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Abstract: This research explores the impact of the relative magnetic effect on the Couette flow 

of dusty Casson fluid between two parallel Riga plates. The mathematical model is based on a 

set of partial differential equations that describe the behavior of the dusty Casson fluid in 

interaction with the Riga plate. To convert this system of equations to its dimensionless form, 

appropriate transformations are used, and to solve this system numerically, explicit finite 

difference methods are applied to it. A graphical representation has been presented by using 

MatLab software for a comprehensive understanding of the effect of various non-dimensional 

parameters such as pressure gradient parameter (α), Casson parameter (β), modified Hartmann 

number (Ha), fluid concentration parameter (R), particle mass parameter (G), Eckert number 

(Ec), Prandtl number (Pr), and temperature relaxation time parameter (L0) on the velocity 

distributions u (or up) and on the temperature distributions θ (or θp), including shear stress and 

Nusselt number for both clean and dust fluid particles. The impacts of these parameters on the 

above-mentioned distributions have been discussed with their physical significance, taking the 

variation of any one of those parameters and with fixed values of α =1, β = 2, Ha=1, R = 0.5, G 

= 0.5, Ec = 0.01, Pr = 0.71, and L0 =0.8. The results reveal significant effects of relative 

magnetic fields on both clean fluid and dust particle motion. 

Keywords: Couette flow; Riga plate; Casson fluid; magnetic field; dust particle; explicit finite 

difference 

1. Introduction 

A Casson fluid is a type of non-Newtonian fluid characterized by its unique flow 

behavior. In 1959, Casson [1] introduced this concept to describe the behavior of fluids 

exhibiting yield stress. A Casson fluid remains in a solid-like state until a certain level 

of stress, known as the yield stress, is applied. A Riga plate, which generates an 

electromagnetic field through embedded electrodes and magnets, can modify the 

behavior of non-Newtonian fluids, including Casson fluids. In such fluids, Riga plates 

help optimize flow control, heat transfer, air pollution management, and biomedical 

applications. Finally, the electromagnetic properties of the Riga plate make it an 

important tool for enhancing performance and control in processes involving Casson 

fluids across a variety of industrial and biomedical fields. Gailitis and Leilausis [2] 

first introduced the Riga plate, which creates a Lorentz force parallel to the wall to 

control fluid flow. The inclusion of the Greenberg term has garnered significant 

interest, leading to several studies on the Riga plate. Saffman [3] developed equations 

for the fluid flow of dust particles, illuminating the interactions between particles 

under laminar flow conditions and improving the understanding of how suspended 
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particles affect fluid behavior. A major challenge in fluid mechanics is understanding 

the dynamics of fluids containing dispersed particles. Eldabe et al. [4] investigated 

heat transfer in a stationary, incompressible, electrically conducting non-Newtonian 

Casson fluid between two rotating cylinders exposed to a radial magnetic field. Fang 

[5] studied the effect of uniform suction or injection on unsteady incompressible 

Couette flow using the Eyring-Powell equation. Non-Newtonian fluids, such as 

Casson fluids, exhibit unique properties, which have generated considerable interest 

due to their wide application in engineering. Boyd et al. [6] used the Casson and 

Carreau-Yasuda models in their non-Newtonian blood viscosity experiments. Damseh 

[7] explored the flow of a viscous, incompressible gas containing dust around an 

isothermal cylinder, simplifying the analysis by assuming a uniform distribution of 

particles to better understand their effects on flow dynamics. In a separate study, 

Makinde and Chinyoka [8] investigated the transient flow of a magnetohydrodynamic 

(MHD) fluid characterized by temperature-dependent viscosity and thermal 

conductivity. Eguia et al. [9] examined the flow and heat transfer properties of a dusty 

fluid between parallel plates under a magnetic field with high accuracy. Hyatt et al. 

[10] analyzed the Soret and Dufour effects in the MHD flow of a Casson fluid over a 

stretching surface. Nadeem et al. [11] focused on the two-dimensional flow of an 

MHD Casson fluid over a porous, linearly stretching sheet. The Riga plate produces 

electromagnetic hydrodynamic behavior, reducing both friction and pressure drag. 

