, 𝔷) ∈ 𝒦 × (𝒵 ∩ 𝒞) 
. 

Let (𝔍, 𝒦)Vλ(𝔖, 𝒵) = ((𝔐, 𝒦 × 𝒵))  and (𝔍, 𝒦)Vλ(Ջ, 𝒞) = (𝔓, 𝒦 × 𝒞) , 

where for all (𝓀, 𝓏) ∈ 𝒦 × 𝒵, 𝔐(𝓀, 𝓏) = 𝔍(𝓀) ∪ 𝔖′(𝓏) and for all (𝓀, 𝒸) ∈ 𝒦 × 𝒞, 

𝔓(𝓀, 𝒸) = 𝔍(𝓀) ∪ Ջ′(𝒸) . Assume that (𝔐, 𝒦 × 𝒵) ∪ε (𝔓, 𝒦 × 𝒞) = (ℜ, (𝒦 ×

𝒵) ∪ (𝒦 × 𝒞)), where for all (𝓀, 𝔷) ∈ (𝒦 × 𝒵) ∪ (𝒦 × 𝒞) = 𝒦 × (𝒵 ∪ 𝒞), 
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ℜ(𝓀, 𝔷) = {

𝔐 (𝓀, 𝔷),       (𝓀, 𝔷) ∈ (𝒦 × 𝒵) − (𝒦 × 𝒞) = 𝒦 × (𝒵 − 𝒞) 

𝔓(𝓀, 𝔷),        (𝓀, 𝔷) ∈ (𝒦 × 𝒞) − (𝒦 × 𝒵) = 𝒦 × (𝒞 − 𝒵)

𝔐 (𝓀, 𝔷) ∪ 𝔓(𝓀, 𝔷), (𝓀, 𝔷) ∈ (𝒦 × 𝒵) ∩ (𝒦 × 𝒞) = 𝒦 × (𝒵 ∩ 𝒞)
. 

Thus, 

ℜ(𝓀, 𝔷) = {

𝔍(𝓀) ∪ 𝔖′(𝔷),           (𝓀, 𝔷) ∈ (𝒦 × 𝒵) − (𝒦 × 𝒞) = 𝒦 × (𝒵 − 𝒞) 
𝔍(𝓀) ∪ Ջ′(𝔷),            (𝓀, 𝔷) ∈ (𝒦 × 𝒞) − (𝒦 × 𝒵) = 𝒦 × (𝒞 − 𝒵)

[𝔍(𝓀) ∪ 𝔖′(𝔷)] ∪ [𝔍(𝓀) ∪ Ջ′(𝔷)], (𝓀, 𝔷) ∈ (𝒦 × 𝒵) ∩ (𝒦 × 𝒞) = 𝒦 × (𝒵 ∩ 𝒞) 
. 

Hence, (𝔍, 𝒦)Vλ[(𝔖, 𝒵) ∩ε (Ջ, 𝒞)] =M [(𝔍, 𝒦)Vλ(𝔖, 𝒵)] ∪ε [(𝔍, 𝒦)Vλ(Ջ, 𝒞)] 

(iii) The PS of the LHS is (𝒵 ∪ 𝒞) × 𝒦, and the PS of the RHS is (𝒵 × 𝒦) ∪

(𝒞 × 𝒦), and since (𝒵 ∪ 𝒞) × 𝒦 = (𝒵 × 𝒦) ∪ (𝒞 × 𝒦) the first condition of M-

equality is satisfied. By assumption, 𝒦 ≠ ∅, 𝒵 ≠ ∅, and 𝒞 ≠ ∅. Thus, (𝒵 ∪ 𝒞) ×

𝒦 ≠ ∅ and (𝒵 × 𝒦) ∪ (𝒞 × 𝒦) ≠ ∅. No side can therefore be equivalent to an empty 

SS. Let (𝔖, 𝒵) ∪ε (Ջ, 𝒞) = (𝔈, 𝒵 ∪ 𝒞), where for all 𝔷 ∈ 𝒵 ∪ 𝒞, 

𝔈( 𝔷) = {

𝔖( 𝔷),              𝔷 ∈  𝒵 −  𝒞

Ջ( 𝔷),              𝔷 ∈  𝒞 − 𝒵

𝔖( 𝔷) ∪ Ջ( 𝔷),         𝔷 ∈ 𝒵 ∩ 𝒞

. 

Let (𝔈, 𝒵 ∪ 𝒞)Vλ(𝔍, 𝒦) = (℘, (𝒵 ∪ 𝒞) × 𝒦), where for all (𝔷, 𝓀) ∈ (𝒵 ∪ 𝒞) ×

𝒦, ℘(𝔷, 𝓀) = 𝔈(𝔷) ∪ 𝔍′(𝓀), 

℘(𝓀, 𝔷) = {

𝔖(𝔷) ∪ 𝔍′(𝓀),       (𝓀, 𝔷) ∈ (𝒵 − 𝒞) × 𝒦 
Ջ(𝔷) ∪ 𝔍′(𝓀),       (𝓀, 𝔷) ∈ (𝒞 − 𝒵) × 𝒦

[𝔖(𝔷) ∪ Ջ(𝔷)] ∪ 𝔍′(𝓀), (𝓀, 𝔷) ∈ (𝒵 ∩ 𝒞) × 𝒦 

. 

