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Abstract: The parametric rough bi-level multi-objective fractional programming problem 

(PRBL-MOFPP) is investigated in this article. In the right-hand aspect of the rough set of 

constraints, the suggested PRBL-MOFPP has a scalar parameter. The PRBL-MOFPP is 

converted into two issues congruent to the upper and lower approximation models (UAM and 

LAM) in the first phase. Both UAM and LAM are solved using the fuzzy goal programming 

(FGP) technique. The parametric UAM and LAM were formulated in the second phase, and 

the Lagrangian function for UAM and LAM was derived. Furthermore, both models were 

subjected to Karush-Kuhn-Tucker (KKT) optimality conditions. Finally, the surely and 

possibly stable set of the first kind (SSFK) are studied. An algorithm for determining the SSFK 

for PRBL-MOFPP, as well as numerical examples, are exhibited. 

Keywords: bi-level optimization; fractional programming; parametric uncertainty; rough set; 

FGP approach 

1. Introduction 

Parametric programming is an effective tool in mathematical programming. The 

fundamentals of parametric convex programming have been introduced in [1,2]. 

Osman et al. in [3] presented a parametric linear goal programming (GP) issue. 

The researchers are faced with a significant challenge by ambiguity and handling 

insufficient data. Numerous mathematical theories [4–9] are introduced to solve such 

issues. Rough set theory (RST) is a powerful modeling technique for such uncertain 

circumstances [7,10–13]. Pawlak’s RST is the most recent theory for the collaborative 

handling of ambiguity and uncertainty [11,12]. It provides a strong theoretical 

foundation for talking about the knowledge that can categorize objects. In a crisp and 

ordinary set, an object is precisely determined based on all available information, 

whereas in RST, it is only roughly determined. A pair of precise notions known as the 

lower and upper approximations of the vague concept are used in RST to replace any 

vague concepts. A lower approximation for a hazy idea 𝑋 includes all objects that 

unquestionably belong to it, whereas an upper approximation includes all objects that 

might conceivably belong to it [12,14,15]. 

The bi-level programming problem (BLPP) is used naturally in many critical 

resource plannings, management problems, and policymaking areas. BLPP is a 

powerful tool for dealing with hierarchical decision-making challenges that are 

widespread in government initiatives, financial systems, logistics networks, 

agriculture, vehicle routing issues, etc. [6,16–23,24]. These issues are structured as 
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multi-objective programming challenges. Numerous approaches have been put out to 

address issues like those in [24–28]. 

The optimization of one or more ratios of functions subject to a set of constraints 

was covered in the field of fractional programming (FP). In recent decades, FP evolved 

as one of the planning tools. It has been used in a variety of sectors, including 

engineering, business, banking, and economics [29–32]. The basic methods and 

applications of the bi-level multi-objective fractional programming problems (BL-

MOFP) have been discussed in the literature [17,29,33–35]. Recently, numerous 

studies have been done on BL-MOFPs under uncertainty [29,36–39]. Ranarahu et al. 

suggested a strategy for dealing with fuzzy probabilistic multiple objective BLPP [40]. 

Baky et al. created the FGP algorithm to solve fuzzy BL-MOPP problems [20]. Ren 

devised a way for dealing with the totally fuzzy BL-MOPP using interval 

programming concepts [41]. The parametric fuzzy form of the multi-level 

optimization problem (ML-OP) was demonstrated by Osman et al. [33]. Arora et al. 

released an interactive FGP strategy for BL-PP [24]. ML-OP was studied by Chen and 

Chen [21]. Fuzzy integer BL-MOPP was demonstrated by Youness et al. [32]. Saad et 

al. investigated the rough interval three-level quadratic programming topic [42]. Elsisy 

and Elsayed offered three scenarios for dealing with fuzzy rough BL-MOFP problems 

[8]. Gumus and Floudas developed an innovative approach for solving the nonlinear 

BL-MOPP to global optimality [43]. El Sayed et al. investigated an M-TOPSIS 

methodology to resolve unidentified fractional ML-OP [25]. El Sayed and Farahat 

presented research on the Achievement Stability Set for Parametric FGP issues [36]. 

Osman et al. investigated the uncertainty for nonlinear ML-OP [33,44]. Hamzehee et 

al. [15] and Jivping Xu [45] presented a linear programming issue where part or all 

the choice parameters are rough intervals. 

Motivation and contribution 

Mathematical programming has a crucial principle that applies to parametric 

analysis. The goal of the parametric analysis is to determine how the behavior of the 

efficient set or the optimal value differs as data is modified. As a result, it frequently 

serves as a talking point when addressing ambiguity [1,2]. The SSFK are the quantities 

and relationships between different parameters that have the same solutions [1,2,46]. 

The earlier research that was given away in this era concentrated on stabilizing the 

solution. In addition, the roughness associated with the collection of constraints known 

as the rough environment is the type of uncertainty that receives crucial attention in 

realistic optimization problems. As the feasible area is rough, Farahat and El Sayed 

presented the parametric rough FGP issue [47,48-50]. Osman et al. demonstrated a 

parametric fuzzy BL-MOFP with a goal parameter and fuzziness in constraints [3]. 

None of the previous studies proposed the BL-MOFP issue with a parametric rough 

environment. Moreover, the SSFK for that model has not been introduced before. 

In this study, the SSFK of the PRBL-MOFPP is considered. The proposed PRBL-

MOFPP has a scalar parameter in the right-hand side of the rough set of constraints. 

In the first phase, the PRBL-MOFPP is transformed into two issues corresponding to 

the UAM and LAM. Pal’s method is applied to linearize the membership goals for the 

UAM and the LAM. Then the FGP approach is utilized to find a compromise solution 
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for both UAM and LAM. In the second phase, the parametric UAM and LAM were 

formulated, and then the Lagrangian function for UAM and LAM was obtained. 

Moreover, the KKT optimality conditions are applied to both models. At the end we 

define the surely and possibly SSFK for the PRBL-MOFPP. A procedure for obtaining 

the progressing SSFK for PRBL-MOFPP, as well as an illustrative numerical example, 

are exhibited. 

The remainder of this article is structured as follows: Sect. 2 presents problem 

formulation and methodology for the PRBL-MOFPPs. In Sect. 3, the surely and 

possibly SSFK for PRBL-MOFPP was introduced. Sect. 4 incorporates an algorithm 

for investigating the SSFK for PRBL-MOFPP. A numerical example was given in 

Sect. 5. A few findings are included at the end. 

2. Problem formulation and methodology 

The PRBL-MOFPP can be formulated as [5,17,37]: 

[1st Level] 

𝑚𝑎𝑥⏟
𝑥1

  𝐹1(𝑥) =
𝑐1𝑞
𝑇 𝑥 + 𝛼1𝑞

𝑑1𝑞
𝑇 𝑥 + 𝛽1𝑞

,          𝑞 = 1,2, … , 𝑄1 (1) 

where 𝑥2 solves 

[2nd Level] 

𝑚𝑎𝑥⏟
𝑥2

  𝐹2(𝑥) =
𝑐2𝑞
𝑇 𝑥 + 𝛼2𝑞

𝑑2𝑞
𝑇 𝑥 + 𝛽2𝑞

,          𝑞 = 1,2, … , 𝑄2 (2) 

subject to 

𝑥 ∈ 𝑆 (3) 

where 

𝑆∗(𝛾) ⊆ S ⊆ 𝑆
∗(𝛿) (4) 

𝑆∗(𝛾) = {𝑥 ∈ 𝑅
𝑛;∑𝑎𝑟𝑗𝑥𝑗 ≤ 𝛾𝑟,          𝑟 = 1,2

𝑛

𝑗=1

,          𝑥 ≥ 0} (5) 

𝑆∗(𝛿) = {𝑥 ∈ 𝑅𝑛;∑𝐴𝑟𝑗𝑥𝑗 ≤ 𝛿𝑟,          𝑟 = 1,2,          𝑥 ≥ 0

𝑛

𝑗=1

} (6) 

Also, 𝐹1 = (𝑓11, 𝑓12, … , 𝑓1𝑞1) , 𝐹2 = (𝑓21, 𝑓22, … , 𝑓2𝑞2) , are the objective 

functions of the first-level decision maker (FLDM) and second-level decision maker 

(SLDM), respectively. Notice that, 𝑐11, 𝑐12, … , 𝑐1𝑞1 ; 𝑐21, 𝑐22 , … , 𝑐2𝑞2 ; 

𝑑11, 𝑑12, … , 𝑑1𝑞1 ; 𝑑21, 𝑑22, … , 𝑑2𝑞2  are n-vectors, and 𝛼1𝑟, 𝛼2𝑟, 𝛽1𝑟 , 𝛽2𝑟 ; are 

constants. The vector of decision variables 𝑥 = (𝑥1, 𝑥2) ∈ 𝑅
𝑛 is partitioned between 

the two planners 𝑥1 ∈ 𝑅
𝑛1 ; 𝑥2 ∈ 𝑅

𝑛2 , 𝑛 = 𝑛1 + 𝑛2. Also, 𝛾𝑟 and 𝛿𝑟 are single scalar 

parameters represent the right-hand sides of 𝑆∗(𝛾) the LAM and 𝑆∗(𝛿), the UAM of 

𝑆 [7,47]. 
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To obtain the SSFK for problems (1)–(6), the SSFK for the following two 

parametric models, UAM and LAM, will be investigated. Thus, the UAM follows as 

[7,8,47]: 

[1st Level] 

𝑚𝑎𝑥⏟
𝑥1

  𝐹1(𝑥) =
𝑐1𝑞
𝑇 𝑥 + 𝛼1𝑞

𝑑1𝑞
𝑇 𝑥 + 𝛽1𝑞

,          𝑞 = 1,2, … , 𝑄1 (7) 

where 𝑥2 solves 

[2nd Level] 

𝑚𝑎𝑥⏟
𝑥2

  𝐹2(𝑥) =
𝑐2𝑞
𝑇 𝑥 + 𝛼2𝑞

𝑑2𝑞
𝑇 𝑥 + 𝛽2𝑞

,          𝑞 = 1,2, … , 𝑄2 (8) 

subject to 

𝑆∗(𝛿) = {𝑥 ∈ 𝑅𝑛;∑𝐴𝑟𝑗𝑥𝑗 ≤ 𝛿𝑟,          𝑖 = 1,2,          𝑥 ≥ 0

𝑛

𝑗=1

} (9) 

The LAM of the PRBL-MOFPP follows as [7,47,48]. 