This technology finds numerous applications, including cell separation, magneto-

dynamics, electro-hydrodynamic flow control, marine and geological technology, 

biomechanics, and magnetic devices for various industrial processes. Ramesh and 

Gireesha [12] studied the effects of radiation on the steady, two-dimensional boundary 

layer flow of a dusty fluid over an expanding sheet, while Mukhopadhyay et al. [13] 

investigated the dynamic behavior of a non-Newtonian fluid undergoing two-

dimensional flow over an extended surface with a fixed surface temperature. Attia et 

al. [14] analyzed unsteady MHD flow and heat transfer in a dusty particle confined 

between two infinite horizontal plates, specifically examining how temperature-

dependent properties affect fluid dynamics and heat transfer. The application of a 

magnetic field changes the motion of charged particles in the fluid. In the dusty Casson 

fluid, the magnetic field exerts a Lorentz force on the charged dust particles, affecting 

their distribution and motion. Pramanik [15] examined the boundary layer dynamics 

and heat transfer of a non-Newtonian fluid moving towards an exponentially 

expanding surface using the Casson model, incorporating surface suction or blowing 

effects. Ramesh and Devakar [16] analyzed three main flow modes—Couette, 

Poiseuille, and Generalized Couette—in an incompressible case fluid between parallel 

plates. Abbas et al. [17] investigated entropy generation in nanofluid flow over a 

horizontal Riga plate. Raju et al. [18] studied the heat and mass transfer properties of 

a Casson fluid over a rapidly permeable stretching surface, providing valuable insights 

into transport phenomena in fluid dynamics. Awais et al. [19] used numerical methods 

to explore mass and heat transfer in two-dimensional, steady, laminar, and 

incompressible fluid flow within a non-Newtonian fluid model near a stretching 

surface. Isa and Mohammed [20] analyzed the boundary layer flow of a dusty viscous 

fluid over a stationary sheet of another dusty viscous fluid, emphasizing the interaction 

between the two. Jalil et al. [21] examined the boundary layer behavior of an 
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electrically conducting dusty fluid over a stretching surface, considering the effect of 

an applied magnetic field to understand how these factors interact in fluid flow. Anjum 

et al. [22] explored the dynamics of a thermally stratified viscous fluid experiencing 

stagnation point flow over a nonlinear Riga plate of varying thickness. Ismail et al. 

[23] studied the effects of dust particles on the velocity of an electrically conducting 

viscous fluid flowing between parallel permeable plates under a transverse magnetic 

field, elucidating how suspended particles affect fluid dynamics in this configuration. 

Ahmad [24] investigated mixed convection in nanofluids near a vertical Riga plate, 

accounting for significant suction effects. Attia and Ewis [25] analyzed the effects of 

continuous dusty viscous particles and a convective power-law fluid on both fluid and 

particle phase velocities, as well as skin friction, under the influence of Darcy resistive 

forces. Recently, Khan et al. [26] examined the slip effect on the behavior of a Casson 

dust fluid in a two-phase fluctuating flow over an inclined parallel plate, highlighting 

the relative magnetic field effect and the complex interactions within the system. Jalili 

et al. [27] investigated a fluid characterized by non-Newtonian Casson behavior, 

incompressibility, temperature-dependent viscosity, and magneto-hydrodynamic 

(MHD) properties. Their study focused on fluid flow within a rectangular channel 

formed by two parallel, permeable plates capable of expansion and contraction. Khan 

et al. [28] explored the Graetz problem for a Casson fluid model subjected to a 

prescribed heat flux in a circular duct. Khan and Ali [29] analyzed the classical Graetz 

problem for a fluid governed by the Casson constitutive equation, which is particularly 

relevant for describing the thermal entry flow of blood within a duct. Khan et al. [30] 

examined the influence of axial conduction and viscous dissipation on heat transfer 

inside a tube, utilizing the Casson fluid model. A semi-analytical approach was 

employed to tackle the problem. Ashish et al. [31] examined the stagnation point flow 

and heat transfer characteristics of MHD boundary layer Casson hybrid nanofluid as 

it passes through a porous medium around an exponentially stretched cylinder. 

