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Abstract: Variability characterization is a key component in the reliability assessment of 

geotechnical systems, particularly in scenarios involving tailings deposits, where spatial 

heterogeneity can critically impact design safety. Despite advances in modeling spatial 

randomness, many reported cases still rely on theoretical assumptions to define appropriate 

statistical characterizations—such as theoretical probability density functions (PDFs) and 

correlation structures—which may misrepresent site-specific conditions. To bridge this gap, 

piezocone penetration tests (CPTu) stand out as promising tools for providing continuous 

measurements along a vertical profile that can be used to define statistical behavior and avoid 

bias. This paper presents a spatial variability characterization of a bauxite tailings deposit based 

on mechanical parameters derived from CPTu data. The study includes basic statistical 

analysis—mean (μ), standard deviation (), coefficient of variation (CV)—alongside a 

comparison with theoretical PDFs. Subsequently, spatial correlation is evaluated through 

covariance analysis and estimation of the vertical scale of fluctuation (δ), using a dedicated 

subroutine that fits theoretical autocorrelation models (TAMs). The deposit is classified as 

highly variable according to the IcRW index. The normal and Weibull PDFs best represent the 

data distributions. The vertical scales of fluctuation vary significantly: 0.01 m to 4.43 m for 

cone resistance (qc), 0.01 m to 4.36 m for sleeve friction (fs), and 0.01 m to 5.00 m for pore 

water pressure (u2). These findings offer valuable input for probabilistic stability and 

serviceability analyses, contributing to safer and more informed geotechnical designs involving 

mine tailings.  

Keywords: spatial variability; in situ tests; autocorrelation models; piezocone test; bauxite 

tailings; geotechnical engineering 

1. Introduction 

The difficulties associated with the construction and operation of Tailings 

Storage Facilities (TSFs) have long been recognized and remain a significant concern 

for the engineering community. In Brazil, there has been increasing significance in 

dam failure over the last decade, especially due to the occurrence of two recent failures 

(Brumadinho and Mariana Dams) with notable socioenvironmental impacts. 

Central to the design of TSFs is the correct definition of geotechnical engineering 

parameters that arises from the heterogeneous nature of waste products, hydraulic 

depositional processes, and behavior changes during the lifetime of deposits. These 

production and deposition processes generate a material that is extremely variable both 

vertically and horizontally [1], making spatial variability a critical factor influencing 

stability and drainage behavior. 

Bauxite tailings fit within this context due to their formation processes, which 

produce fine-grained particles and heterogeneous depositional patterns, leading to 
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significant differences in strength, compressibility, and permeability along both 

vertical and horizontal directions. Such variability critically affects pore pressure 

dissipation and shear strength evolution, key aspects for the stability and long-term 

performance of TSFs. Nevertheless, specific investigations into the spatial variability 

of bauxite tailings remain limited in the literature, highlighting the motivation for the 

present study. 

Variability characterization is an essential tool in reliability analysis, but despite 

the progress made in implementing routines that facilitate the modeling of random soil 

properties, such as the Random Field Model by Fenton and Griffiths [2], many 

reported cases still rely on theoretical assumptions to define statistical 

characterizations, such as theoretical probability density functions (PDFs) and 

correlation structures. To address these data limitations, piezocone tests, which 

provide continuous measurements along a vertical profile, offer a substantial dataset 

that enables the establishment of reliable relationships and minimizes potential biases 

in statistical and probabilistic applications [3]. More recently, in Dienstmann et al. [4], 

piezocone test data from a gold tailings deposit were considered in a statistical analysis 

to address the influence of inheritance variability on drainage behavior. 

Within this context, the present paper statistically characterizes key parameters, 

including the mean (μ), coefficient of variation (CV), fluctuation scales (δ), and 

Probability Density Functions (PDFs), by analyzing piezocone data soundings. A 

series of tests conducted on a bauxite mine tailings storage facility (TSF) is considered 

in this study, which evaluates direct measurements of tip resistance qc, friction sleeve 

fs, and pore pressure u2 and their residual values (after trend removal). Focusing on the 

correlation structure, an algorithm was developed to define, in an optimized way, the 

best fit correlation between the theoretical autocorrelation model (TAM) and the 

sample autocorrelation itself, providing direct and fast evaluation of vertical 

fluctuation scales. 