[1st Level] 

𝑚𝑎𝑥⏟
𝑥1

  𝐹1(𝑥) =
𝑐1𝑞
𝑇 𝑥 + 𝛼1𝑞

𝑑1𝑞
𝑇 𝑥 + 𝛽1𝑞

,          𝑞 = 1,2, … , 𝑄1 (10) 

where 𝑥2 solves 

[2nd Level] 

𝑚𝑎𝑥⏟
𝑥2

  𝐹2(𝑥) =
𝑐2𝑞
𝑇 𝑥 + 𝛼2𝑞

𝑑2𝑞
𝑇 𝑥 + 𝛽2𝑞

,          𝑞 = 1,2, … , 𝑄2 (11) 

subject to 

𝑆∗(𝛾) = {𝑥 ∈ 𝑅
𝑛;∑𝑎𝑟𝑗𝑥𝑗 ≤ 𝛾𝑟 ,          𝑟 = 1,2

𝑛

𝑗=1

,          𝑥 ≥ 0} (12) 

2.1. FGP Approach for PRBL-MOFPP 

To find a compromise solution, the FGP technique is used at 𝛿 = 𝛿0, 𝛾 = 𝛾0. 

Firstly, a fuzzy goal for each objective function is formulated by the membership 

function 𝜇𝑟𝑞 (𝑓𝑟𝑞(𝑥)) , (𝑟 = 1,2), (𝑞 = 1,2, … , 𝑄𝑟),  at each level for UAM as 

[5,19,37,48,49,50]:  

𝜇𝑟𝑞 (𝑓𝑟𝑞(𝑥)) =

{
 
 

 
 

1,                      𝑖𝑓    𝑓𝑟𝑞(𝑥) ≥ 𝑢𝑟𝑞
0 ,

𝑓𝑟𝑞(𝑥) − 𝑔𝑟𝑞
0

𝑢𝑟𝑞
0 – 𝑔𝑟𝑞

0 ,         𝑖𝑓  𝑔𝑟𝑞
0 ≤ 𝑓𝑟𝑞(𝑥) ≤ 𝑢𝑟𝑞

0 ,

0,                    𝑖𝑓   𝑓𝑟𝑞(𝑥) ≤ 𝑔𝑟𝑞
0 ,

  𝑟 = 1,2;   𝑞 = 1,2, … , 𝑄𝑟 (13) 

where the equivalent aspiration level is determined by taking each objective function’s 

unique maximum, which is defined as: 
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𝑢𝑟𝑞
0 = 𝑚𝑎𝑥⏟

𝑥∈𝑆∗(𝛿0)

(𝑓𝑟𝑞(𝑥)),          (𝑟 = 1,2), (𝑞 = 1,2, … , 𝑄𝑟) (14) 

𝑢𝑟𝑞
0  is the upper tolerance limit at 𝛿 = 𝛿0 for UAM. The unique minimum of 

each objective function is used to determine the related desire level [5,19]:  

𝑔𝑟𝑞
0 = 𝑚𝑖𝑛⏟

𝑥∈𝑆∗(𝛿0)

(𝑓𝑟𝑞(𝑥)),          (𝑟 = 1,2), (𝑞 = 1,2, … , 𝑄𝑟) (15) 

𝑔𝑟𝑞
0  is the lower tolerance limit at 𝛿 = 𝛿0 for UAM. Since one is the membership 

function with the highest degree. The membership goals for UAM at 𝛿 = 𝛿0 can be 

written as [5,24]: 

𝑓𝑟𝑞(𝑥) − 𝑔𝑟𝑞
0

𝑢𝑟𝑞
0 – 𝑔𝑟𝑞

0 + 𝑑𝑟𝑞
− − 𝑑𝑟𝑞

+ = 1,          (𝑟 = 1,2), (𝑞 = 1,2, … , 𝑄𝑟) (16) 

where 𝑑𝑟𝑞
− , 𝑑𝑟𝑞

+ ≥ 0 with 𝑑𝑟𝑞
− × 𝑑𝑟𝑞

+ = 0,  represent the under and over deviations 

respectively from the aspiration levels. 

In the current FGP methodology, the sum of unwanted deviational variables is 

minimized to attain the target level. Thus, the FGP model of the UAM can be exhibited 

as [7]: 

𝑚𝑖𝑛  𝑍𝑟𝑞
𝑈𝐴𝑀 = ∑𝑤1𝑞

−  𝑑1𝑞
− +∑𝑤2𝑞

− 𝑑2𝑞
−

𝑄2

𝑞=1

𝑄1

𝑞=1

 (17) 

subject to 

𝑓𝑟𝑞
𝑈𝐴𝑀(𝑥) − 𝑔𝑟𝑞

0

𝑢𝑟𝑞
0 – 𝑔𝑟𝑞

0 + 𝑑𝑟𝑞
− − 𝑑𝑟𝑞

+ = 1,          (𝑟 = 1,2), (𝑞 = 1,2, … , 𝑄𝑟) (18) 

𝑆∗(𝛿0) = {𝑥 ∈ 𝑅𝑛;∑𝐴𝑟𝑗𝑥𝑗 ≤ 𝛿𝑟
0,          𝑟 = 1,2,          𝑥 ≥ 0

𝑛

𝑗=1

} (19) 

𝑥1𝑣
𝑈𝐴𝑀 = 𝑥1𝑣

𝑈𝐴𝑀∗
          𝑣 = 1,2, … , 𝑛1 (20) 

𝑥, 𝑑𝑟𝑞
− , 𝑑𝑟𝑞

+ ≥ 0,      𝑑𝑟𝑞
− × 𝑑𝑟𝑞

+ = 0,          (𝑟 = 1,2), (𝑞 = 1,2, … , 𝑄𝑟) (21) 

where 𝑍  represents the achievement function and 𝑤𝑟𝑞
− , 𝑟 = 1,2;   𝑞 = 1,2, … , 𝑄𝑟  

indicate the relative significance of reaching the individual fuzzy goals’ aspired levels; 

these values are obtained as [5,19]: 

𝑤𝑟𝑞
− =

1

𝑢𝑟𝑞
0 – 𝑔𝑟𝑞

0 ,          (𝑟 = 1,2), (𝑞 = 1,2, … , 𝑄𝑟) (22) 

Similarly, for LAM at 𝛾 = 𝛾0, the FGP model of the LAM can be exhibited as: 

𝑚𝑖𝑛  𝑍𝑟𝑞
𝐿𝐴𝑀 = ∑𝑤1𝑞

−  𝑑1𝑞
− +∑𝑤2𝑞

− 𝑑2𝑞
−

𝑄2

𝑞=1

𝑄1

𝑞=1

 (23) 

subject to 
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𝑓𝑟𝑞
𝐿𝐴𝑀(𝑥) − 𝑔𝑟𝑞

0

𝑢𝑟𝑞
0 – 𝑔𝑟𝑞

0 + 𝑑𝑟𝑞
− − 𝑑𝑟𝑞

+ = 1,          (𝑟 = 1,2), (𝑞 = 1,2, … , 𝑄𝑟) (24) 

𝑆∗(𝛾
0) = {𝑥 ∈ 𝑅𝑛;∑𝑎𝑟𝑗𝑥𝑗 ≤ 𝛾𝑟

0 ,         𝑟 = 1,2

𝑛

𝑗=1

,        𝑥 ≥ 0} (25) 

𝑥1𝑣
𝐿𝐴𝑀 = 𝑥1𝑣

𝐿𝐴𝑀∗
          𝑣 = 1,2, … , 𝑛1 (26) 

𝑥, 𝑑𝑟𝑞
− , 𝑑𝑟𝑞

+ ≥ 0,      𝑑𝑟𝑞
− × 𝑑𝑟𝑞

+ = 0,          (𝑟 = 1,2), (𝑞 = 1,2, … , 𝑄𝑟) (27) 

2.2. Linearization of membership goals 

It is obvious that the membership goals in Equation (13) are intrinsically non-

linear, which causes computing challenges in the solution phase. A linearization 

approach is used to prevent such issues. considered. Utilizing Pal et al. [32], the 𝜇𝑓𝑟𝑞  

modeled as: 

𝜇𝑓𝑟𝑞 (𝑓𝑟𝑞
𝑈𝐴𝑀(𝑥)) + 𝑑𝑟𝑞

− − 𝑑𝑟𝑞
+ = 1,          (𝑟 = 1,2), (𝑞 = 1,… , 𝑄𝑟) (28) 