As a non-Newtonian fluid, the viscosity of Casson fluid varies with the applied 

shear rate. Its flow behavior primarily depends on this viscosity and is generally 

unaffected by electric or magnetic fields. However, under certain conditions, when 

subjected to an electric or magnetic field that facilitates the movement of charged 

particles, the influence of relevant parameters on the Casson fluid becomes noticeable. 

Few studies have explored the flow of Casson fluid through the Riga plate. In this 

context, the objective of this study is to analyze the Couette flow behavior generated 

by parallel Riga plates in a dusty Casson fluid under the influence of the 

electromagnetic field produced by the Riga plates. 

2. Mathematical formulation 

Consider the unsteady flow of an incompressible dusty Casson fluid between two 

horizontal parallel Riga plates, where one plate is in motion while the other remains 

stationary. The lower plate is fixed at �̑� = 0, while the upper plate moves at a constant 

velocity 𝑈0  and is separated from the lower plate by a distance �̑� = ℎ . The flow 

direction is aligned with the �̑�-axis, while the �̑�-axis is perpendicular to the flow, and 

the plate’s width runs parallel to the �̑��̑�-plane. Due to the use of a Riga plate, a Lorentz 

force is generated by the interaction of electric and magnetic forces. According to the 
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Grinberg hypothesis, the Lorentz force is described concerning the magnetic field 

associated with the Riga plate as follows:  

𝑓̑ = 𝑱 ∧ 𝑩 = (
π

8
𝐽0𝑀0𝑒

−
π

𝑙
�̑�    , 0      ,

π

8
𝐽0𝑀0𝑒

−
π

𝑙
�̑�) (1) 

where, 𝑱 is the current density vector, 𝑩 is the induced magnetic field vector, and l is 

the width of the electrode or magnet. 

And for an isotropic and incompressible flow of a Casson fluid, the rheological 

equation is defined by: 

𝜏𝑖𝑗 = (𝜇𝑏 +
𝑝𝑦

√2𝜋
)2𝑒𝑖𝑗 when 𝜋 > 𝜋𝑐 ,

𝜏𝑖𝑗 = (𝜇𝑏 +
𝑝𝑦

√2𝜋𝑐
)2𝑒𝑖𝑗 when 𝜋 < 𝜋𝑐

}
 

 

 (2) 

where,𝜏𝑖𝑗the shear stress; 𝑝𝑦 =
𝜇𝑏√2π

𝛽
; 𝜇𝑏is the plastic viscosity of the non-Newtonian 

fluid; 𝑒𝑖𝑗 is the (𝑖, 𝑗) -th component of the deformation rate is defined, with 

𝜋𝑐 representing the critical value derived from the non-Newtonian model. In the 

context of a Casson fluid, which is a type of non-Newtonian fluid, where 𝜋 > 𝜋𝑐, the 

dynamic viscosity is represented by 𝜇 = 𝜇𝑏 +
𝑝𝑦

√2π
while the kinematic viscosity is 

denoted as 𝜐 = 𝜐𝑏 (1 +
1

𝛽
) where,𝜐𝑏 =

𝜇𝑏

𝜌
 and 𝛽 is the Casson parameter. The fluid is 

driven by the combined action of pressure gradient 
𝜕�̑�

𝜕�̑�
 and Lorentz force. According 

to the parallel Couette flow, the velocity components�̑� ≠ 0, �̑�𝑝 ≠ 0,�̑� = �̑�𝑝 = �̑� =

�̑�𝑝 = 0  and 
𝜕

𝜕�̑�
= 0for the clean and dust particles.For the clean fluid phase, the 

continuity equation reduces to 
𝜕�̑�

𝜕�̑�
= 0  which gives �̑� = �̑�(�̑�, �̑�) and for the dust 

phase 
𝜕�̑�𝑝

𝜕�̑�
= 0 gives �̑�𝑝 = �̑�𝑝(�̑�, �̑�). The temperature 𝑇1for the lower plate and 𝑇2for 

the upper plate, where 𝑇2 > 𝑇1. The physical model is illustrated in Figure 1. 