2. Spatial variability 

The application of statistical methods to describe the variability in a dataset is 

more straightforward when the data exhibit a certain degree of predictability. When 

extended to the characterization of spatial variability in geotechnical materials, this 

concept translates into the recommendation to apply such methods only within 

homogeneous mechanical behavior layers, which in most cases are formed from the 

same base process. Within homogeneous layers, trends in material parameter 

variations become evident, allowing the application of the decomposition method 

mentioned by Campello et al. [5]. This method involves the idealization that the “true” 

value of a geotechnical property (ξ(z)) along a depth z can be described in terms of a 

trend function (t(z)) and a fluctuating component (w(z)), as per Equation (1): 

ξ(z) = t(z) + w(z) (1) 

Phoon et al. [6] exemplify, through an illustration, the behavior described by the 

equation above. Figure 1 presents a typical pattern of variability in a homogeneous 

layer profile. 
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Figure 1. Inherent soil variability (adapted from Phoon et al. [6]). 

Uzielli et al. [7] asserted that choosing the descriptive trend function is a complex 

task and impacts both the correlation structure and the statistical parameters describing 

the random field. The initial step in characterizing the variability of geotechnical 

parameters is to determine the best polynomial function that describes the data trend. 

Salgado et al. [3] recommend starting attempts with a first-order polynomial, and the 

regression coefficient (R) should not be less than 0.85. Otherwise, higher degrees of 

polynomials should be tested. The removal of the trend is an important step since, after 

this, it is possible to access and analyze the residual component separately. 

In Figure 2, two additional parameters used to describe the behavior of residuals 

around the trend function are illustrated. Coefficient of variation (CV) and fluctuation 

scale (δ). The CV is a fundamental parameter that indicates the extent of the dispersion 

of residuals, whereas the δ parameter is an indicator of the frequency of residual 

oscillations. 

 

Figure 2. Residual behavior around the trend (Salgado et al. [3]). 



Mathematics and Systems Science 2025, 3(2), 3120. 
 

4 

The CV is a fundamental parameter that indicates the extent of the dispersion of 

residuals, whereas the δ parameter is an indicator of the frequency of residual 

oscillations. The CV can be obtained through the ratio of the standard deviation to the 

mean, as per Equation (2): 

CV = σ/μ (2) 

The fluctuation scale is the distance between two soil parcels where their 

parameters exhibit a strong correlation. This parameter can be calculated through 

different methods; however, one of the most commonly used methods is the method 

of fitting theoretical autocorrelation models (TAMs) to the sample autocorrelation 

function. The aim is to find the theoretical function that best represents the sample [8]. 

The sample autocorrelation function (ρ), (Equation (3)), is derived from the 

covariance (C) between the separation distance (τ) and the desired parameter. The 

covariance is obtained via Equation (4), and the separation distance is obtained via 

Equation (5) [3]: 

𝜌(𝜏𝑗) =
𝐶(𝜏𝑗)

𝐶(𝜏1)
 (3) 

𝐶(𝜏𝑗) =
1

𝑛
∑ (𝑥𝑖 − 𝜇𝑋)

𝑛−𝑗+1

𝑖=1
(𝑥𝑖+𝑗−1 − 𝜇𝑋) (4) 

𝜏𝑗 = (𝑗 − 1)∆𝑧 (5) 

where: 

𝜇𝑋 is the mean value of 𝑋. 

𝑗 ≥ 1 is a whole number associated with the separation distance. 

∆𝑧 is the minimum distance between two consecutive points. 

𝐶(𝜏1) is the covariance for the null separation distance. 

The theoretical functions are mathematical models, with the most commonly 

used geotechnical models listed in Table 1, namely, the exponential, second-order 

Markov, and exponential cosine models. The theoretical autocorrelation models 

should be directly compared with the experimental values calculated via Equation (3). 

Table 1. Autocorrelation models. 

TAM Autocorrelation function 

Exponential 𝜌(𝜏) = exp⁡ (
−2|𝜏|

𝛿
)  

Second Order Markov 𝜌(𝜏) = (1 + 4
|𝜏|

𝛿
) 𝑒𝑥𝑝 (−4

|𝜏|

𝛿
)  

Squared Exponential 𝜌(𝜏) = 𝑒𝑥𝑝 [−𝜋 (
|𝜏|

𝛿
)
2
]  

Exponential Cosine 𝜌(𝜏) = 𝑒𝑥𝑝 (−
|𝜏|

𝛿
) 𝑐𝑜𝑠 (

|𝜏|

𝛿
)  

where 1 ρ is the autocorrelation function, τ is the separation distance and δ is the scale of fluctuation. 