Let (𝔖, 𝒵)Vλ(𝔍, 𝒦) = (𝔐, 𝒵 × 𝒦)  and (Ջ, 𝒞)Vλ(𝔍, 𝒦) = (𝔓, 𝒞 × 𝒦) , where 

for all (𝓏, 𝓀) ∈ 𝒵 × 𝒦 , 𝔐(𝓏, 𝓀) = 𝔖(𝔷) ∪ 𝔍′(𝓀)  and for all (𝒸, 𝓀) ∈ 𝒞 × 𝒦 , 

𝔓(𝒸, 𝓀) = Ջ(𝒸) ∪ 𝔍′(𝓀) . Assume that (𝔐, 𝒵 × 𝒦 ) ∪ε (𝔓, 𝒞 × 𝒦) = (ℜ, (𝒵 ×

𝒦) ∪ (𝒞 × 𝒦)), where for all (𝔷, 𝓀) ∈ (𝒵 × 𝒦) ∪ (𝒞 × 𝒦) = (𝒵 ∪ 𝒞) × 𝒦, 

ℜ(𝓀, 𝔷) = {

𝔐 (𝔷, 𝓀),       (𝓀, 𝔷) ∈ (𝒵 × 𝒦) − (𝒞 × 𝒦) = (𝒵 − 𝒞) × 𝒦 

𝔓(𝔷, 𝓀),        (𝓀, 𝔷) ∈ (𝒞 × 𝒦) − (𝒵 × 𝒦) = (𝒞 − 𝒵) × 𝒦

𝔐 (𝔷, 𝓀) ∪ 𝔓(𝔷, 𝓀), (𝓀, 𝔷) ∈ (𝒵 × 𝒦) ∩ (𝒞 × 𝒦) = (𝒵 ∩ 𝒞) × 𝒦

. 

Thus, 

ℜ(𝓀, 𝔷) = {

𝔖(𝔷) ∪ 𝔍′(𝓀),           (𝓀, 𝔷) ∈ (𝒵 × 𝒦) − (𝒞 × 𝒦) = (𝒵 − 𝒞) × 𝒦 

Ջ(𝔷) ∪ 𝔍′(𝓀),           (𝓀, 𝔷) ∈ (𝒞 × 𝒦) − (𝒵 × 𝒦) = (𝒞 − 𝒵) × 𝒦
[𝔖(𝔷) ∪ 𝔍′(𝓀)] ∪ [Ջ(𝔷) ∪ 𝔍′(𝓀)], (𝓀, 𝔷) ∈ (𝒵 × 𝒦) ∩ (𝒞 × 𝒦) = (𝒵 ∩ 𝒞) × 𝒦 

. 

Hence, [(𝔖, 𝒵) ∪ε (Ջ, 𝒞)]Vλ(𝔍, 𝒦) =M [(𝔖, 𝒵)Vλ(𝔍, 𝒦)] ∪ε [(Ջ, 𝒞)Vλ(𝔍, 𝒦)] . 

□ 

Note 2. The extended SS operation cannot distribute over soft lambda-product as the 

union operation does not distribute over cartesian product and it is compulsory for 

two SSs to be M-equal that their PS should be the same. 

Theorem 3. Let (𝔍, 𝒦), (𝔖, 𝒵) and (Ջ, 𝒞) be SSs over 𝑈. Then, we have the following 

distributions of soft lambda-product over soft binary piecewise intersection and union 

operations: 

i) (𝔍, 𝒦)Vλ[(𝔖, 𝒵) ∩̃ (Ջ, 𝒞)] =M [(𝔍, 𝒦)Vλ(𝔖, 𝒵)] ∪̃ [(𝔍, 𝒦)Vλ(Ջ, 𝒞)], 
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ii) (𝔍, 𝒦)Vλ[(𝔖, 𝒵) ∪̃ (Ջ, 𝒞)] =M [(𝔍, 𝒦)Vλ(𝔖, 𝒵)] ∩̃ [(𝔍, 𝒦)Vλ(Ջ, 𝒞)], 

iii) [(𝔖, 𝒵) ∪̃ (Ջ, 𝒞)]Vλ(𝔍, 𝒦) =M [(𝔖, 𝒵)Vλ(𝔍, 𝒦)] ∪̃ [(Ջ, 𝒞)Vλ(𝔍, 𝒦)], 

iv) [(𝔖, 𝒵) ∩̃ (Ջ, 𝒞)]Vλ(𝔍, 𝒦) =M [(𝔖, 𝒵)Vλ(𝔍, 𝒦)] ∩̃ [(Ջ, 𝒞)Vλ(𝔍, 𝒦)]. 

Proof 25. (i) Since the PS of the SSs of both sides are 𝒦x𝒵, the first condition of the 

M-equality is satisfied. Moreover since 𝒦 ≠ ∅ and 𝒵 ≠ ∅ by assumption, 𝒦x𝒵 ≠ ∅. 

No side can therefore be equivalent to an empty SS. Let (𝔖, 𝒵) ∩̃ (Ջ, 𝒞) = (𝔈, 𝒵), 

where for all 𝔷 ∈ 𝒵,  

𝔈( 𝔷) = {
𝔖( 𝔷),       𝔷 ∈  𝒵 −  𝒞

𝔖( 𝔷) ∩ Ջ( 𝔷),     𝔷 ∈ 𝒵 ∩ 𝒞.
 

Let (𝔍, 𝒦)Vλ(𝔈, 𝒵) = (ℚ, 𝒦 × 𝒵) , where for all (𝓀, 𝔷) ∈ 𝒦 × 𝒵 , ℚ(𝓀, 𝔷) =

 𝔍(𝓀) ∪  𝔈′(𝔷). Thus,  

ℚ(𝓀, 𝔷) = {
𝔍(𝓀) ∪ 𝔖′(𝔷),       (𝓀, 𝔷) ∈ 𝒦 × (𝒵 −  𝒞)

𝔍(𝓀) ∪ [𝔖′(𝔷) ∪ Ջ′(𝔷)],      (𝓀, 𝔷) ∈ 𝒦 × 𝒵 ∩ 𝒞.
 