𝐿𝑟𝑞 (𝑓𝑟𝑞
𝑈𝐴𝑀(𝑥)) − 𝐿𝑟𝑞𝑔𝑟𝑞

0 + 𝑑𝑟𝑞
− − 𝑑𝑟𝑞

+ = 1,          where     𝐿𝑟𝑞 =
1

𝑢𝑟𝑞
0 − 𝑔𝑟𝑞

0  (29) 

𝑓𝑟𝑞
𝑈𝐴𝑀(𝑥) =

𝑐𝑟𝑞
𝑇 𝑥 + 𝛼𝑟𝑞

𝑑𝑟𝑞
𝑇 𝑥 + 𝛽𝑟𝑞

,          (𝑟 = 1,2), (𝑞 = 1,… , 𝑄𝑟) (30) 

Considering the expression of 𝑓𝑖𝑗(𝑥, 𝜃
0), the above goal in Equation (22) can be 

stated as: 

𝐿𝑟𝑞
𝑐𝑟𝑞
𝑇 𝑥 + 𝛼𝑟𝑞

𝑑𝑟𝑞
𝑇 𝑥 + 𝛽𝑟𝑞

− 𝐿𝑟𝑞𝑔𝑟𝑞
0 + 𝑑𝑟𝑞

− − 𝑑𝑟𝑞
+ = 1 (31) 

𝐿𝑟𝑞[𝑐𝑟𝑞
𝑇 𝑥 + 𝛼𝑟𝑞] − 𝐿𝑟𝑞𝑔𝑟𝑞

0 [𝑑𝑟𝑞
𝑇 𝑥 + 𝛽𝑟𝑞] + 𝑑𝑟𝑞

− [𝑑𝑟𝑞
𝑇 𝑥 + 𝛽𝑟𝑞] − 𝑑𝑟𝑞

+ [𝑑𝑟𝑞
𝑇 𝑥 + 𝛽𝑟𝑞] = [𝑑𝑟𝑞

𝑇 𝑥 + 𝛽𝑟𝑞] 

𝐿𝑟𝑞[𝑐𝑟𝑞
𝑇 𝑥 + 𝛼𝑟𝑞] + 𝑑𝑟𝑞

− [𝑑𝑟𝑞
𝑇 𝑥 + 𝛽𝑟𝑞] − 𝑑𝑟𝑞

+ [𝑑𝑟𝑞
𝑇 𝑥 + 𝛽𝑟𝑞] = (1 + 𝐿𝑟𝑞𝑔𝑟𝑞

0 )[𝑑𝑟𝑞
𝑇 𝑥 + 𝛽𝑟𝑞] 

𝐿𝑟𝑞[𝑐𝑟𝑞
𝑇 𝑥 + 𝛼𝑟𝑞] + 𝑑𝑟𝑞

− [𝑑𝑟𝑞
𝑇 𝑥 + 𝛽𝑟𝑞] − 𝑑𝑟𝑞

+ [𝑑𝑟𝑞
𝑇 𝑥 + 𝛽𝑟𝑞] = 𝐿𝑟𝑞

0 [𝑑𝑟𝑞
𝑇 𝑥 + 𝛽𝑟𝑞] 

where 𝐿𝑟𝑞
0 = (1 + 𝐿𝑟𝑞𝑔𝑟𝑞

0 ), 

[𝐿𝑟𝑞𝑐𝑟𝑞
𝑇 − 𝐿𝑟𝑞

0 𝑑𝑟𝑞
𝑇 ]𝑥 + 𝑑𝑟𝑞

− [𝑑𝑟𝑞
𝑇 𝑥 + 𝛽𝑟𝑞] − 𝑑𝑟𝑞

+ [𝑑𝑟𝑞
𝑇 𝑥 + 𝛽𝑟𝑞] = [𝐿𝑟𝑞

0 𝛽𝑟𝑞 − 𝐿𝑟𝑞𝛼𝑟𝑞] 

𝐶𝑟𝑞𝑥 + 𝑑𝑟𝑞
− [𝑑𝑟𝑞

𝑇 𝑥 + 𝛽𝑟𝑞] − 𝑑𝑟𝑞
+ [𝑑𝑟𝑞

𝑇 𝑥 + 𝛽𝑟𝑞] = 𝐺𝑟𝑞  (32) 

where 

𝐶𝑟𝑞 = [𝐿𝑟𝑞𝑐𝑟𝑞
𝑇 − 𝐿𝑟𝑞

0 𝑑𝑟𝑞
𝑇 ] and 𝐺𝑟𝑞 = [𝐿𝑟𝑞

0 𝛽𝑟𝑞 − 𝐿𝑟𝑞𝛼𝑟𝑞],       𝑟 = 1,2;      𝑞 = 1,… , 𝑄𝑟 (33) 

Based on the variable change method by Pal et al. [32], the goal expression in 

Equation (35) can be linearized as follows. Letting 𝐷𝑟𝑞
− = 𝑑𝑟𝑞

− [𝑑𝑟𝑞
𝑇 𝑥 + 𝛽𝑟𝑞] and 
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𝐷𝑟𝑞
+ = 𝑑𝑟𝑞

+ [𝑑𝑟𝑞
𝑇 𝑥 + 𝛽𝑟𝑞], subsequently, the linear model for articulation in Equation 

(25) is obtained as: 

𝐶𝑟𝑞𝑥 + 𝐷𝑟𝑞
− −𝐷𝑟𝑞

+ = 𝐺𝑟𝑞  (34) 

with 𝐷𝑟𝑞
− , 𝐷𝑟𝑞

+ ≥ 0 ; and 𝐷𝑟𝑞
− × 𝐷𝑟𝑞

+ = 0 , since 𝑑𝑟𝑞
− , 𝑑𝑟𝑞

+ ≥ 0 , and 𝑑𝑟𝑞
𝑇 𝑥 + 𝛽𝑟𝑞 > 0 . 

Now, minimization of 𝑑𝑟𝑞
−  implies minimization of 𝐷𝑟𝑞

− = 𝑑𝑟𝑞
− [𝑑𝑟𝑞

𝑇 𝑥 + 𝛽𝑟𝑞], which is 

also non-linear. As a result of 𝑑𝑟𝑞
− ≤ 1, involvement in the solution, the following 

restriction is imposed in the problem: 

𝐷𝑟𝑞
−

[𝑑𝑟𝑞
𝑇 𝑥 + 𝛽𝑟𝑞]

≤ 1 (35) 

The finalized FGP model for the UAM of the PRBL-MOFPP (7)–(9) becomes: 

𝑚𝑖𝑛  𝑍𝑟𝑞
𝑈𝐴𝑀 = ∑𝑤1𝑞

− 𝑑1𝑞
− +∑𝑤2𝑞

− 𝑑2𝑞
−

𝑄2

𝑞=1

𝑄1

𝑞=1

 (36) 

subject to 

[𝐿𝑟𝑞𝑐𝑟𝑞
𝑇 − 𝐿𝑟𝑞

0 𝑑𝑟𝑞
𝑇 ]𝑥 + 𝐷𝑟𝑞

− − 𝐷𝑟𝑞
+ = [𝐿𝑟𝑞

0 𝛽𝑟𝑞 − 𝐿𝑟𝑞𝛼𝑟𝑞]   𝑟 = 1,2;  𝑞 = 1,… , 𝑄𝑟 (37) 

∑𝐴𝑟𝑗𝑥𝑗 ≤ 𝛿𝑟
0,          𝑟 = 1,2,

𝑛

𝑗=1

 (38) 

−𝑑𝑟𝑞
𝑇 𝑥 + 𝐷𝑟𝑞

− ≤ 𝛽𝑟𝑞 ,          (𝑟 = 1,2), (𝑞 = 1,2, … , 𝑄𝑟) (39) 

𝑥1𝑣
𝑈𝐴𝑀 = 𝑥1𝑣

𝑈𝐴𝑀∗
          𝑣 = 1,2, … , 𝑛1 (40) 

𝑥𝑟𝑣 , 𝐷𝑟𝑞
− , 𝐷𝑟𝑞

+ ≥ 0,     𝐷𝑟𝑞
− × 𝐷𝑟𝑞

+ = 0,          (𝑟 = 1,2), (𝑞 = 1,2, … , 𝑄𝑟) (41) 

As a result, the above model provides a satisfactory solution 𝒙∗ for the UAM of 

the PRBL-MOFPP. 

Similarly, the final FGP model for the LAM of the PRBL-MOFPP (10)–(12) 

becomes. 

𝑚𝑖𝑛  𝑍𝑟𝑞
𝐿𝐴𝑀 = ∑𝑤1𝑞

− 𝑑1𝑞
− +∑𝑤2𝑞

− 𝑑2𝑞
−

𝑄2

𝑞=1

𝑄1

𝑞=1

 (42) 

subject to 

[𝐿𝑟𝑞𝑐𝑟𝑞
𝑇 − 𝐿𝑟𝑞

0 𝑑𝑟𝑞
𝑇 ]𝑥 + 𝐷𝑟𝑞

− − 𝐷𝑟𝑞
+ = [𝐿𝑟𝑞

0 𝛽𝑟𝑞 − 𝐿𝑟𝑞𝛼𝑟𝑞]   𝑟 = 1,2;   𝑞 = 1, … , 𝑄𝑟 (43) 

∑𝑎𝑟𝑗𝑥𝑗 ≤ 𝛾𝑟
0 ,          𝑟 = 1,2

𝑛

𝑗=1

 (44) 

−𝑑𝑟𝑞
𝑇 𝑥 + 𝐷𝑟𝑞

− ≤ 𝛽𝑟𝑞 ,          (𝑟 = 1,2), (𝑞 = 1,2, … , 𝑄𝑟) (45) 
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𝑥1𝑣
𝐿𝐴𝑀 = 𝑥1𝑣

𝐿𝐴𝑀∗
          𝑣 = 1,2, … , 𝑛1 (46) 

𝒙𝒓𝒗, 𝐷𝑟𝑞
− , 𝐷𝑟𝑞

+ ≥ 0,     𝐷𝑟𝑞
− × 𝐷𝑟𝑞

+ = 0,          (𝑟 = 1,2), (𝑞 = 1,2, … , 𝑄𝑟) (47) 

As a result, the above model provides a satisfactory solution 𝒙∗ for the LAM of 

the PRBL-MOFPP. 