Extending the concepts described above to tailings implies careful consideration 

of trend variability. Direct comparisons of piezocone tests considering different 

investigation islands from the same TSF can be categorized into distinct behaviors, as 



Mathematics and Systems Science 2025, 3(2), 3120. 
 

5 

reported in Dienstmann et al. [9]. The regional behavior of coarse and fine materials 

is a result of the depositional process, in which coarse particles settling from the slurry 

are transported along the beach by saltation and rolling, whereas the finer suspended 

or colloidal particles settle only when they reach the still water of the decant to form 

slime zones, as suggested by Vick [10]. In this regard, the data presented in this study 

focus on highly variable behavior materials because of the heterogeneous grain 

distribution along the deposition area. Both direct parameters and those after trend 

removal are evaluated. The trend removal considers eliminating from the statistical 

analysis the expected variation in parameters such as qc and u2, mainly with depth. The 

obtained results should be considered as a possible range for future applications. 

3. Materials and methods 

3.1. Piezocone test data 

For in situ characterization of TSFs, the piezocone test (CPTu) is the most widely 

used testing instrument [11]. The piezocone test involves driving a conical tip into the 

soil at a standardized rate according to ASTM D5778-07 [12]. During penetration, 

load sensors and pressure transducers measure the cone resistance (qc), sleeve friction 

(fs), and pore pressure (u2) with depth. The basic measurements of the test (qc, fs and 

u2) are used for material behavior characterization. Figure 3 presents typical profiles 

from tests conducted in the bauxite tailings deposit considered in this research. Despite 

the fluctuations in the behavior parameters, there is a general trend of increasing values, 

particularly for the cone resistance qc and pore pressure u2, with depth. The figure also 

shows the behavior index IcRW of Robertson and Wride [13]. The index is used to 

classify the typical behavior of a material in terms of strength and drainage. In this 

context, IcRW values greater than 2.95 are attributed to materials with typically 

undrained behavior (fine materials, clays), whereas IcRW values less than 2.6 

correspond to materials with drained behavior (coarse materials, sands). Finally, 

intermediate values, 2.6 < IcRW < 2.95, indicate materials with intermediate behavior 

(silts). 

The dataset presented herein comprises CPTu soundings performed between 

1999 and 2005 as part of the ALUMAR ARB tailings characterization campaign. The 

complete dataset is documented in Bedin [14]. In the present study, only fine-grained 

materials exhibiting undrained behavior were analyzed; for this purpose, profiles were 

selected based on the criterion of IcRW > 2.95. Although the filtering process primarily 

relied on the IcRW classification, a preliminary visual inspection of the profiles was also 

performed to identify and exclude inconsistent or anomalous data, such as equipment 

noise or incomplete soundings. Specifically, Figure 3 shows piezocone profiles from 

the 2005 field test campaign, comprising cone tip resistance qc, friction sleeve fs, and 

pore pressure u2, along with the considered classification parameter IcRW. Notably, in 

this particular campaign, predominantly fine material was characterized by low values 

of qc and higher pore pressures u2 combined with IcRW greater than 2.95. 
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Figure 3. Results from the piezocone test of ARB#3 performed in the 2005 campaign. Where (a) are the qc profiles of 

ALUMAR 1–10; (b) are the fs profiles of ALUMAR 1–10; (c) are the u2 profiles of ALUMAR 1–10; (d) are the IcRW 

classifications of ALUMAR 1–10. 

3.2. Variability characterization (method) 

The algorithm developed for this research reads CPTu data from an Excel sheet 

and executes a behavior selection procedure, dividing the sample according to its IcRW 

classification into coarse (drained behavior), intermediate (partially drained behavior), 

and fine soil (undrained behavior) categories. Afterwards, basic statistical analysis and 

spatial variability characterization are performed. 

Prior to the statistical evaluation, trend inspection was conducted. Figure 4a 

depicts the definitions of the trend and residual values, alongside the measured data. 

The average tip resistance (qc) clearly increases with depth (z). To address this trend, 

a linear function (e.g., qc = az + b, where ‘a’ and ‘b’ are fitting parameters) was applied 

to fit the CPTu data. After removing the trend component (az + b) from the original 

CPTu data, the residual tip resistance forms a stationary random field with a zero mean, 

as commonly used in random field theory for stationary fields [2]. The stationarity 

verification was performed through the inspection of the calculated residual fields. 