Let (𝔍, 𝒦)Vλ(𝔖, 𝒵) = (𝔐, 𝒦 × 𝒵)  and (𝔍, 𝒦)Vλ(Ջ, 𝒞) = (𝔓, 𝒦 × 𝒞) , where 

for all (𝓀, 𝓏) ∈ 𝒦 × 𝒵 , 𝔐(𝓀, 𝓏) = 𝔍(𝓀) ∪ 𝔖′(𝔷)  and for all (𝓀, 𝒸) ∈ 𝒦 × 𝒞 , 

𝔓(𝓀, 𝒸) = 𝔍(𝓀) ∪ Ջ′(𝒸). Assume that (𝔐, 𝒦 × 𝒵) ∪̃ (𝔓, 𝒦 × 𝒞) = (ℜ, (𝒦 × 𝒵)), 

where for all (𝓀, 𝔷) ∈ 𝒦 × 𝒵, 

ℜ(𝓀, 𝔷) = {
𝔐 (𝓀, 𝔷),       (𝓀, 𝔷) ∈ (𝒦 × 𝒵) − (𝒦 × 𝒞) = 𝒦 × (𝒵 − 𝒞)

𝔐 (𝓀, 𝔷) ∪ 𝔓(𝓀, 𝔷), (𝓀, 𝔷) ∈ (𝒦 × 𝒵) ∩ (𝒦 × 𝒞) = 𝒦 × (𝒵 ∩ 𝒞).
 

Therefore, 

ℜ(𝓀, 𝔷) = {
𝔍(𝓀) ∪ 𝔖′(𝔷),       (𝓀, 𝔷) ∈ (𝒦 × 𝒵) − (𝒦 × 𝒞) = 𝒦 × (𝒵 − 𝒞)

[𝔍(𝓀) ∪ 𝔖′(𝔷)] ∪ [𝔍(𝓀) ∪ Ջ′(𝔷)], (𝓀, 𝔷) ∈ (𝒦 × 𝒵) ∩ (𝒦 × 𝒞) = 𝒦 × (𝒵 ∩ 𝒞)
. 

Thus, (𝔍, 𝒦)Vλ[(𝔖, 𝒵) ∩̃ (Ջ, 𝒞)] =M [(𝔍, 𝒦)Vλ(𝔖, 𝒵)] ∪̃ [(𝔍, 𝒦)Vλ(Ջ, 𝒞)]. 

Since 𝒦 ≠ 𝒦x𝒦, the soft binary piecewise operations do not distribute over soft 

lambda-product operations.  

(iii) Since the PS of the SSs of both sides are 𝒵 × 𝒦, the first condition of the M-

equality is satisfied. Moreover since 𝒵 ≠ ∅ and 𝒦 ≠ ∅ by assumption, 𝒵 × 𝒦 ≠ ∅. 

No side can therefore be equivalent to an empty SS. Let (𝔖, 𝒵) ∪̃ (Ջ, 𝒞) = (𝔈, 𝒵), 

where for all 𝔷 ∈ 𝒵, 

𝔈( 𝔷) = {
𝔖( 𝔷),       𝔷 ∈  𝒵 −  𝒞

𝔖( 𝔷) ∪ Ջ( 𝔷),     𝔷 ∈ 𝒵 ∩ 𝒞.
 

Let (𝔈, 𝒵)Vλ(𝔍, 𝒦) = (℘, 𝒵 × 𝒦) , where for all (𝔷, 𝓀) ∈ 𝒵 × 𝒦 , ℘(𝔷, 𝓀) =

𝔈(𝔷) ∪ 𝔍′(𝓀). Thus, 

℘(𝓀, 𝔷) = {
𝔖(𝔷) ∪ 𝔍′(𝓀),       (𝓀, 𝔷) ∈ (𝒵 − 𝒞) × 𝒦 

[𝔖(𝔷) ∪ Ջ(𝔷)] ∪ 𝔍′(𝓀), (𝓀, 𝔷) ∈ (𝒵 ∩ 𝒞) × 𝒦 
. 

Let (𝔖, 𝒵)Vλ(𝔍, 𝒦) = (𝔐, 𝒵 × 𝒦)  and (Ջ, 𝒞)Vλ(𝔍, 𝒦) = (𝔓, 𝒞 × 𝒦) , where 

for all (𝓏, 𝓀) ∈ 𝒵 × 𝒦 , 𝔐(𝓏, 𝓀) = 𝔖(𝓏) ∪ 𝔍′(𝓀)  and for all (𝒸, 𝓀) ∈ 𝒞 × 𝒦 , 

𝔓(𝒸, 𝓀) = Ջ(𝒸) ∪ 𝔍′(𝓀). Assume that (𝔐, 𝒵 × 𝒦 ) ∪̃ (𝔓, 𝒞 × 𝒦) = (ℜ, (𝒵 × 𝒦)), 

where for all (𝔷, 𝓀) ∈ (𝒵 × 𝒦), 

ℜ(𝓀, 𝔷) = {
𝔐 (𝔷, 𝓀),       (𝓀, 𝔷) ∈ (𝒵 × 𝒦) − (𝒞 × 𝒦) = (𝒵 − 𝒞) × 𝒦 

𝔐 (𝔷, 𝓀) ∪ 𝔓(𝔷, 𝓀), (𝓀, 𝔷) ∈ (𝒵 × 𝒦) ∩ (𝒞 × 𝒦) = (𝒵 ∩ 𝒞) × 𝒦
. 
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Thus, 

ℜ(𝓀, 𝔷) = {
𝔖(𝔷) ∪ 𝔍′(𝓀),           (𝓀, 𝔷) ∈ (𝒵 × 𝒦) − (𝒞 × 𝒦) = (𝒵 − 𝒞) × 𝒦 

[𝔖(𝔷) ∪ 𝔍′(𝓀)] ∪ [Ջ(𝔷) ∪ 𝔍′(𝓀)], (𝓀, 𝔷) ∈ (𝒵 × 𝒦) ∩ (𝒞 × 𝒦) = (𝒵 ∩ 𝒞) × 𝒦 
. 