Definition 1. For any feasible 𝑥1(𝑥1 ∈ 𝑆
∗(𝛿0))  given by the FLDM if 𝑥2(𝑥2 ∈

𝑆∗(𝛿0))  is the Pareto optimal solution of the PRBL-MOFPP, then (𝑥1, 𝑥2)  is a 

feasible solution of the PRBL-MOFPP for the UAM. 

Definition 2. 𝑥∗ is a Pareto optimal solution of the PRBL-MOFPP for the UAM if 

there exist no other feasible value 𝑥 ∈ 𝑆∗(𝛿0) exist, such that 𝑓1𝑞
𝑈𝐴𝑀(𝑥∗) ≤ 𝑓1𝑞

𝑈𝐴𝑀(𝑥) 

for at least 𝑓1𝑞
𝑈𝐴𝑀(𝑥). 

Definition 3. 𝑥∗  is a surly Pareto optimal solution if and only if 𝑥∗  is the Pareto 

optimal solution of the PRBL-MOFPP for the UAM and 𝑥∗ ∈ 𝑆∗(𝛾
0). Otherwise, this 

solution is called a possibly Pareto optimal solution. 

3. The surely and possibly SSFK for PRBL-MOFPP 

Now, the primary inquiry is: once the UAM and LAM of the PRBL-MOFP have 

been solved, to what extent may its data regarding 𝛿 and 𝛾  be altered without 

compromising the efficiency of its certainly and possibly Pareto optimal solution? 

As a result, the following is the definition of the set of feasible parameters, the 

solvability set, and SSFK for PRBL-MOFPP: 

Definition 4. The set of feasible parameters for the UAM and LAM of PRBL-MOFPP, 

respectively, is defined by [26,47]: 

𝑉𝑈𝐴𝑀 = {𝛿 ∈ 𝑅𝑇|𝑆∗(𝑥, 𝛿) ≠ ∅}.          𝑉𝐿𝐴𝑀 = {𝛾 ∈ 𝑅𝑡|𝑆∗(𝑥, 𝛾
0) ≠ ∅} (48) 

Definition 5. The solvability set for the UAM and LAM of PRBL-MOFPP, 

respectively, is denoted by:  

𝐵𝑈𝐴𝑀 = {𝛿 ∈ 𝑅𝑇|𝑥∗ is a possily pareto optimal solution for UAM} 

𝐵𝐿𝐴𝑀 = {𝛾 ∈ 𝑅𝑡|𝑥∗ is a surly pareto optimal solution for LAM} 

For any γ ∈ BLAM , δ ∈ BUAM , if there is a surely or possibly Pareto optimal 

solution, then the surely and possibly SSFK can be defined. 

Definition 6. Suppose that 𝛾 = 𝛾0, 𝛿 = 𝛿0  where 𝑆∗(𝛾
0) ⊆ 𝑆 ⊆ 𝑆∗(𝛿0) with a 

pareto optimal solution 𝒙∗ for problem (42) − (47), then the surely SSFK for the 

PRBL-MOFPP denoted by 𝑆𝐿(𝒙∗, 𝛾, 𝐷𝑟𝑞
− , 𝐷𝑟𝑞

+ ) is defined by: 

𝑆𝐿(𝒙∗, 𝛾, 𝐷𝑟𝑞
− , 𝐷𝑟𝑞

+ ) = {𝛾 ∈ 𝑅𝑡|𝒙∗ is an optimal solution for problem (42) − (47)} 

Definition 7. Suppose that 𝛾 = 𝛾0, 𝛿 = 𝛿0 where 𝑆∗(𝛾
0) ⊆ 𝑆 ⊆ 𝑆∗(𝛿0) with a pareto 

optimal solution 𝒙∗ for problem (36) − (41), then the possibly SSFK for the PRBL-

MOFPP denoted by 𝑆𝑈(𝒙∗, 𝛿, 𝐷𝑟𝑞
− , 𝐷𝑟𝑞

+ ) is defined by:

 

𝑆𝑈(𝒙∗, 𝛿, 𝐷𝑟𝑞
− , 𝐷𝑟𝑞

+ ) = {𝛿 ∈ 𝑅𝑇|𝒙∗ is an optimal solution for problem (36) − (41)} 

The surely and possibly SSFK for PRBL-MOFPP is the set of all parameters 

corresponding to one surely or possibly Pareto optimal solution [7,47,51,52]. It is 
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simple to observe that the PRBL-MOFPP is stable. (7)–(10) implies the stability of the 

final parametric FGP model for the UAM: 

𝑚𝑖𝑛  𝑍𝑟𝑞
𝑈𝐴𝑀 = ∑𝑤1𝑞

− 𝑑1𝑞
− +∑𝑤2𝑞

− 𝑑2𝑞
−

𝑄2

𝑞=1

𝑄1

𝑞=1

 (49) 

subject to 

[𝐿𝑟𝑞𝑐𝑟𝑞
𝑇 − 𝐿𝑟𝑞

0 𝑑𝑟𝑞
𝑇 ]𝑥 + 𝐷𝑟𝑞

− − 𝐷𝑟𝑞
+ = [𝐿𝑟𝑞

0 𝛽𝑟𝑞 − 𝐿𝑟𝑞𝛼𝑟𝑞]     𝑟 = 1,2; 𝑞 = 1, … , 𝑄𝑟 (50) 

∑𝐴𝑟𝑗𝑥𝑗 ≤ 𝛿𝑟
 ,          𝑟 = 1,2

𝑛

𝑗=1

 (51) 

−𝑑𝑟𝑞
𝑇 𝑥 + 𝐷𝑟𝑞

− ≤ 𝛽𝑟𝑞 ,          (𝑟 = 1,2), (𝑞 = 1,2, … , 𝑄𝑟) (52) 

𝑥1𝑣
𝑈𝐴𝑀 = 𝑥1𝑣

𝑈𝐴𝑀∗
          𝑣 = 1,2, … , 𝑛1 (53) 

𝑥𝑟𝑣 ≥ 0,          (𝑟 = 1,2)      𝑣 = 1,2, … , 𝑛𝑟  (54) 

𝐷𝑟𝑞
− , 𝐷𝑟𝑞

+ ≥ 0,     𝐷𝑟𝑞
− × 𝐷𝑟𝑞

+ = 0,          (𝑟 = 1,2), (𝑞 = 1,2, … , 𝑄𝑟) (55) 

Similarly, the final parametric FGP model for the LAM: 

𝑚𝑖𝑛  𝑍𝑟𝑞
𝐿𝐴𝑀 = ∑𝑤1𝑞

− 𝑑1𝑞
− +∑𝑤2𝑞

− 𝑑2𝑞
−

𝑄2

𝑞=1

𝑄1

𝑞=1

 (56) 

subject to 

[𝐿𝑟𝑞𝑐𝑟𝑞
𝑇 − 𝐿𝑟𝑞

0 𝑑𝑟𝑞
𝑇 ]𝑥 + 𝐷𝑟𝑞

− − 𝐷𝑟𝑞
+ = [𝐿𝑟𝑞

0 𝛽𝑟𝑞 − 𝐿𝑟𝑞𝛼𝑟𝑞]     𝑟 = 1,2; 𝑞 = 1, … , 𝑄𝑟 (57) 

∑𝑎𝑟𝑗𝑥𝑗 ≤ 𝛾𝑟
 ,          𝑟 = 1,2

𝑛

𝑗=1

 (58) 

−𝑑𝑟𝑞
𝑇 𝑥 + 𝐷𝑟𝑞

− ≤ 𝛽𝑟𝑞 ,          (𝑟 = 1,2), (𝑞 = 1,2, … , 𝑄𝑟) (59) 

𝑥1𝑣
𝐿𝐴𝑀 = 𝑥1𝑣

𝐿𝐴𝑀∗
          𝑣 = 1,2, … , 𝑛1 (60) 

𝑥𝑟𝑣 ≥ 0,          (𝑟 = 1,2)      𝑣 = 1,2, … , 𝑛𝑟  (61) 

𝐷𝑟𝑞
− , 𝐷𝑟𝑞

+ ≥ 0,     𝐷𝑟𝑞
− × 𝐷𝑟𝑞

+ = 0,          (𝑟 = 1,2), (𝑞 = 1,2, … , 𝑄𝑟) (62) 

Employment of the KKT optimality for PRBL-MOFPP 

The Lagrangian function for UAM of PRBL-MOFPP (49)–(55) follows as 

[36,38,47]: 
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𝐿 = [∑𝑤1𝑞
− 𝐷1𝑞