Stationary fields are expected to exhibit a zero mean and a normal distribution 

(normality). An example of the normality assessment is presented in Figure 4b. This 

analysis of stationarity is important for the accurate calculation of the fluctuation scale.  
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Figure 4. Variability pre-treatment: (a) general profile and residual plot along depth 

for ALUMAR 3; (b) residual qc normality evaluation.  

In addition to the stationary evaluation, the basic statistical analysis consists of 

computing the mean (μ), standard deviation (σ), and coefficient of variation (CV). 

Furthermore, histograms of the CPTu parameters were generated, and comparisons 

between theoretical probability density functions (PDFs) and empirical data were 

performed using QQ plots. QQ plots were constructed by plotting theoretical quantiles 

against empirical quantiles and serve to assess the goodness of fit between the 

observed data and the selected theoretical distribution. A good fit is indicated when 

the points approximately form a straight line. The PDFs tested in this research are the 

normal, log-normal, exponential, gamma, and Weibull distributions, all commonly 

applied in geotechnical engineering analyses.  

In the spatial variability step, the sample autocorrelation function was computed 

considering the covariance function, as defined by equations 3 to 5. This sample 

autocorrelation was then compared with the theoretical autocorrelation models (TAMs) 

listed in Table 1. Since the TAMs are functions of the scale of fluctuation, this 

parameter was adjusted by minimizing the distance between each point of the 

theoretical curves and the corresponding points of the sample autocorrelation curve. 

The final scale of fluctuation adopted corresponds to that of the theoretical model that 

achieved the highest coefficient of determination (R2) when compared with the sample 

autocorrelation function. 

4. Results and discussion 

4.1. Basic statistics and probability density functions 

As mentioned in the methods section, before any statistical or variability analysis, 

a mechanical behavior selection of the layers in the field test results was considered. 

Figure 5 illustrates the selection of layers and reading according to the results of the 

IcRW. In this sense, Figure 5a displays only qc readings in layers where IcRW < 2.60 
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(coarse soil); Figure 5b shows the qc readings in layers where 2.60 < IcRW < 2.95 

(intermediate soil); and Figure 5c shows the qc readings in layers where IcRW > 2.95 

(fine soil). A layer was considered representative of only part of the analysis if it 

consisted of at least 10 readings, considering the sensitivity of the equipment, which 

is directly associated with its diameter. 

 

Figure 5. Results of the cone tip resistance, separated by the IcRW index for the piezocone field tests at ARB#3 

performed in the 2005 campaign. Where (a) are the qc readings in layers where IcRW < 2.60 (coarse soil); (b) are the qc 

readings in layers where 2.60 < IcRW < 2.95 (intermediate soil); (c) are the qc readings in layers where IcRW > 2.95 (fine 

soil); and (d) are the IcRW classifications along the sounding profiles of ARB#3 performed in the 2005 campaign. 

For the clayey behavior, the distributions found for the main analyzed parameters 

are presented below, along with the fitting analysis with theoretical distributions via 

the Q‒Q plot. 

The histogram distribution of the parameter qc in Figure 6 shows that the values 

range from 0 kPa to 1000 kPa. When the parameter distribution is compared with the 

theoretical curves, the best fit is the normal distribution, as confirmed by the Q‒Q plot. 

For the residuals, a variation from −200 kPa to 200 kPa is observed, indicating a good 

fit to the normal distribution. The analysis of the normality of the residuals from the 

readings is a fundamental step in defining the homogeneity/stationarity of the profile. 

Random probabilistic methods, such as the Local Average Subdivision (LAS) method 

by Fenton and Griffiths [2], rely on this basic premise for predicting behavior. 
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(a) (b) 

  
(c) (d) 

Figure 6. Results from the statistical analysis of the grouped fine soil of the 2005 

campaign where (a) is the histogram distribution of qc; (b) is the QQ plot of the 

theoretical distributions fitting the sample data; (c) is the histogram distribution of 

residual qc; (d) is the QQ plot of the normal distribution fitting the sample residual 

data. 

For the parameter Su, as shown in Figure 7, variations from 0 kPa to 

approximately 70 kPa are observed in the histogram distribution of the parameter. 

Among the theoretical distribution curves tested, the best fits are the Weibull and 

normal distributions, as indicated by the Q‒Q plot. For the parameter normalized by 

vertical stress, the values are distributed between 0 kPa and 0.8 kPa, following a curve 

very close to a normal distribution, as shown in the Q‒Q plot results. 