Hence, [(𝔖, 𝒵) ∪̃ (Ջ, 𝒞)]Vλ(𝔍, 𝒦) =M [(𝔖, 𝒵)Vλ(𝔍, 𝒦)] ∪̃ [(Ջ, 𝒞)Vλ(𝔍, 𝒦)]. □ 

Proposition 23. Let (𝔍, 𝒦), (𝔖, 𝒵) and (Ջ, 𝒞) be SSs over 𝑈. Then, 

(1) (𝔍, 𝒦)Vλ[(𝔖, 𝒵)Λ(Ջ, 𝒞)] ⊆̃L [(𝔍, 𝒦)Vλ(𝔖, 𝒵)]V[(𝔍, 𝒦)Vλ(Ջ, 𝒞)] 

(2) (𝔍, 𝒦)Vλ[(𝔖, 𝒵)V(Ջ, 𝒞)] ⊆̃L [(𝔍, 𝒦)Vλ(𝔖, 𝒵)]Λ[(𝔍, 𝒦)Vλ∗
(Ջ, 𝒞)] 

Proof 26. (1) Let (𝔖, 𝒵)Λ(Ջ, 𝒞) = (𝔈, 𝒵 ×  𝒞) , where for all (𝓏, 𝒸) ∈ 𝒵 ×  𝒞 , 

𝔈(𝓏, 𝒸) = 𝔖(𝓏) ∩ Ջ(𝒸) . Let (𝔍, 𝒦)Vλ(𝔈, 𝒵 ×  𝒞) = (ℜ, 𝒦 × (𝒵 ×  𝒞)) , where for 

all (𝓀, (𝓏, 𝒸)) ∈ 𝒦 × (𝒵 ×  𝒞), 

ℜ(𝓀, (𝓏, 𝒸)) = 𝔍(𝓀) ∪ [𝔖(𝓏) ∩ Ջ(𝒸)]′ = 𝔍(𝓀) ∪ [𝔖′(𝓏) ∪ Ջ′(𝒸)].  

Assume that (𝔍, 𝒦)Vλ(𝔖, 𝒵) = (ℋ, 𝒦 × 𝒵)  and (𝔍, 𝒦)Vλ(Ջ, 𝒞) = (ℳ, 𝒦 ×

 𝒞), where for all (𝓀, 𝓏) ∈ 𝒦 × 𝒵 , ℋ(𝓀, 𝓏) = 𝔍(𝓀) ∪ 𝔖′(𝓏) and for all (𝓀, 𝒸) ∈

𝒦 ×  𝒞, ℳ(𝓀, 𝒸) = 𝔍(𝓀) ∪ Ջ′(𝒸). Let (ℋ, 𝒦 × 𝒵)V(ℳ, 𝒦 ×  𝒞) = (β, (𝒦 × 𝒵) ×

(𝒦 ×  𝒞)), where for all ((𝓀, 𝓏), (𝓀, 𝒸)) ∈ (𝒦 × 𝒵) × (𝒦 ×  𝒞),  

β((𝓀, 𝓏), (𝓀, 𝒸)) = [𝔍(𝓀) ∪ 𝔖′(𝓏)] ∪ [𝔍(𝓀) ∪ Ջ′(𝒸)]. 

Here, for all (𝓀, (𝓏, 𝒸)) ∈ 𝒦 × (𝒵 ×  𝒞) , there exists ((𝓀, 𝓏), (𝓀, 𝒸)) ∈ (𝒦 ×

𝒵) × (𝒦 ×  𝒞)  such that ℜ(𝓀, (𝓏, 𝒸)) = 𝔍(𝓀) ∪ [𝔖′(𝓏) ∪ Ջ′(𝒸)] = [𝔍(𝓀) ∪

𝔖′(𝓏)] ∪ [𝔍(𝓀) ∪ Ջ′(𝒸)] = β((𝓀, 𝓏), (𝓀, 𝒸)). This completes the proof. □ 

It is obvious that the L-subset in Proposition 23. can not be L-equality with the 

following example: 

Example 2. Let 𝐸 =  {ℓ1 , ℓ2, ℓ3, ℓ4}  be the PS, 𝒦 = {ℓ2, ℓ3} , 𝒵 = {ℓ1},  and 𝒞 =

{ℓ4}, be the subsets of 𝐸, 𝑈 = {𝒻1, 𝒻2, 𝒻3, 𝒻4, 𝒻5} be the universal set, (𝔍, 𝒦), (𝔖, 𝒵) 

and (Ջ, 𝒞) ve SSs over 𝑈 such that (𝔍, 𝒦) = {(ℓ2, {𝒻3, 𝒻4}), (ℓ3, {𝒻2, 𝒻3})}, (𝔖, 𝒵) =

{(ℓ1, 𝑈)} and (Ջ, 𝒞) = {(ℓ4, {𝒻2, 𝒻3, 𝒻4})}. We show that 

(𝔍, 𝒦)Vλ[(𝔖, 𝒵)Λ(Ջ, 𝒞)] ≠L [(𝔍, 𝒦)Vλ(𝔖, 𝒵)]V[(𝔍, 𝒦)Vλ(Ջ, 𝒞)]. 

Let (𝔖, 𝒵)Λ(Ջ, 𝒞) = (𝔈, 𝒵 ×  𝒞), where 

(𝔖, 𝒵)Λ(Ջ, 𝒞) = (𝔈, 𝒵 ×  𝒞) = {((ℓ1, ℓ4), {𝒻2, 𝒻3, 𝒻4})}. 