 

Figure 1. Physical model and coordinate system. 
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Given the aforementioned assumptions, the set of coupled non-linear partial 

differential equations for the fluid phase and the dust particles describes the equations 

as follows: 

𝜕�̑�

𝜕�̑�
= −

𝑃

𝜌
+ 𝜐𝑏 (1 +

1

𝛽
)
𝜕2�̑�

𝜕�̑�2
+
π

8𝜌
𝐽0𝑀0𝑒

−
π

𝑙
�̑� −

1

𝜌
𝐾𝑁(�̑� − �̑�𝑝) (3) 

𝜕𝑇

𝜕�̑�
=

𝑘

𝜌𝑐𝑝

𝜕2𝑇

𝜕�̑�2
−

1

𝜌𝑐𝑝

2𝑘𝐾𝑁

3𝜇𝑏
(𝑇 − 𝑇𝑝) +

𝜇𝑏
𝜌𝑐𝑝

(1 +
1

𝛽
) (
𝜕�̑�

𝜕�̑�
)
2

 (4) 

𝑚𝑝

𝜕�̑�𝑝
𝜕�̑�

= 𝐾𝑁(�̑� − �̑�𝑝) (5) 

𝜕𝑇𝑝
𝜕�̑�

=
4𝑘𝜋𝑎𝑁

𝜌𝑝𝑐𝑠
(𝑇 − 𝑇𝑝) (6) 

The corresponding boundary conditions are: 

�̑� = 0: �̑� = �̑�𝑝 = 0, 𝑇 = 𝑇1, for all �̑�

�̑� > 0: {
�̑� = 0,  �̑�𝑝 = 0, 𝑇 = 𝑇1, 𝑇𝑝 = 𝑇1at �̑� = 0

�̑� = 𝑈0,   �̑�𝑝 = 𝑈0, 𝑇 → 𝑇2,  𝑇𝑝 → 𝑇2at �̑� → ℎ

 (7) 

where, 𝐽0 is the constant current density, 𝑀0 is the induced magnetic field strength, �̑� 

and �̑�𝑝 are the clean fluid and dust particles velocity components, 𝜐 is the kinematic 

viscosity of the clean fluid, 𝜌𝑝 is the material density (or mass per unit volume) of dust 

particles,𝑁 is the number of dust particles per unit volume, 𝜅 is the permeability of the 

porous medium, and k is the thermal conductivity of the fluid, 𝐾 is the Stokes constant 

= 6𝜋𝜌𝜐𝑎 ;𝑎 is the average radius of the dust particles, 𝑚𝑝 is the average mass of the 

dust particles, 𝑐𝑠 is the is the specific heat capacity of the fluid particles, 𝑐𝑝 is the 

specific heat capacity at constant pressure, 𝑇 is the temperature of the fluid, 𝑇𝑝 is the 

temperature of the dust particles, 𝛾𝑇  is the temperature relaxation time, which is 

defined by 𝛾𝑇 =
𝜌𝑝𝑐𝑠

4𝑘𝜋𝑎𝑁
 or 

3𝜌𝜐𝜌𝑝𝑐𝑠

2𝑘𝐾𝑁
.  

2.1. Non-dimensional analysis 

To simplify the analysis, the following non-dimensional variables are introduced, 

which enable the above equations to be converted to their dimensionless form. 

�̑� =
𝑥

ℎ
,      �̑� =

𝑦

𝐿
,      �̑� =

𝑢

𝑈0
,      �̑� =

𝑡𝑈0
ℎ
,      𝜃 =

𝑇 − 𝑇2
𝑇1 − 𝑇2

, 

𝜃𝑝 =
𝑇𝑝 − 𝑇2
𝑇1 − 𝑇2

,      ℎ =
𝐿2𝑈0
𝜐𝑏

,      𝐿 =
𝑙

𝜋
and𝑈0 =

𝜐𝑏
𝑙
. 