  
(a) (b) 
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(c) (d) 

Figure 7. Results from the statistical analysis of the grouped fine soil of the 2005 

campaign. where (a) is the histogram distribution of Su; (b) is the QQ plot of the 

theoretical distributions fitted to the sample data; (c) is the histogram distribution of 

Su normalized by the effective vertical stress; and (d) is the QQ plot of the 

theoretical distributions fitted to the sample normalized data. 

Table 2 presents a summary of the basic statistics applied to the grouped 

parameters, showing the mean values, standard deviations, and coefficients of 

variation for the clayey behavior. The results indicate that the coefficients of variation 

range from 0.46 (46%) to 1.05 (105%), with the lowest coefficient of variation for the 

normalized undrained shear strength parameter relative to the effective vertical stress. 

The normalization of undrained shear strength by effective stress is a commonly used 

approach in geotechnics (e.g., the SHANSEP method, Ladd and Foott [15]). It allows 

for analyzing the behavioral characteristics of the material and extrapolating Su values 

across the entire deposit if the acting stresses are known. Additionally, normalization 

by effective stress can be interpreted as a form of preprocessing of the profiles, as 

suggested by Milan and Dienstmann [16]. For the undrained shear strength data 

evaluated in this study, the normalization approach resulted in a better approximation 

of the data to a normal distribution. 

Table 2. Basic statistics applied to the grouped parameters of fine soil from the 

2002, 2004, and 2005 campaigns. 

Parameter μ σ CV PDF 

qc 382.84 kPa 243.05 kPa 63% NORMAL 

fs 6.95 kPa 7.31 kPa 105% WEIBULL 

u2 190.94 kPa 135.26 kPa 71% NORMAL 

Su 23.70 kPa 15.70 kPa 66% WEIBULL/NORMAL 

Su/σ’vt 0.32 0.15 46% NORMAL 

Becker et al. [17] recently presented statistical insights into the variability in the 

undrained shear strength of iron tailings from the Germano dam in Mariana. Their 

study carefully separated data from multiple profiles and evaluated the distribution of 

the normalized undrained shear strength. The analysis focused exclusively on layers 

exhibiting plastic behavior and considered the impact of layer thickness. The findings 

revealed that the Su/σ’vt ratio for the plastic tailings followed a lognormal distribution. 

Moreover, thicker layers of plastic tailings were associated with lower values and 
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reduced variability. The ratio Su/σ’vt was found to range between 0.11 and 0.24, with 

coefficients of variation (CVs) ranging from 29% to 47%. These results generally 

indicate that the analyzed bauxite tailings exhibit greater normalized strength, with a 

mean Su/σ’vt ratio of 0.32 and a CV of 46%. 

4.2. Scale of fluctuation 

The calculation of scales of fluctuation performed by the algorithm involves 

approximating theoretical autocorrelation models to the sample’s autocorrelation 

curve. The best approximation result for each analyzed case corresponds to the 

determined fluctuation scale. Figure 8 shows a graphical example of applying this 

method to the homogeneous layer between −0.34 m and −14.24 m in borehole Alumar 

05 from the 2005 campaign in ARB#3. 

 

Figure 8. Theoretical models adjust to the sample autocorrelation curve. 

For each layer and each observed behavior, the scale of fluctuation and basic 

statistical parameters were calculated, as illustrated in Table 3, a typical example. As 

shown in the example table, the locally analyzed layers are listed in each row, where 

the “ID” column serves as the identifier, classifying them by year, sounding station, 

and position relative to the sounding depth. There is no exact pattern regarding the 

depths where the layers corresponding to each behavior are located. 

Table 3. Local variability considering qc readings in layers of fine soil mechanical behavior. 