Assume that (𝔍, 𝒦)Vλ(𝔈, 𝒵 ×  𝒞) = (𝔐, 𝒦 × (𝒵 ×  𝒞)), where 

(𝔐, 𝒦 × (𝒵 ×  𝒞)) = (((ℓ2, (ℓ1, ℓ4)), {𝒻1, 𝒻3, 𝒻4, 𝒻5}) , ((ℓ3, (ℓ1, ℓ4)), {𝒻1, 𝒻2, 𝒻3, 𝒻5})). 

Let (𝔍, 𝒦)Vλ(𝔖, 𝒵) = (𝔈, 𝒦 × 𝒵), where 

(𝔈, 𝒦 × 𝒵) = {((ℓ2, ℓ1), {𝒻3, 𝒻4}), ((ℓ3, ℓ1), {𝒻2, 𝒻3})}. 

Suppose that (𝔍, 𝒦)Vλ(Ջ, 𝒞) = (ℜ, 𝒦 ×  𝒞), where 

(ℜ, 𝒦 ×  𝒞) = [((ℓ2, ℓ4), {𝒻1, 𝒻3, 𝒻4, 𝒻5}), ((ℓ3, ℓ4), { 𝒻1, 𝒻2, 𝒻3, 𝒻5})]. 

Let (𝔈, 𝒦 × 𝒵)V(ℜ, 𝒦 ×  𝒞) = (β, (𝒦 × 𝒵) × (𝒦 ×  𝒞)). Then, 
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(β, (𝒦 × 𝒵) × (𝒦 ×  𝒞)) = {
(((ℓ2, ℓ1), (ℓ2, ℓ4)), {𝒻1, 𝒻3, 𝒻4, 𝒻5}) , (((ℓ2, ℓ1), (ℓ3, ℓ4)), { 𝒻1, 𝒻2, 𝒻3, 𝒻4, 𝒻5}) ,

(((ℓ3, ℓ1), (ℓ2, ℓ4)), {𝒻1, 𝒻2, 𝒻3, 𝒻4, 𝒻5}) , (((ℓ3, ℓ1), (ℓ3, ℓ4)), {𝒻1, 𝒻2, 𝒻3, 𝒻5})
}. 

Thus, β((ℓ2, ℓ1), (ℓ3, ℓ4)) ≠ 𝔐(ℓ2, (ℓ1, ℓ4)) , β((ℓ2, ℓ1), (ℓ3, ℓ4)) ≠

𝔐(ℓ3, (ℓ1, ℓ4)) , β((ℓ3, ℓ1), (ℓ2, ℓ4)) ≠ 𝔐(ℓ2, (ℓ1, ℓ4)) , β((ℓ3, ℓ1), (ℓ2, ℓ4)) ≠

𝔐(ℓ3, (ℓ1, ℓ4)) , implying that (β, (𝒦 × 𝒵) × (𝒦 ×  𝒞)) ⊈̃L (𝔐, 𝒦 × (𝒵 ×  𝒞)) . 

Hence, (β, (𝒦 × 𝒵) × (𝒦 ×  𝒞)) ≠L (𝔐, 𝒦 × (𝒵 ×  𝒞)). 

5. Int-uni decision-making method applied to soft lambda-product 

The int-uni decision-making approach is applied in this section by applying the 

int-uni operator and int-uni decision function developed by Çağman and Enginoğlu 

[11] to the soft lambda-product. 

Throughout this section, all the soft lambda-products (Vλ) of the SSs over U are 

assumed to be contained in the set Vλ(U), and the approximation function of the soft 

lambda-product of (𝔍, 𝒦) and (𝔖, 𝒵), that is (𝔍, 𝒦)Vλ(𝔖, 𝒵)  

𝔍𝒦Vλ𝔖𝒵: 𝒦x𝒵 → P(U). 

where (𝔍𝒦Vλ𝔖𝒵)(𝓀, 𝓏) = 𝔍(𝓀) ∪ 𝔖′(𝓏) for all (𝓀, 𝓏) ∈ 𝒦x𝒵. 

Definition 16. Let (𝔍, 𝒦) and (𝔖, 𝒵) be SS over 𝑈. Then, int-uni operators for soft 

lambda-product, denoted by intxuniy and intyunix are defined respectively as 

intxuniy: Vλ → P(U), intxuniy (𝔍𝒦Vλ𝔖𝒵) = ⋂𝓀∈𝒦(⋃𝓏∈ 𝒵(𝔍𝒦Vλ𝔖𝒵)(𝓀, 𝓏))), 

intyunix: Vλ → P(U),  intyunix (𝔍𝒦Vλ𝔖𝒵) = ⋂𝓏∈ 𝒵(⋃𝓀∈𝒦(𝔍𝒦Vλ𝔖𝒵)(𝓀, 𝓏))). 

Definition 17. [11] Let (𝔍, 𝒦)𝑉𝜆(𝔖, 𝒵) ∈ 𝑉𝜆(𝑈). Then, int-uni decision function for 

soft lambda-product, denoted by int-uni are defined by 

int-uni: Vλ → P(U), int-uni (𝔍𝒦Vλ𝔖𝒵) = intxuniy (𝔍𝒦Vλ𝔖𝒵) ∪ intyunix(𝔍𝒦Vλ𝔖𝒵). 

The values int-uni(𝔍𝒦Vλ𝔖𝒵) is a subset of U called int-uni decision set of 𝔍𝒦Vλ𝔖𝒵. 

The int-uni decision-making approach may be used in the following ways to 

choose the best set of alternatives while staying focused on the current issue given a 

set of parameters and options: 

Step 1: From the parameter collection, choose feasible subsets. 

Step 2: Create the SSs for every parameter sets. 

Step 3: Determine the SSs’ soft lambda-product. 

Step 4: Create the result of int-uni decision set. 