− +∑𝑤2𝑞
− 𝐷2𝑞

−

𝑄2

𝑞=1

𝑄1

𝑞=1

]

+𝜆𝑟𝑞 [[𝐿𝑟𝑞𝑐𝑟𝑞
𝑇 − 𝐿𝑟𝑞

0 𝑑𝑟𝑞
𝑇 ]𝑥 + 𝐷𝑟𝑞

− −𝐷𝑟𝑞
+ − [𝐿𝑟𝑞

0 𝛽𝑟𝑞 − 𝐿𝑟𝑞𝛼𝑟𝑞]] + 𝜉1𝑣[𝑥1𝑣
𝑈𝐴𝑀 − 𝑥1𝑣

∗𝑈𝐴𝑀]

−𝜓𝑟𝑣𝑥𝑟𝑣 + 𝜇𝑟𝑞[−𝑑𝑟𝑞
𝑇 𝑥 + 𝐷𝑟𝑞

− − 𝛽𝑟𝑞] + 𝜂𝑟 [∑𝐴𝑟𝑗

2

𝑟=1

𝑥𝑗 − 𝛿𝑟]

+𝜑𝑟𝑞[−𝐷𝑟𝑞
− ] + 𝜗𝑟𝑞[−𝐷𝑟𝑞

+ ]

 (63) 

where 𝜆, 𝜉, 𝜓, 𝜇, 𝜂, 𝜑 and 𝜗 are the Lagrange multipliers. Then the KKT optimality 

conditions [16,19,31,48–50] for the UAM of the PRBL-MOFPP (49)–(55), will have 

the following form: 

𝜕𝐿

𝜕𝑥𝑗
= 𝜆𝑟𝑞[𝐿𝑟𝑞𝑐𝑟𝑞

𝑇 − 𝐿𝑟𝑞
0 𝑑𝑟𝑞

𝑇 ] + 𝜉1𝑣 −𝜓𝑟𝑣 − 𝜇𝑟𝑞𝑑𝑟𝑞
𝑇 −∑𝜂𝑟𝐴𝑟𝑗

2

𝑟=1

= 0, (𝑗 = 1,2… , 𝑛) (64) 

𝜕𝐿

𝜕𝐷𝑟𝑞
− = 𝑤𝑟𝑞

− + 𝜆𝑟𝑞 + 𝜇𝑟𝑞 −𝜑𝑟𝑞 = 0,          (𝑟 = 1,2), (𝑞 = 1,2, … , 𝑄𝑟) (65) 

𝜕𝐿

𝜕𝐷𝑟𝑞
+ = −𝜆𝑟𝑞 − 𝜗𝑟𝑞 = 0,          (𝑟 = 1,2), (𝑞 = 1,2, … , 𝑄𝑟) (66) 

[𝐿𝑟𝑞𝑐𝑟𝑞
𝑇 − 𝐿𝑟𝑞

0 𝑑𝑟𝑞
𝑇 ]𝑥 + 𝐷𝑟𝑞

− −𝐷𝑟𝑞
+ − [𝐿𝑟𝑞

0 𝛽𝑟𝑞 − 𝐿𝑟𝑞𝛼𝑟𝑞] = 0,          ∀𝑟, 𝑞 (67) 

𝑥1𝑣
𝑈𝐴𝑀 − 𝑥1𝑣

𝑈𝐴𝑀∗
= 0,          𝑣 = 1,2, … , 𝑛1 (68) 

−𝑑𝑟𝑞
𝑇 𝑥 + 𝐷𝑟𝑞

− − 𝛽𝑟𝑞 ≤ 0,          (𝑟 = 1,2), (𝑞 = 1,2, … , 𝑄𝑟) (69) 

∑𝐴𝑟𝑗

2

𝑟=1

𝑥𝑗 − 𝛿𝑟 ≤ 0,          (𝑗 = 1,2… , 𝑛) (70) 

𝐷𝑟𝑞
− , 𝐷𝑟𝑞

+ ≥ 0,          (𝑟 = 1,2), (𝑞 = 1,2, … , 𝑄𝑟) (71) 

𝑥𝑟𝑣 ≥ 0,          (𝑟 = 1,2), (𝑣 = 1,2, … , 𝑛𝑟 ) (72) 

𝜇𝑟𝑞[−𝑑𝑟𝑞
𝑇 𝑥 + 𝐷𝑟𝑞

− − 𝛽𝑟𝑞] = 0,          (𝑟 = 1,2), (𝑞 = 1,2, … , 𝑄𝑟) (73) 

𝜂𝑟 [∑𝐴𝑟𝑗

2

𝑟=1

𝑥𝑗 − 𝛿𝑟] = 0          (𝑟 = 1,2) (74) 

𝜑𝑟𝑞[−𝐷𝑟𝑞
− ] = 0,          (𝑟 = 1,2), (𝑞 = 1,2, … , 𝑄𝑟) (75) 

𝜗𝑟𝑞[−𝐷𝑟𝑞
+ ] = 0,          (𝑟 = 1,2), (𝑞 = 1,2, … , 𝑄𝑟) (76) 

𝜓𝑟𝑣𝑥𝑟𝑣 = 0,          (𝑟 = 1,2), (𝑣 = 1,2, … , 𝑛𝑟) (77) 

𝜓, 𝜇, 𝜂, 𝜑, 𝜗 ≥ 0,          and     𝜆, 𝜉 ∈ 𝑅 (78) 
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where all the KKT condition phrases (64)–(78) are examined at a Pareto optimal 

solution 𝒙∗𝑈𝐴𝑀  of the FGP model. Solving the system of Equations (64)–(78), the 

surly or possibly SSFK for PRBL-MOFPP will be obtained. 

4. Algorithm for investigating the SSFK for PRBL-MOFPP 

The talk above will be followed by the creation of an algorithm for obtaining the 

surly or possibly SSFK for PRBL-MOFPP as: 

Algorithm 1 investigating the SSFK for PRBL-MOFPP 

1: 𝒑𝒉𝒂𝒔𝒆 𝑰: 𝑂𝑏𝑡𝑎𝑖𝑛 𝑎 𝑐𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑃𝑅𝐵𝐿 − 𝑀𝑂𝐹𝑃𝑃 

2: Step 1. Put 𝛾 = 𝛾0, 𝛿 = 𝛿0 𝑎𝑠 𝑆∗(𝛾
0) ⊆ 𝑆 ⊆ 𝑆∗(𝛿0). 

3: Step 2. Compute 𝑢𝑟𝑞
0 , 𝑔𝑟𝑞

0 , 𝑤𝑟𝑞
− ,   𝑟 = 1,2;   𝑞 = 1,2,… , 𝑄𝑟. 

4: Step 3. Formulate the membership functions 𝜇𝑟𝑞 (𝑓𝑟𝑞(𝑥)) 𝑞 = 1,2,… ,𝑄𝑟 , as in Equation (16). 

5: Step 4. Do the linearization process for 𝜇𝑟𝑞 (𝑓𝑟𝑞(𝑥)) 𝑞 = 1,2,… ,𝑄𝑟 using Equations (36)–(38). 

6: Step 5. Solve the FLDM FGP model to get 𝑥1𝑣
𝑈𝐴𝑀 = 𝑥1𝑣

∗𝑈𝐴𝑀. 

7: Step 6. Formulate and solve the FGP model, as in Equations (39)–(44). to get a compromise solution 𝒙∗𝑼𝑨𝑴. 

8: Step 7. If 𝑥∗𝑈𝐴𝑀 ∈ 𝑆∗(𝛾
0) go to Step 8, otherwise go to phase II to get 𝑆𝑈(𝑥∗, 𝛿, 𝐷𝑟𝑞

− , 𝐷𝑟𝑞
+ ). 

9: Step 8. 
Formulate and Solve the LAM by executing: Steps 2 to Step 6, then go to phase II Step 11, to get 

𝑆𝐿(𝒙∗, 𝛾, 𝐷𝑟𝑞
− , 𝐷𝑟𝑞

+ ). 

10: 𝒑𝒉𝒂𝒔𝒆 𝑰𝑰: 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑢𝑟𝑙𝑦 𝑜𝑟 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑦 𝑆𝑆𝐹𝐾 

11: Step 9. Formulate the Lagrangian function, for the FGP of UAM, Equations (67)–(81). 

12: Step 10. Apply the KKT conditions to get 𝑺𝑼(𝒙∗, 𝜹, 𝑫𝒓𝒒
− , 𝑫𝒓𝒒

+ ). Go to Step 12. 

13: Step 11.  Execute: Step 9 to Step10 for LAM, to get   𝑺𝑳(𝒙∗, 𝜸, 𝑫𝒓𝒒
− , 𝑫𝒓𝒒

+ ). 

14: Step 12. Stop. 

5. Illustrative numerical example 

Consider the following PRBL-MOFPP with parameters on the right-hand side of 

the rough feasible region. 

5.1. Case 1 

[Upper Level] 

𝑚𝑎𝑥⏟
𝑥1

 (𝑓11(𝑥) =
2𝑥1 + 5𝑥2
𝑥1 + 𝑥2 + 8

,          𝑓12(𝑥) =
2𝑥1 + 𝑥2

𝑥1 + 3𝑥2 + 1
) 

where 𝑥2 solves 

[Lower Level] 

𝑚𝑎𝑥⏟
𝑥2

 (𝑓21(𝑥) =
3𝑥1 + 𝑥2 − 1

3𝑥1 + 5𝑥2 + 2 
,          𝑓22(𝑥) =

4𝑥1 + 𝑥2 + 2

𝑥1 + 𝑥2 + 6
) 

subject to 

x ∈ 𝑆,     where   𝑆∗(𝛾) ⊆ 𝑆 ⊆ 𝑆
∗(𝛿) 
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𝑆∗(𝛿) = {(𝑥1, 𝑥2) ∈ 𝑅
2|
𝑥1 + 3𝑥2 ≤ 𝛿1,   
6𝑥1 + 7𝑥2 ≤ 𝛿2,
𝑥1, 𝑥2 ≥ 0.           