ID μ (kPa) σ (kPa) CV δv(m) Model δ Thickness (m) 

(2002) Alumar01 2.90–3.55 287.62 37.52 0.13 0.35 Exponential 0.66 

(2002) Alumar01 4.8–5.02 444.55 136.74 0.31 Ø Quadratic Exponential 0.22 

(2002) Alumar01 5.20–5.38 475.87 122.90 0.26 Ø Cosine Exponential 0.18 

(2002) Alumar01 5.62–5.92 435.84 65.51 0.15 Ø Exponential 0.3 

(2002) Alumar01 7.5–7.82 612.15 129.92 0.21 Ø Exponential 0.32 

(2004) Alumar01 4.3–4.52 485.25 35.65 0.07 0.09 Cosine Exponential 0.22 

(2004) Alumar01 7.08–7.26 501.40 8.25 0.02 Ø Cosine Exponential 0.18 

(2004) Alumar01 7.34–7.96 484.59 17.64 0.04 0.52 Cosine Exponential 0.62 

(2004) Alumar01 8.24–9.28 525.85 57.76 0.11 0.11 Cosine Exponential 1.04 

(2002) Alumar01 2.90–3.55 601.05 115.21 0.19 4.32 Cosine Exponential 6.52 

(2002) Alumar01 4.8–5.02 12.62 11.05 0.88 0.06 Second Order Markov 0.18 
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Due to the large extension of the data and for simplification, a summary table is 

shown below. Table 4 presents the range of the results found for the local variability 

parameters of the campaigns performed in 2002, 2004, and 2005 for the fine soil 

(clayey behavior). 

For the parameter qc, the mean values range from 12.62 kPa to 1304.70 kPa, the 

standard deviation from 0 kPa to 442.82 kPa, the coefficient of variation from 0.00 to 

1.40, and the fluctuation scale from 0.01 m to 4.43 m. For the parameter fs, the mean 

values range from 0.00 kPa to 68.90 kPa, the standard deviation from 0.00 kPa to 32.21 

kPa, the coefficient of variation from 0.00 to 1.30, and the scale of fluctuation from 

0.01 m to 4.36 m. The mean values of u2 range from −3.24 kPa to 525.10 kPa, the 

standard deviation from 0.00 kPa to 176.66 kPa, the coefficient of variation from −1.06 

to 4.00, and the scale of fluctuation from 0.01 m to 5.00 m. 

Table 4. Range of results found for the local variability in fine soils of the campaigns performed in 2002, 2004, and 

2005. 

Para-meter μ (kPa) σ (kPa) CV δ (m) Thickness (m) 

qc 12.62 to 1304.70 0.00 to 442.82 0.00 to 1.40 0.01 to 4.43 0.15 to 14.46 

fs 0.00 to 68.90 0.00 to 32.21 0.00 to 1.30 0.01 to 4.36 0.15 to 14.46 

u2 −3.24 to 525.10 0.00 to 176.66 −1.06 to 4.00 0.01 to 5.00 0.15 to 14.46 

5. Conclusion 

This study conducted detailed analyses of statistical characterization and spatial 

variability via bauxite mine tailings from ALUMAR in São Luís, Maranhão, 

considering CPTu tests conducted in 2002, 2004, and 2005. The CPTu test campaigns 

provided essential data to determine the mechanical and spatial variability parameters 

of the material, enabling nearly continuous readings along the sounding profiles. 

Preliminary analysis via spreadsheets derived parameters from piezocone tests to 

characterize the material’s mechanical behavior for each probe reading, revealing high 

variability. This prompted the need to separate homogeneous layers for accurate 

statistical analysis. The homogeneous layers were subsequently identified and 

classified into three distinct behaviors (sandy, silty, and clayey) via a VBA algorithm. 

The ARB profile was found to consist of overlapping lenses with differing behaviors. 

The spatial and statistical variability of these layers was characterized via a Python 

script, which revealed that a normal distribution best fits most normalized parameter 

residuals. Basic test values, along with parameters Su and Su/‘v (for clayey behavior), 

were grouped to represent the global variability of the bauxite residue. The mean 

values, standard deviations, and coefficients of variation were calculated for each layer, 

and the global statistics were grouped. Typical and representative results for these 

materials remain scarce in the literature. 

These comprehensive analyses allowed for a detailed and robust evaluation of the 

variability of mechanical parameters, offering critical insights and essential data for 

conducting a reliability analysis that more accurately reflects the actual conditions of 

the tailings. This level of precision contributes significantly to understanding the 

behavior of the material under real-world conditions, supporting more reliable and 
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informed decision-making in the management and assessment of the structural 

stability of tailings.  

However, it is important to note that the results presented in this study are specific 

to the deposit analyzed and should be interpreted with caution. The findings aim to 

contribute to a broader understanding of the inherent variability of geotechnical 

materials but may not be directly generalizable to other deposits. Therefore, it is 

recommended that each site be evaluated individually and the data presented herein be 

used primarily as reference values rather than definitive parameters for different 

deposits. 
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