This method demonstrates the value of SS theory in handling decision-making 

scenarios by enabling its application to the int-uni decision-making dilemma, 

particularly in the setting of soft lambda-product.  

Example 3. A private teaching institution has announced a recruitment process to 

form a young and dynamic team of teachers. Initially, applications are reviewed to 

ensure they meet the required qualifications for the position, with ineligible 

applications being disqualified. Due to the large number of candidates remaining after 

this preliminary elimination, the institution has decided to adopt a two-stage 
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evaluation process. 

In this process: 

1) Stage 1: Mrs. Nazlan, a representative from the Human Resources department, 

will eliminate candidates based on their interview performance and exam results. 

2) Stage 2: The candidates who pass the first stage will undergo a comprehensive 

training program, and those who successfully complete it will qualify to join the 

institution’s professional teaching team. 

During the evaluation, Mrs. Nazlan will identify: 

• Parameters she DOES wish to see in the candidates to be eliminated: Traits or 

deficiencies that make a candidate unsuitable. 

• Parameters she absolutely DOES NOT want to see in candidates to be eliminated: 

Key characteristics that make a candidate viable for further consideration. 

Mrs. Nazlan will use the int-uni decision-making method on soft lambda-product 

to guide her selection. Let the set of candidates whose applications have been validated 

for the teacher recruitment process be: U = {𝓇1, 𝓇2, … , 𝓇35}. Let the set of parameters 

to be used for identifying the teachers to be eliminated be Let the set of parameters 

used to identify the teachers to be eliminated be represented as {𝒶1, 𝒶2, … , 𝒶10}. Each 

parameter 𝒶𝑖, where 𝑖 ∈ {1, 2, … ,10} corresponds to the following descriptions:  

• 𝒶1: “Intolerant and impatient” 

• 𝒶2: “Having sufficient expertise in the field and adequate general knowledge” 

• 𝒶3: “Having ineffective classroom management skills” 

• 𝒶4: “Strong communication skills” 

• 𝒶5: “Taking individual differences into account in education” 

• 𝒶6: “Having insufficient teaching skills.” 

• 𝒶7 : “Being open to innovations and developments, continuously renewing 

oneself” 

• 𝒶8: “Not encouraging and supportive” 

• 𝒶9: “Not being cheerful, humorous, or affectionate” 

• 𝒶10: “Having poor diction.” 

To address the teacher selection process, we can apply the soft lambda-product 

method in the following manner: 

Step 1: Determining the Sets of Parameters 

Mrs. Nazlan, the decision-maker, selects parameters from the existing set that 

define the characteristics of candidates to be eliminated. 

• Parameters that are preferred in candidates to be eliminated: 

These are undesirable traits or deficiencies that make a candidate unsuitable for 

selection, but appropriate for elimination. 

• Parameters that must NOT be present in eliminated candidates: 

These represent essential qualities or skills required in a teacher, and their 

absence would disqualify a candidate. 

By organizing these parameters into two sets, the selection process ensures clarity 

and alignment with the decision-maker’s priorities. The parameter sets are as follows: 

• 𝒦 = {𝒶1, 𝒶3, 𝒶6, 𝒶8}  

• 𝒵 = {𝒶2, 𝒶4, 𝒶5, 𝒶7},  

respectively. 
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Step 2: Constructing the SSs by Using the PSs Determined in Step 1. 

Using these parameter sets, the decision-maker constructs the SSs (𝔍, 𝒦) and 

(𝔍, 𝒵), respectively 

(𝔍, 𝒦) = {(𝒶1, {𝓇2, 𝓇6, 𝓇7, 𝓇11, 𝓇13, 𝓇17, 𝓇19, 𝓇27, 𝓇31, 𝓇33}), (𝒶3, {𝓇6, 𝓇10, 𝓇11, 𝓇18, 𝓇19, 𝓇21, 𝓇22, 𝓇30, 𝓇32, 𝓇33}), 

(𝒶6, {𝓇1, 𝓇3, 𝓇6, 𝓇10, 𝓇13, 𝓇18, 𝓇19, 𝓇25, 𝓇28, 𝓇32}), (𝒶8, {𝓇1, 𝓇3, 𝓇6, 𝓇10, 𝓇11, 𝓇13, 𝓇17, 𝓇22, 𝓇25, 𝓇27, 𝓇29, 𝓇33}}, 

(𝔍, 𝒵) = {(𝒶2, {𝓇9, 𝓇14, 𝓇17, 𝓇23, 𝓇25, 𝓇27}), (𝒶4, {𝓇2, 𝓇3, 𝓇7, 𝓇9, 𝓇11, 𝓇14, 𝓇17, 𝓇21, 𝓇23, 𝓇30, 𝓇31, 𝓇32}), 

(𝒶5, {𝓇1, 𝓇3, 𝓇14, 𝓇19, 𝓇20, 𝓇23, 𝓇27, 𝓇32}), (𝒶7, {𝓇7, 𝓇14, 𝓇19, 𝓇20, 𝓇23, 𝓇27, 𝓇29, 𝓇32, 𝓇35)}}. 

The SS (𝔍, 𝒦) represents a set of candidates to be eliminated due to undesirable 

parameters in 𝒦, while (𝔍, 𝒵) represents a set of candidates that are closer to the ideal 

by possessing the highly desired parameters in 𝒵. The process of constructing these 

sets involves assigning weights to the parameters and evaluating their importance in 

the decision-making process, ensuring that the elimination process is both balanced 

and justifiable. It is important to note that Mrs. Nazlan’s task is specifically to 

eliminate the candidates based on these criteria. 