By applying these non-dimensional variables to the above equations from 

Equation (3) to Equation (6) together with the boundary conditions (7) and removing 

the cap notation from the variables, the governing equations are transformed into the 

following non-dimensional form: 
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𝜕𝑢

𝜕𝑡
= 𝛼 + (1 +

1

𝛽
)
𝜕2𝑢

𝜕𝑦2
+𝐻𝑎𝑒

−𝑦 − 𝑅(𝑢 − 𝑢𝑝) (8) 

𝜕𝜃

𝜕𝑡
=
1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2
−
2𝑅

3𝑃𝑟
(𝜃 − 𝜃𝑝) + 𝐸𝑐 (1 +

1

𝛽
) (
𝜕𝑢

𝜕𝑦
)
2

 (9) 

𝜕𝑢𝑝
𝜕𝑡

=
1

𝐺
(𝑢 − 𝑢𝑝) (10) 

𝜕𝜃𝑝

𝜕𝑡
= 𝐿0(𝜃 − 𝜃𝑝) (11) 

With the corresponding boundary conditions, 

𝑡 = 0: 𝑢 = 𝑢𝑝 = 0, 𝜃 = 0,for all𝑦

𝑡 > 0: {
𝑢 = 0, 𝑢𝑝 = 0, 𝜃 = 1, 𝜃𝑝 = 1at𝑦 = 0

𝑢 = 1, 𝑢𝑝 = 1, 𝜃 → 0, 𝜃𝑝 → 0at𝑦 → ℎ
} (12) 

where, 

𝛼 = −
ℎ𝑃

𝜌𝑈0
2is the dimensionless pressure gradient; 

𝐻𝑎 =
π𝐽0𝑀0ℎ

8𝜌𝑈0
2 is the modified Hartmann number; 

𝐸𝑐 =
ℎ𝜇𝑏𝑈0

𝑐𝑝𝐿
2(𝑇𝑤−𝑇∞)

=
𝑈0
2

𝑐𝑝(𝑇𝑤−𝑇∞)
 is the Eckertnumber; 

𝑃𝑟 =
𝜌𝑐𝑝𝜐𝑏

𝑘
is the Prandtl number; 

𝛽 =
𝜇𝑏√2π

𝑝𝑦
 = Casson parameter; 

𝐺 =
𝑚𝑝𝑈0

ℎ𝐾𝑁
is the particle mass parameter; 

𝑅 =
ℎ𝐾𝑁

𝜌𝑈0
=

𝐾𝑁

𝜌

𝑙2

π2𝜐𝑏
=

𝐾𝑁𝑙2

𝜇𝑏π
2is the particle concentration parameter; 

𝐿0 =
ℎ

𝛾𝑇𝑈0
is the temperature relaxation time parameter. 

2.2. Shear stresses and Nusselt number 

The impact of key parameters on the local and average shear stress based on the 

velocities of both the fluid phase and the dust particles has been explored. Since the 

shear stress is proportional to the velocity gradient, therefore in the fluid phase the 

non-dimensional formulations for the local shear stress are expressed as: 

𝜏𝐿 = 𝜇
𝜕𝑢

𝜕𝑦
|
𝑦=0

and 𝜏𝐿 = 𝜇
𝜕𝑢

𝜕𝑦
|
𝑦=ℎ

 (13) 

and average shear stress are: 

𝜏𝐴 =
1

𝐿
∫ 𝜇

𝜕𝑢

𝜕𝑦
|
𝑦=0

𝐿

0

𝑑𝑥and𝜏𝐴 =
1

𝐿
∫ 𝜇

𝜕𝑢

𝜕𝑦
|
𝑦=ℎ

𝐿

0

𝑑𝑥 (14) 

And for the dust particle local, shear stress is defined as: 
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𝜏𝑝𝐿 = 𝜇
𝜕𝑢𝑝
𝜕𝑦

|
𝑦=0

and 𝜏𝑝𝐿 = 𝜇
𝜕𝑢𝑝
𝜕𝑦

|
𝑦=ℎ

 (15) 

and average shear stress are: 

𝜏𝑝𝐴 =
1

𝐿
∫ 𝜇

𝜕𝑢𝑝

𝜕𝑦
|
𝑦=0

𝐿

0

𝑑𝑥 and 𝜏𝑝𝐴 =
1

𝐿
∫ 𝜇

𝜕𝑢𝑝

𝜕𝑦
|
𝑦=ℎ

𝐿

0

𝑑𝑥 (16) 