} ,    𝑆∗(𝛾) = {(𝑥1, 𝑥2) ∈ 𝑅
2|
𝑥1 + 𝑥2 ≤ 𝛾1 ,   
𝑥1 + 4𝑥2 ≤ 𝛾2 ,
𝑥1, 𝑥2 ≥ 0.        

} 

Let 𝛿1 = 21, 𝛿2 = 60, 𝛾1 = 1, 𝛾2 = 2. 

Formulate and solve the for the UAM as: 

[Upper Level] 

𝑚𝑎𝑥⏟
𝑥1

 (𝑓11(𝑥) =
2𝑥1 + 5𝑥2
𝑥1 + 𝑥2 + 8

,          𝑓12(𝑥) =
2𝑥1 + 𝑥2

𝑥1 + 3𝑥2 + 1
) 

where 𝑥2 solves 

[Lower Level] 

𝑚𝑎𝑥⏟
𝑥2

 (𝑓21(𝑥) =
3𝑥1 + 𝑥2 − 1

3𝑥1 + 5𝑥2 + 2
,          𝑓22(𝑥) =

4𝑥1 + 𝑥2 + 2

𝑥1 + 𝑥2 + 6
) 

subject to 

𝑥 ∈ 𝑆∗(𝛿0) = {(𝑥1, 𝑥2) ∈ 𝑅
2|
𝑥1 + 3𝑥2 ≤ 21,   
6𝑥1 + 7𝑥2 ≤ 60,
𝑥1 , 𝑥2 ≥ 0.           

} 

Table 1 summarizes each of the maximum and minimum values. The determined 

aspiration levels, upper tolerance limits, and weights 𝑤𝑟𝑞
0  are also included. 

Table 1. individual maximum, minimum values, 𝑢𝑟𝑞
0 , 𝑔𝑟𝑞

0  and weights 𝑤𝑟𝑞
0 . 

 𝒇𝟏𝟏(𝒙) 𝒇𝟏𝟐(𝒙) 𝒇𝟐𝟏(𝒙) 𝒇𝟐𝟐(𝒙) 

𝑚𝑎𝑥  ( 𝑓𝑟𝑞(𝑥)) 2.33333 1.818182 0.90625 2.625 

𝑚𝑖𝑛  ( 𝑓𝑟𝑞(𝑥)) 0 0 −0.5 0.33333 

𝑢𝑟𝑞
0  2.3 1.8 0.9 2.6 

𝑔𝑟𝑞
0  0 0 −0.5 0.3 

𝑤𝑟𝑞
−  0.43 0.55 0.71 0.43 

Table 2 displays the linearized membership coefficients. 

Table 2. The coefficient of the linearized membership goals (𝑪𝑟𝑞)
𝑇
 and 𝑮𝒓𝒒. 

 𝒇𝟏𝟏(𝒙) 𝒇𝟏𝟐(𝒙) 𝒇𝟐𝟏(𝒙) 𝒇𝟐𝟐(𝒙) 

(𝑪𝑟𝑞)
𝑇
 (

−0.14
1.15

)
𝑇

 (
0.1
−2.45

)
𝑇

 (
0.195
−2.515

)
𝑇

 (
0.591
−0.699

)
𝑇

 

𝐺𝑟𝑞 8 1 7.42 5.914 

Solving FGP model for FLDM: 

𝑚𝑖𝑛 𝑍 = 0.43𝐷11
− + 0.55𝐷12

−  

subject to 

−0.14𝑥1 + 1.15𝑥2 +𝐷11
− −𝐷11

+ = 8 

0.1𝑥1 − 2.45𝑥2 +𝐷12
− −𝐷12

+ = 1 
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−𝑥1 − 𝑥2 + 𝐷11
− ≤ 8,         − 𝑥1 − 3𝑥2 +𝐷12

− ≤ 1 

𝑥1 + 3𝑥2 ≤ 21,                     6𝑥1 + 7𝑥2 ≤ 60 

𝑥1, 𝑥2, 𝐷11
− , 𝐷11

+ , 𝐷12
− , 𝐷12

+ ≥ 0 

Using Lingo 20 programming software, the satisfactory solution of the FLDM is 

obtained as (𝑥1
∗, 𝑥2

∗) = (0,0). 

Solving FGP model for PRBL-MOFPP: 

𝑚𝑖𝑛𝑍 = 1.099𝐷11
− + 0.877𝐷12

− + 1.587𝐷21
− + 0.386𝐷22

−  

subject to 

−0.14𝑥1 + 1.15𝑥2 +𝐷11
− −𝐷11

+ = 8 

0.1𝑥1 − 2.45𝑥2 +𝐷12
− −𝐷12

+ = 1 

0.195𝑥1 − 2.515𝑥2 +𝐷21
− −𝐷21

+ = 7.42 

0.591𝑥1 − 0.699𝑥2 +𝐷22
− − 𝐷22

+ = 5.914 

−𝑥1 − 𝑥2 + 𝐷11
− ≤ 8, −𝑥1 − 3𝑥2 +𝐷12

− ≤ 1 

−3𝑥1 − 5𝑥2 + 𝐷21
− ≤ 2, −𝑥1 − 𝑥2 +𝐷22

− ≤ 6 

𝑥1 + 3𝑥2 ≤ 21, 6𝑥1 + 7𝑥2 ≤ 60 

𝑥1 = 0, 𝑥2, 𝐷11
− , 𝐷11

+ , 𝐷12
− , 𝐷12

+ , 𝐷21
− , 𝐷21

+ , 𝐷22
− , 𝐷22

+ ≥ 0 

Using Lingo 20 programming software, the satisfactory solution, thus (𝑥1
∗, 𝑥2

∗) =

(0,1.94614) . And, (𝐷11
− , 𝐷12

− , , 𝐷21
− , 𝐷22

− , 𝐷11
+ , 𝐷12

+ , 𝐷21
+ , 𝐷22

+ )  = (5.761939,5.768043, 

11.73070,7.274352,0,0,0,0), which is a possibly Pareto optimal solution for the PRBL-

MOFPP introduced in example 1, so, 𝑆𝑈(𝑥∗, 𝛿, 𝐷𝑟𝑞
∗−, 𝐷𝑟𝑞

∗+) is determined. The stability 

of UAM, implies the stability of the following parametric FGP: 

𝑚𝑖𝑛  𝑍 = 1.099𝐷11
− + 0.877𝐷12

− + 1.587𝐷21
− + 0.386𝐷22

−  

subject to 

−0.14𝑥1 + 1.15𝑥2 +𝐷11
− −𝐷11

+ = 8 

0.1𝑥1 − 2.45𝑥2 +𝐷12
− −𝐷12

+ = 1 

0.195𝑥1 − 2.515𝑥2 +𝐷21
− −𝐷21

+ = 7.42 

0.591𝑥1 − 0.699𝑥2 +𝐷22
− − 𝐷22

+ = 5.914 

−𝑥1 − 𝑥2 + 𝐷11
− ≤ 8, −𝑥1 − 3𝑥2 +𝐷12

− ≤ 1 

−3𝑥1 − 5𝑥2 + 𝐷21
− ≤ 2, −𝑥1 − 𝑥2 +𝐷22

− ≤ 6 

𝑥1 + 3𝑥2 ≤ 𝛿1 

6𝑥1 + 7𝑥2 ≤ 𝛿2 

𝑥1 = 0,   𝑥2, 𝐷11
− , 𝐷11

+ , 𝐷12
− , 𝐷12

+ , 𝐷21
− , 𝐷21

+ , 𝐷22
− , 𝐷22

+ ≥ 0 

The Lagrangian function of the above problem is formulated as: 
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𝐿 = 1.099𝐷11
− + 0.877𝐷12

− + 1.587𝐷21
− + 0.386𝐷22

−

+𝜆1[−0.14𝑥1 + 1.15𝑥2 +𝐷11
− −𝐷11

+ − 8] + 𝜆2[0.1𝑥1 − 2.45𝑥2 + 𝐷12
− − 𝐷12

+ − 1]

+𝜆3[0.195𝑥1 − 2.515𝑥2 +𝐷21
− −𝐷21

+ − 7.42]

+𝜆4[0.591𝑥1 − 0.699𝑥2 +𝐷22
− −𝐷22

+ − 5.914] + 𝜉[𝑥1] + 𝜇1[−𝑥1 − 𝑥2 +𝐷11
− − 8]

+𝜇2[−𝑥1 − 3𝑥2 +𝐷12
− − 1] + 𝜇3[−3𝑥1 − 5𝑥2 +𝐷21

− − 2] + 𝜇4[−𝑥1 − 𝑥2 +𝐷22
− − 6]

+𝜂1[𝑥1 + 3𝑥2 − 𝛿1] + 𝜂2[6𝑥1 + 7𝑥2 − 𝛿2] + 𝜓[−𝑥2] + 𝜙1[−𝐷11
− ] + 𝜑1[−𝐷11

+ ]