Step 3: Determine the Vλ-product of SSs: 

𝔍𝒦Vλ𝔍𝒵 = 

{((𝒶1, 𝒶2), {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22,

𝓇24, 𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35
}), 

((𝒶1, 𝒶4), {
𝓇1, 𝓇2, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇22,

𝓇24, 𝓇25, 𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇31, 𝓇33, 𝓇34, 𝓇35
}), 

((𝒶1, 𝒶5), {
𝓇2, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇21, 𝓇22,

𝓇24, 𝓇25, 𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇33, 𝓇34, 𝓇35
}), 

((𝒶1, 𝒶7), {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇30, 𝓇31, 𝓇33, 𝓇34
}), 

((𝒶3, 𝒶2), {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24,

𝓇26, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35
}), 

((𝒶3, 𝒶4), {
𝓇1, 𝓇4, 𝓇5, 𝓇6, 𝓇8, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇32, 𝓇33, 𝓇34, 𝓇35
}), 

((𝒶3, 𝒶5), {
𝓇2, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇21𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35
}), 

((𝒶3, 𝒶7), {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇28, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34
}), 

((𝒶6, 𝒶2), {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35
}), 

((𝒶6, 𝒶4), {
𝓇1, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇8, 𝓇10, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇18, 𝓇19, 𝓇20, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇32, 𝓇33, 𝓇34, 𝓇35
}), 
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((𝒶6, 𝒶5), {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35
}), 

((𝒶6, 𝒶7), {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇28, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34
}), 

((𝒶8, 𝒶2), {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 }), 

((𝒶8, 𝒶4), {
𝓇1, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇8, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇33, 𝓇34, 𝓇35
}), 

((𝒶8, 𝒶5), {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇33, 𝓇34, 𝓇35 } ), 

((𝒶8, 𝒶7), {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇33, 𝓇34 })}. 

Step 4: Determine the set of int-uni(𝔍𝒦Vλ𝔍𝒵): 

𝑖𝑛𝑡𝓀 − 𝑢𝑛𝑖𝓏(𝔍𝒦Vλ𝔍𝒵) = ⋂𝓀∈𝒦 (⋃𝒵∈𝒵((𝔍𝒦Vλ𝔍𝒵)(𝓀, 𝓏))) 

We first determine ∪𝓏∈𝒵 ((𝔍𝒦Vλ𝔍𝒵)(𝓀, 𝓏)): 

(𝔍𝒦Vλ𝔍𝒵)(𝒶1, 𝒶2) ∪ (𝔍𝒦Vλ𝔍𝒵)(𝒶1, 𝒶4) ∪ (𝔍𝒦Vλ𝔍𝒵)(𝒶1, 𝒶5) ∪ (𝔍𝒦Vλ𝔍𝒵)(𝒶1, 𝒶7) 

= {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22,

𝓇24, 𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35
}. 

∪ {
𝓇1, 𝓇2, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇22,

𝓇24, 𝓇25, 𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇31, 𝓇33, 𝓇34, 𝓇35
} 

∪ {
𝓇2, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇21, 𝓇22,

𝓇24, 𝓇25, 𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇33, 𝓇34, 𝓇35
} 

∪ {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇30, 𝓇31, 𝓇33, 𝓇34
} 

=
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35
. 

(𝔍𝒦Vλ𝔍𝒵)(𝒶3, 𝒶2) ∪ (𝔍𝒦Vλ𝔍𝒵)(𝒶3, 𝒶4) ∪ (𝔍𝒦Vλ𝔍𝒵)(𝒶3, 𝒶5) ∪ (𝔍𝒦Vλ𝔍𝒵)(𝒶3, 𝒶7) 

= {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24,

𝓇26, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 }. 

∪ {
𝓇1, 𝓇4, 𝓇5, 𝓇6, 𝓇8, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇32, 𝓇33, 𝓇34, 𝓇35 } 

∪ {
𝓇2, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇21𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 } 

∪ {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇28, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34  } 

= {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 }. 

(𝔍𝒦Vλ𝔍𝒵)(𝒶6, 𝒶2) ∪ (𝔍𝒦Vλ𝔍𝒵)(𝒶6, 𝒶4) ∪ (𝔍𝒦Vλ𝔍𝒵)(𝒶6, 𝒶5) ∪ (𝔍𝒦Vλ𝔍𝒵)(𝒶6, 𝒶7) 
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= {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35  }. 

∪ {
𝓇1, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇8, 𝓇10, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇18, 𝓇19, 𝓇20, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇32, 𝓇33, 𝓇34, 𝓇35 } 

∪ {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 } 

∪ {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇28, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34 } 

= {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 }. 

(𝔍𝒦Vλ𝔍𝒵)(𝒶8, 𝒶2) ∪ 𝔍𝒦Vλ𝔍𝒵)(𝒶8, 𝒶4) ∪ (𝔍𝒦Vλ𝔍𝒵)(𝒶8, 𝒶5) ∪ (𝔍𝒦Vλ𝔍𝒵)(𝒶8, 𝒶7) 

= {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 }. 

∪ {
𝓇1, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇8, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇33, 𝓇34, 𝓇35  } 

∪ {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇33, 𝓇34, 𝓇35 } 

∪ {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇33, 𝓇34 } 

= {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 }. 

Thus, 

(𝑖𝑛𝑡𝓀 − 𝑢𝑛𝑖𝓏)(𝔍𝒦Vλ𝔍𝒵) = ⋂𝓀∈𝒦 (⋃𝓏∈𝒵(𝔍𝒦Vλ𝔍𝒵)(𝓀, 𝓏))) = 

{
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 } 

∩ {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 } 

∩ {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 } 

∩ {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 } 

= {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 }. 

is obtained. 

(𝑖𝑛𝑡𝓏 − 𝑢𝑛𝑖𝓀)(𝔍𝒦Vλ𝔍𝒵) = ⋂𝓏∈𝒵 (⋃𝓀∈𝒦((𝔍𝒦Vλ𝔍𝒵)(𝓀, 𝓏))). 