Again, another key parameter for the temperature, the Nusselt number, is defined 

by the rate of heat transfer flow from the plates to the fluid. In fluid phase, the non-

dimensional formulations of the local Nusselt numbers are expressed as: 

𝑁𝑢𝐿 = −𝜇
𝜕𝜃

𝜕𝑦
|
𝑦=0

and  𝑁𝑢𝐿 = −𝜇
𝜕𝜃

𝜕𝑦
|
𝑦=ℎ

 (17) 

and average Nusselt numbers are 

𝑁𝑢𝐴 = −
1

𝐿
∫ 𝜇

𝜕𝜃

𝜕𝑦
|
𝑦=0

𝐿

0

𝑑𝑥  and  𝑁𝑢𝐴 = −
1

𝐿
∫ 𝜇

𝜕𝜃

𝜕𝑦
|
𝑦=ℎ

𝐿

0

𝑑𝑥 (18) 

And for the dust particle, local Nusselt numbers are defined as 

𝑁𝑢𝑝𝐿 = −𝜇
𝜕𝜃𝑝

𝜕𝑦
|
𝑦=0

and  𝑁𝑢𝑝𝐿 = −𝜇
𝜕𝜃𝑝

𝜕𝑦
|
𝑦=ℎ

 (19) 

and average Nusselt numbers are 

𝑁𝑢𝑝𝐴 = −
1

𝐿
∫ 𝜇

𝜕𝜃𝑝
𝜕𝑦

|
𝑦=0

𝐿

0

𝑑𝑥  and  𝑁𝑢𝑝𝐴 = −
1

𝐿
∫ 𝜇

𝜕𝜃𝑝
𝜕𝑦
|
𝑦=ℎ

𝐿

0

𝑑𝑥 (20) 

The investigation of the local and average shear stress and Nusselt numbers is 

displayed only for the lower plate in the result and discussion Section-4. 

3. Method of solution 

The system of non-dimensional coupled partial differential Equations (8)–(11) is 

solved using a definite finite difference method subject to the specified boundary 

conditions in Equation (12). In this case, the range extends from 0 to 10, while the 

range is from 0 to 2. Finite difference schemes related to this problem are presented as 

follows: 

𝑢𝑖,𝑗
𝑘+1 = 𝑢𝑖,𝑗

𝑘 + 𝛼Δ𝑡 +
Δ𝑡

Δ𝑦2
(1 +

1

𝛽
) (𝑢𝑖,𝑗+1

𝑘 − 2𝑢𝑖,𝑗
𝑘 + 𝑢𝑖,𝑗−1

𝑘 ) + 𝐻𝑎Δ𝑡𝑒
−𝑦

𝑖 − 𝑅Δ𝑡 (𝑢𝑖,𝑗
𝑘 − 𝑢𝑝𝑖,𝑗

𝑘 ) (21) 

𝜃𝑖,𝑗
𝑘+1 = 𝜃𝑖,𝑗

𝑘 +
Δ𝑡

𝑃𝑟Δ𝑦
2 (𝜃𝑖,𝑗+1

𝑘 − 2𝜃𝑖,𝑗
𝑘 + 𝜃𝑖,𝑗−1

𝑘 ) −
2𝑅Δ𝑡

3𝑝𝑟
(𝜃𝑖,𝑗

𝑘 − 𝜃𝑝𝑖,𝑗
𝑘 ) −

𝐸𝑐Δ𝑡

Δ𝑦
(1 +

1

𝛽
) (𝑢𝑖,𝑗

𝑘 − 𝑢𝑖,𝑗−1
𝑘 ) (22) 

𝑢𝑝𝑖,𝑗
𝑘+1 = 𝑢𝑝𝑖,𝑗

𝑘 +
Δ𝑡

𝐺
(𝑢𝑖,𝑗

𝑘 − 𝑢𝑝𝑖,𝑗
𝑘 ) (23) 