+𝜙2[−𝐷12
− ] + 𝜑2[−𝐷12

+ ] + 𝜙3[−𝐷21
− ] + 𝜑3[−𝐷21

+ ] + 𝜙4[−𝐷22
− ] + 𝜑4[−𝐷22

+ ]

 

where 𝜓, 𝜇, 𝜂, 𝜑, 𝜗 ≥ 0 and 𝜆, 𝜉 ∈ 𝑅, the KKT conditions for the optimal solution to 

the parametric UAM: 

𝜕𝐿

𝜕𝑥1
= −0.14𝜆1 + 0.1𝜆2 + 0.195𝜆3 + 0.591𝜆4 + 𝜉 − 𝜇1 − 𝜇2 − 3𝜇3 − 𝜇4 + 𝜂1 + 6𝜂2 = 0 

𝜕𝐿

𝜕𝑥2
= 1.15𝜆1 − 2.45𝜆2 − 2.515𝜆3 − 0.699𝜆4 − 𝜇1 − 3𝜇2 − 5𝜇3 − 𝜇4 + 3𝜂1 + 7𝜂2 −𝜓 = 0 

𝜕𝐿

𝜕𝐷11
− = 0.43 + 𝜆1 + 𝜇1 − 𝜙1 = 0 

𝜕𝐿

𝜕𝐷11
+ = −𝜆1 −𝜑1 = 0 

𝜕𝐿

𝜕𝐷12
− = 0.55 + 𝜆2 + 𝜇2 −𝜙2 = 0 

𝜕𝐿

𝜕𝐷12
+ = −𝜆2 −𝜑2 = 0 

𝜕𝐿

𝜕𝐷21
− = 0.71 + 𝜆3 + 𝜇3 − 𝜙3 = 0 

𝜕𝐿

𝜕𝐷21
+ = −𝜆3 − 𝜑3 = 0 

𝜕𝐿

𝜕𝐷22
− = 0.43 + 𝜆4 + 𝜇4 − 𝜙4 = 0 

𝜕𝐿

𝜕𝐷22
+ = −𝜆4 −𝜑4 = 0 

𝜇1[−𝑥1 − 𝑥2 + 𝐷11
− − 8] = 0 

𝜇2[−𝑥1 − 3𝑥2 + 𝐷12
− − 1] = 0 

𝜇3[−3𝑥1 − 5𝑥2 +𝐷21
− − 2] = 0 

𝜇4[−𝑥1 − 𝑥2 + 𝐷22
− − 6] = 0 

𝜂1[𝑥1 + 3𝑥2 − 𝛿1] = 0 

𝜂2[6𝑥1 + 7𝑥2 − 𝛿2] = 0 

𝜓[−𝑥2] = 0 

𝜙1[−𝐷11
− ] = 0 
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𝜙2[−𝐷12
− ] = 0 

𝜙3[−𝐷21
− ] = 0 

𝜙4[−𝐷22
− ] = 0 

𝜑1[−𝐷11
+ ] = 0 

𝜑2[−𝐷12
+ ] = 0 

𝜑3[−𝐷21
+ ] = 0 

𝜑4[−𝐷22
+ ] = 0 

Solving the previous system, we obtain: 𝜇1 = 𝜇2 = 𝜇4 = 𝜓 = 𝜙1 = 𝜙2 = 𝜙3 =

𝜙4 = 0, and 𝜇3 , 𝜙1, 𝜙2 , 𝜙3, 𝜙4 > 0. Therefore, the possibly SSFK is given by: 

𝑆𝑈(0,1.94164) = {(𝛿1, 𝛿2) ∈ 𝑅
2|

5.83842𝜂1 − 𝜂1𝛿1 = 0, 13.622𝜂2 − 𝜂2𝛿2 = 0,
𝛿1 ≥ 5.82492, 𝛿2 ≥ 13.59148,                             
2.32𝜆3 + 8𝜇3 − 4𝜂1 − 8𝜂2 − 𝜉 = 0.90464,      
𝜂1, 𝜂2 > 0, 𝜆3 < −0.71.                                           

} 

5.2. Case 2 

[Upper Level] 

𝑚𝑎𝑥⏟
𝑥1

 (𝑓11(𝑥) =
2𝑥1 + 5𝑥2
𝑥1 + 𝑥2 + 8

,          𝑓12(𝑥) =
2𝑥1 + 𝑥2

𝑥1 + 3𝑥2 + 1
) 

where 𝑥2 solves 

[Lower Level] 

𝑚𝑎𝑥⏟
𝑥2

 (𝑓21(𝑥) =
3𝑥1 + 𝑥2 − 1

3𝑥1 + 5𝑥2 + 2
,          𝑓22(𝑥) =

4𝑥1 + 𝑥2 + 2

𝑥1 + 𝑥2 + 6
) 

subject to 

𝑥 ∈ 𝑆 where                       𝑆∗(𝛾) ⊆ 𝑆 ⊆ 𝑆
∗(𝛿) 

𝑆∗(𝛿) = {(𝑥1, 𝑥2) ∈ 𝑅
2|
𝑥1 + 3𝑥2 ≤ 𝛿1,   
6𝑥1 + 7𝑥2 ≤ 𝛿2,
𝑥1, 𝑥2 ≥ 0.           

} , 𝑆∗(𝛾) = {(𝑥1, 𝑥2) ∈ 𝑅
2|
𝑥1 + 𝑥2 ≤ 𝛾1,   
𝑥1 + 4𝑥2 ≤ 𝛾2 ,
𝑥1, 𝑥2 ≥ 0.        

} 

Let 𝛿1 = 21, 𝛿2 = 60, 𝛾1 = 7, 𝛾2 = 24. 

Initially, resolve the issue for the upper approximation set. From example 1, the 

optimal solution of the FGP for the upper approximation set is obtained as (𝑥1
0 , 𝑥2

0) =

(0,1.94614), which is a surely Pareto optimal solution for example 2, so the surely 

stability set of the first kind will be investigated. So, the following LAM will be 

solved: 

[Upper Level] 

𝑚𝑎𝑥⏟
𝑥1

  (𝑓11(𝑥) =
2𝑥1 + 5𝑥2
𝑥1 + 𝑥2 + 8

,          𝑓12(𝑥) =
2𝑥1 + 𝑥2

𝑥1 + 3𝑥2 + 1
) 

where 𝑥2 solves 

[Lower Level] 
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𝑚𝑎𝑥⏟
𝑥2

 (𝑓21(𝑥) =
3𝑥1 + 𝑥2 − 1

3𝑥1 + 5𝑥2 + 2
,          𝑓22(𝑥) =

4𝑥1 + 𝑥2 + 2

𝑥1 + 𝑥2 + 6
) 

subject to 

𝑥1 + 𝑥2 ≤ 7,
𝑥1 + 4𝑥2 ≤ 24,
𝑥1, 𝑥2 ≥ 0

 

Table 3 summarizes each of the maximum and minimum values. The determined 

aspiration levels, upper tolerance limits, and weights 𝑤𝑟𝑞
0  are also included.  

Table 3. Individual maximum, minimum values, 𝑢𝑟𝑞
0 , 𝑔𝑟𝑞

0  and 𝑤𝑟𝑞
0 . 

 𝒇𝟏𝟏(𝒙) 𝒇𝟏𝟐(𝒙) 𝒇𝟐𝟏(𝒙) 𝒇𝟐𝟐(𝒙) 

𝑚𝑎𝑥  ( 𝑓𝑟𝑞(𝑥)) 2.33333 1.714286 0.85 2.166667 

𝑚𝑖𝑛  ( 𝑓𝑟𝑞(𝑥)) 0 0 −0.5 0.33333 

𝑢𝑟𝑞
0  2.3 1.7 0.8 2.1 

𝑔𝑟𝑞
0  0 0 −0.5 0.3 

𝑤𝑟𝑞
0  0.435 0.588 0.769 0.555 

Table 4 shows the coefficients of the linearized membership goals.  

Table 4. The coefficient of the linearized membership goals (𝐺𝑟𝑞
0 )

𝑇
 and 𝐺𝑟𝑞

0 . 

 𝒇𝟏𝟏(𝒙) 𝒇𝟏𝟐(𝒙) 𝒇𝟐𝟏(𝒙) 𝒇𝟐𝟐(𝒙) 

(𝐺𝑟𝑞
0 )

𝑇
 (

−0.13
1.175

)
𝑇

 (
0.176
−2.412

)
𝑇

 (
0.4605
−2.3085

)
𝑇

 (
1.054
−0.611

)
𝑇

 

𝐺𝑟𝑞
0  8 1 2 5.886 

Solving the FLDM FGP model: 

𝑚𝑖𝑛 𝑍 = 0.435𝐷11
− + 0.588𝐷12

−  

subject to 

−0.13𝑥1 + 1.175𝑥2 + 𝐷11
− − 𝐷11

+ = 8 

0.176𝑥1 − 2.412𝑥2 +𝐷12
− −𝐷12

+ = 1 

−𝑥1 − 𝑥2 + 𝐷11
− ≤ 8 

−𝑥1 − 3𝑥2 + 𝐷12
− ≤ 1 

𝑥1 + 𝑥2 ≤ 7 

4𝑥1 + 3𝑥2 ≤ 24 

𝑥1, 𝑥2, 𝐷11
− , 𝐷11

+ , 𝐷12
− , 𝐷12

+ ≥ 0 

Using Lingo 20 programming software, the satisfactory solution of the FLDM is 

obtained as (𝑥1
0 , 𝑥2

0 ) = (5.681818,0). 