We first determine ⋃𝓀∈𝒦((𝔍𝒦Vλ𝔍𝒵)(𝓀, 𝓏)): 

(𝔍𝒦Vλ𝔍𝒵)(𝒶1, 𝒶2) ∪ (𝔍𝒦Vλ𝔍𝒵)(𝒶3, 𝒶2) ∪ (𝔍𝒦Vλ𝔍𝒵)(𝒶6, 𝒶2) ∪ (𝔍𝒦Vλ𝔍𝒵)(𝒶8, 𝒶2) 

= {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22,

𝓇24, 𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 }. 

∪ {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24,

𝓇26, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 } 
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∪ {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35  } 

∪ {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 } 

= {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 }. 

(𝔍𝒦Vλ𝔍𝒵)(𝒶1, 𝒶4) ∪ (𝔍𝒦Vλ𝔍𝒵)(𝒶3, 𝒶4) ∪ (𝔍𝒦Vλ𝔍𝒵)(𝒶6, 𝒶4) ∪ (𝔍𝒦Vλ𝔍𝒵)(𝒶8, 𝒶4) 

= {
𝓇1, 𝓇2, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇22,

𝓇24, 𝓇25, 𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇31, 𝓇33, 𝓇34, 𝓇35  }. 

∪ {
𝓇1, 𝓇4, 𝓇5, 𝓇6, 𝓇8, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇32, 𝓇33, 𝓇34, 𝓇35 } 

∪ {
𝓇1, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇8, 𝓇10, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇18, 𝓇19, 𝓇20, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇32, 𝓇33, 𝓇34, 𝓇35 } 

∪ {
𝓇1, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇8, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇33, 𝓇34, 𝓇35  } 

= {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 }. 

(𝔍𝒦Vλ𝔍𝒵)(𝒶1, 𝒶5) ∪ (𝔍𝒦Vλ𝔍𝒵)(𝒶3, 𝒶5) ∪ (𝔍𝒦Vλ𝔍𝒵)(𝒶6, 𝒶5) ∪ (𝔍𝒦Vλ𝔍𝒵)(𝒶8, 𝒶5) 

= {
𝓇2, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇21, 𝓇22,

𝓇24, 𝓇25, 𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇33, 𝓇34, 𝓇35 }. 

∪ {
𝓇2, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇21𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 } 

∪ {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 } 

∪ {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇33, 𝓇34, 𝓇35 } 

= {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 }. 

(𝔍𝒦Vλ𝔍𝒵)(𝒶1, 𝒶7) ∪ (𝔍𝒦Vλ𝔍𝒵)(𝒶3, 𝒶7) ∪ (𝔍𝒦Vλ𝔍𝒵)(𝒶6, 𝒶7) ∪ (𝔍𝒦Vλ𝔍𝒵)(𝒶8, 𝒶7) 

= {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇30, 𝓇31, 𝓇33, 𝓇34 }. 

∪ {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇28, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34  } 

∪ {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇28, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34 } 

∪ {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇33, 𝓇34 } 

= {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34 }. 

is obtained. Therefore, 

(𝑖𝑛𝑡𝓏 − 𝑢𝑛𝑖𝓀)(𝔍𝒦Vλ𝔍𝒵) = ⋂𝓏∈𝒵 (∪𝓀∈𝒦 ((𝔍𝒦Vλ𝔍𝒵)(𝓀, 𝓏)))= 
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{
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 } 

∩ {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 } 

∩ {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 } 

∩ {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34 } 

={
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 }. 

Thus, 

int-uni(𝔍𝒦Vλ𝔍𝒵) = [𝑖𝑛𝑡𝓀 − 𝑢𝑛𝑖𝓏(𝔍𝒦Vλ𝔍𝒵)] ∪  [𝑖𝑛𝑡𝓏 − 𝑢𝑛𝑖𝓀(𝔍𝒦Vλ𝔍𝒵)] 

= {
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 } 

∪={
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 } 

={
𝓇1, 𝓇2, 𝓇3, 𝓇4, 𝓇5, 𝓇6, 𝓇7, 𝓇8, 𝓇9, 𝓇10, 𝓇11, 𝓇12, 𝓇13, 𝓇15, 𝓇16, 𝓇17, 𝓇18, 𝓇19, 𝓇20, 𝓇21, 𝓇22, 𝓇24, 𝓇25,

𝓇26, 𝓇27, 𝓇28, 𝓇29, 𝓇30, 𝓇31, 𝓇32, 𝓇33, 𝓇34, 𝓇35 }. 

Therefore, in the teacher recruitment process at the private teaching institution, 

out of the 35 candidates whose applications were accepted, 33 were eliminated in the 

first stage. The remaining candidates, {𝓇14, 𝓇23} were enrolled in a comprehensive 

training program and subsequently earned the right to join the institution’s 

professional teacher team. 

6. Conclusion 

The “soft lambda-product,” a novel kind of soft product derived from 

Molodtsov’s soft set theory, was presented in this paper. We analyzed its algebraic 

features in detail and gave an example with respect to several kinds of soft subsets and 

equalities, such as M-subset/equality, F-subset/equality, L-subset/equality, and J-

subset/equality. Additionally, we looked at the soft lambda-product’s distributional 

rules over several soft set operations. To choose the best components from the various 

possibilities, we finally applied the soft decision-making strategy, which streamlines 

the process by doing away with the necessity for rough or fuzzy soft sets. An example 

shows how well it works in a variety of disciplines. Numerous applications, including 

innovative soft set-based cryptography algorithms and fresh approaches to decision-

making, are made possible by this work. Future studies might suggest more soft 

product operations and investigate basic characteristics associated with different soft 

equal relations in order to theoretically and practically enhance the soft set literature. 
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