𝜃𝑝𝑖,𝑗
𝑘+1 = 𝜃𝑝𝑖,𝑗

𝑘 + Δ𝑡𝐿0 (𝜃𝑖,𝑗
𝑘 − 𝜃𝑝𝑖,𝑗

𝑘 ) (24) 

With the boundary conditions. 
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𝑈𝑖,𝐿 = 0,𝑈𝑝𝑖,𝐿 = 0, 𝜃𝑖,𝐿 = 1, 𝜃𝑝𝑖,𝐿 = 1at𝐿 = 0

𝑈𝑖,𝐿 = 1,𝑈𝑝𝑖,𝐿 = 1, 𝜃𝑖,𝐿 = 0, 𝜃𝑝𝑖,𝐿 = 0at𝐿 = 1
} (25) 

Here, the subscripts i and j refer to x and y, and the superscript k refers to time 𝜏. 

4. Results and discussion 

To analyze the physical situation of the problem, graphical representations have 

been illustrated with the effects of the non-dimensional parameters such as pressure 

gradient parameter (α), the dimensionless Casson parameter (β), modified Hartmann 

number (Ha), fluid concentration parameter (R), particle mass parameter(G), Eckert 

number (Ec), Prandtl number (Pr), and temperature relaxation time parameter (L0) on 

the velocity distributions u(or up) and on the temperature distributions θ(or θp). The 

impacts of these parameters on the above-mentioned distributions have been discussed 

with its physical significance taking the variation of any one of those parameters and 

with fixed values of α=1, β =2, Ha=1, R =0.5, G =0.5, Ec =0.01,Pr =0.71, and L0 =0.8. 

4.1. Time and mesh sensitivity test  

  
(a) (b) 

 
 

(c) (d) 

Figure 2. Time sensitivity on the (a) velocity u; (b) velocity up; (c) temperature θ; (d) temperature θp. 
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Before executing the program, it has been introduced with time and mesh 

sensitivity analysis. To obtain the steady-state solution, it is necessary to examine the 

velocity and temperature distributions at different times. Figure 2a,b show the fluid 

velocity distribution u for clean fluid and up for dusty fluid at different times. 

Calculations were made for the velocity profiles at times t = 0.5,1.0,1.5,2.0,2.5, and 3 

using a time step size of Δ𝑡=0.0005. The figures indicate minimal changes in the 

velocity distributions of u and up after time t=3. Similarly, Figure 2c,d show the time 

sensitivity for the temperature distribution θ and θp for the dust temperature at the 

timest=2,5,7,8,9, and 10. Here the minimal changes have occurred after t=10. 

Figure 3a,b presented the validation of the grid pairs on the velocity distributions 

𝑢and 𝑢𝑝. It has shown the velocity distribution for three grid pairs(𝑚, 𝑛) = (40,40), 

(𝑚, 𝑛) = (50,50)and (𝑚, 𝑛) = (60,60) with time𝑡 = 3 and time stepΔ𝑡 = 0.0005. 

and Figure 3c,d illustrate the validity of the grid pairs on the temperature distributions 

𝜃 and 𝜃𝑝. There is a minimal variation among these grid pairs, making any single grid 

pair suitable for obtaining the steady-state solution. This observation holds true for the 

other distributions. The steady-state solution has performed at least 𝑡 > 7 for 

temperature distributions. In the present study, the following graphs have been 

established for the choice of time  𝑡 = 3  for velocity distributions and 𝜏 = 10 

temperature distributions with the grid pair (𝑚, 𝑛) = (50,50) and time step  Δ𝑡 =

0.0005. 

  
(a) (b) 

  
(c) (d) 

Figure 3. Mesh sensitivity on the (a) velocity u; (b) velocity up; (c) temperature θ; (d) temperature θp. 
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4.2. Validation test 

Before discussing the impact of the pertinent parameters on the velocity and 

temperature distributions, it is required to verify the present results. To do this, the 

present numerical results have been compared with the previously published result 

graphically as follows: 

Figure 4a illustrates the effect of pressure gradient parameters such as α = −3, 

−2, −1, 0, 1, 2, and 3 on the velocity of the clean fluid in the absence of a magnetic 

field. In contrast, Figure 4b illustrates velocity distributions for the same values of the 

pressure gradient parameter in the absence of the Casson parameter and the modified 

Hartmann number, that is, the absence of a magnetic parameter with the fixed values 

of G=0.5, Pr =0.71, Ec=0.01, and L0 = 0.8. The same behavior has likely been observed 

in both figures. Therefore, it has been decided that our numerical result is qualitatively 

acceptable to the present investigation. 