Solving the FGP model of BL-MOFPP: 

𝑚𝑖𝑛𝑍 = 0.435𝐷11
− + 0.588𝐷12

− + 0.769𝐷21
− + 0.555𝐷22

−  
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subject to 

−0.13𝑥1 + 1.175𝑥2 + 𝐷11
− − 𝐷11

+ = 8 

0.176𝑥1 − 2.412𝑥2 +𝐷12
− −𝐷12

+ = 1 

0.4605𝑥1 − 2.3085𝑥2 + 𝐷21
− − 𝐷21

+ = 2 

1.054𝑥1 − 0.611𝑥2 +𝐷22
− − 𝐷22

+ = 5.886 

−𝑥1 − 𝑥2 + 𝐷11
− ≤ 8 

−𝑥1 − 3𝑥2 + 𝐷12
− ≤ 1 

−3𝑥1 − 5𝑥2 + 𝐷21
− ≤ 2 

−𝑥1 − 𝑥2 +𝐷22
− ≤ 6 

𝑥1 + 𝑥2 ≤ 7 

4𝑥1 + 3𝑥2 ≤ 24 

𝑥1 = 5.681818 

𝑥2, 𝐷11
− , 𝐷11

+ , 𝐷12
− , 𝐷12

+ , 𝐷21
− , 𝐷21

+ , 𝐷22
− , 𝐷22

+ ≥ 0 

Using Lingo 20 programming software, the satisfactory solution of the SLDM is 

obtained as: (𝑥1
0 , 𝑥2

0) = (5.681818,0) and (𝐷11
− , 𝐷12

− , , 𝐷21
− , 𝐷22

− , 𝐷11
+ , 𝐷12

+ , 𝐷21
+ , 𝐷22

+ ) =

(8.738636,0.00000032,0,0,0,0,0.6164772,0.1526363) . The stability of LAM 

implies the stability of the next parametric FGP: 

𝑚𝑖𝑛𝑍 = 0.435𝐷11
− + 0.588𝐷12

− + 0.769𝐷21
− + 0.555𝐷22

−  

subject to 

−0.13𝑥1 + 1.175𝑥2 + 𝐷11
− − 𝐷11

+ = 8 

0.176𝑥1 − 2.412𝑥2 +𝐷12
− −𝐷12

+ = 1 

0.4605𝑥1 − 2.3085𝑥2 + 𝐷21
− − 𝐷21

+ = 2 

1.054𝑥1 − 0.611𝑥2 +𝐷22
− − 𝐷22

+ = 5.886 

−𝑥1 − 𝑥2 + 𝐷11
− ≤ 8 

−𝑥1 − 3𝑥2 + 𝐷12
− ≤ 1 

−3𝑥1 − 5𝑥2 + 𝐷21
− ≤ 2 

−𝑥1 − 𝑥2 +𝐷22
− ≤ 6 

𝑥1 + 𝑥2 ≤ 𝛾1 

4𝑥1 + 3𝑥2 ≤ 𝛾2 

 𝑥1 = 5.681818 

𝑥2, 𝐷11
− , 𝐷11

+ , 𝐷12
− , 𝐷12

+ , 𝐷21
− , 𝐷21

+ , 𝐷22
− , 𝐷22

+ ≥ 0 

Therefore, the Lagrangean function is formulated as: 
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𝐿 = 0.435𝐷11
− + 0.588𝐷12

− + 0.769𝐷21
− + 0.555𝐷22

−

+𝜆1[−0.13𝑥1 + 1.175𝑥2 + 𝐷11
− − 𝐷11

+ − 8]

+𝜆2[0.176𝑥1 − 2.412𝑥2 +𝐷12
− −𝐷12

+ − 1]

+𝜆3[0.4605𝑥1 − 2.3085𝑥2 + 𝐷21
− − 𝐷21

+ − 2]

+𝜆4[1.054𝑥1 − 0.611𝑥2 +𝐷22
− −𝐷22

+ = 5.886]

+𝜉[𝑥1 − 5.681818] + 𝜇1[−𝑥1 − 𝑥2 +𝐷11
− − 8]

+𝜇2[−𝑥1 − 3𝑥2 +𝐷12
− − 1] + 𝜇3[−3𝑥1 − 5𝑥2 +𝐷21

− − 2] + 𝜇4[−𝑥1 − 𝑥2 +𝐷22
− − 6]

+𝜂1[𝑥1 + 𝑥2 − 𝛾1] + 𝜂2[4𝑥1 + 3𝑥2 − 𝛿2] + 𝜓[−𝑥2] + 𝜙1[−𝐷11
− ] + 𝜑1[−𝐷11

+ ]

+𝜙2[−𝐷12
− ] + 𝜑2[−𝐷12

+ ] + 𝜙3[−𝐷13
− ] + 𝜑3[−𝐷21

+ ] + 𝜙4[−𝐷22
− ] + 𝜑4[−𝐷22

+ ]

 

where 𝜓, 𝜇, 𝜂, 𝜑, 𝜗 ≥ 0, and 𝜆, 𝜉 ∈ 𝑅, the KKT conditions for the optimal solution to 

the parametric LAM: 

𝜕𝐿

𝜕𝑥1
= 0.13𝜆1 + 0.176𝜆2 + 0.4605𝜆3 + 1.054𝜆4 + 𝜉 − 𝜇1 − 𝜇2 − 3𝜇3 − 𝜇4 + 𝜂1 + 4𝜂2 = 0 

𝜕𝐿

𝜕𝑥2
= 1.175𝜆1 − 2.412𝜆2 − 2.3085𝜆3 − 0.61𝜆4 − 𝜇1 − 3𝜇2 − 5𝜇3 − 𝜇4 + 𝜂1 + 3𝜂2 −𝜓 = 0 

𝜕𝐿

𝜕𝐷11
− = 0.435 + 𝜆1 + 𝜇1 −𝜙1 = 0 

𝜕𝐿

𝜕𝐷11
+ = −𝜆1 −𝜑1 = 0 

𝜕𝐿

𝜕𝐷12
− = 0.588 + 𝜆2 + 𝜇2 −𝜙2 = 0 

𝜕𝐿

𝜕𝐷12
+ = −𝜆2 −𝜑2 = 0 

𝜕𝐿

𝜕𝐷21
− = 0769 + 𝜆3 + 𝜇3 − 𝜙3 = 0 

𝜕𝐿

𝜕𝐷21
+ = −𝜆3 − 𝜑3 = 0 

𝜕𝐿

𝜕𝐷22
− = 0.555 + 𝜆4 + 𝜇4 −𝜙4 = 0 

𝜕𝐿

𝜕𝐷22
+ = −𝜆4 −𝜑4 = 0 

𝜇1[−𝑥1 − 𝑥2 + 𝐷11
− − 8] = 0 

𝜇2[−𝑥1 − 3𝑥2 + 𝐷12
− − 1] = 0 

𝜇3[−3𝑥1 − 5𝑥2 +𝐷21
− − 2] = 0 

𝜇4[−𝑥1 − 𝑥2 + 𝐷22
− − 6] = 0 

𝜂1[𝑥1 + 𝑥2 − 𝛾1] = 0 

𝜂2[4𝑥1 + 3𝑥2 − 𝛾2] = 0 

𝜓[−𝑥2] = 0 
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𝜙1[−𝐷11
− ] = 0 

𝜑1[−𝐷11
+ ] = 0 

𝜙2[−𝐷12
− ] = 0  

𝜑2[−𝐷12
+ ] = 0 

𝜙3[−𝐷21
− ] = 0 

𝜑3[−𝐷21
+ ] = 0 

𝜙4[−𝐷22
− ] = 0 

𝜑4[−𝐷22
+ ] = 0 

and, 𝜆2 = −1.1976, 𝜆3 = −2.0747, 𝜆4 = 0, and 𝜉 ∈ 𝑅 also, 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4 =

𝜙1 = 𝜙2 = 𝜑3 = 𝜑4 = 0, and 𝜓,𝜑1 , 𝜑2, 𝜙4 > 0. Therefore, the surely SSFK is given 

by. 

𝑆𝐿(5.681818,0) =

{
 
 

 
 

(𝛾1, 𝛾2) ∈ 𝑅
2
|
|

2𝜂1 + 7𝜂2 + 𝜉 − 𝜓 = −1.376511,
𝛾1 ≥ 5.681818, 𝛾2 ≥ 22.7273,       
5.681818𝜂1 − 𝜂1𝛾1 = 0,                  
22.7273𝜂1 − 𝜂2𝛾2 = 0                     
𝜉 ∈ 𝑅, 𝜂1, 𝜂2 , 𝜓 > 0                            }

 
 

 
 

 

6. Conclusion 

In this paper we present the PRBL-MOFPP, in which the parameters exist on the 

right-hand side of the rough set of constraints. For such a model, the FGP is employed 

to solve both the UAM and LAM. Moreover, the Lagrangian function and the KKT 

optimality conditions are presented. Finally, the surely and possibly SSFK is defined. 

Illustrative examples were given to clarify the applicability and efficiency of the 

proposed model. 

However, there are numerous other topics that should be researched and 

discussed in the future in parametric ML-OP in rough environment, such as: 

1) Parametric multi-level multi-objective fractional programming problems in 

rough environments. 

2) Parametric multi-level multi-objective quadratic programming problems in rough 

environments. 
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