 

 

(a) (b) 

Figure 4. Effect of αonvelocity (a) published results [well-known book-boundary layer theory by H. Schlichting]; (b) 

present numerical results in the absence of β, Ha, and with fixed G = 0.5, Pr = 0.71, Ec = 0.01, and L0 = 0.8. 

4.3. Impacts of various parameters 

To examine the physical context of the problem, it is important to note that in 

each figure from Figures 5–17, the solid line illustrates the distribution of the clean 

fluid phase, whereas the dotted line represents the distribution of the dust particle 

phase. 

4.3.1. Impacts of relevant parameters on velocity, local shear stress and average 

shear stress 

Figures 5–10 illustrate the distribution of velocity, the local and average shear 

stressfor various values of α, β, Ha, G,and 𝑅. 

The effect of the dimensionless pressure gradient parameter (α) on the velocities 

of both the clean phase and dust particles is illustrated in Figure 5a–c. When α> 0, 

there is a pressure decrease in the direction of motion, leading to an increase in velocity 

across the entire space between the plates as the gradient intensifies. It increases the 

transport efficiency between fluids and particles. On the other hand, when α< 0, i.e., 

the pressure gradient increases in the flow direction, it can cause backflow, as shown 
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in Figure 5a. Since local and average shear stress are both defined as the shear stress 

at the plate, the behavior of the velocity at the first phase and the behavior of the local 

and average shear stress are shown as identical; these are illustrated in Figure 5b,c. 

  
(a) (b) 

 
(c) 

Figure 5. Effects of pressure gradient parameter α on (a) velocity; (b) local shear stress 𝜏𝐿 (or 𝜏𝑝𝐿); and (c)average 

shear stress 𝜏𝐴 (or 𝜏𝑝𝐴). 

Figure 6a–c show an increase in velocity, local shear stress, and average shear 

stress with the Casson parameter, indicating that a higher yield stress results in greater 

resistance to fluid flow. This resistance allows the fluid to achieve higher flow rates 

while also experiencing greater internal friction. For dust particles suspended in fluid, 

increased shear stress improves their velocity and promotes greater dispersion, 

increasing mixing and overall stability. 
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(a) (b) 

 
(c) 

Figure 6. Effects of Casson parameter β on (a) velocity; (b) local shear stress 𝜏𝐿 (or 𝜏𝑝𝐿); and (c) average shear stress 

𝜏𝐴 (or 𝜏𝑝𝐴). 

Figure 7a–c illustrate the effect of different Hartmann numbers on velocity, local 

shear stress, and average shear stress. It is observed that the local and average shear 

stress increases as the modified Hartmann number increases. Similarly, for dust 

particles, shear stress also increases with a higher modified Hartmann number. This 

indicates that strong magnetic fields increase the resistance to fluid flow, resulting in 

high shear stress in both the fluid phase and the dust phase. 
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(a) (b) 

 
(c) 

Figure 7. Effects of modified Hartmann number Ha on (a)velocity; (b) local shear stress 𝜏𝐿 (or 𝜏𝑝𝐿); and (c)average 

shear stress 𝜏𝐴 (or 𝜏𝑝𝐴). 

Figure 8a–c illustrate the effect of particle mass parameters on velocity, local 

shear stress, and average shear stress. As the particle mass parameter increases, the 

local and average shear stress decreases. This trend is also observed for dust particles, 

suggesting that a higher particle mass parameter reduces the shear stress in both the 

fluid phase and the dust phase. 
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(a) (b) 

 
(c) 

Figure 8. Effects of particle mass parameter G on (a) velocity; (b) local shear stress 𝜏𝐿 (or 𝜏𝑝𝐿); and (c)average shear 

stress 𝜏𝐴 (or 𝜏𝑝𝐴). 

Figure 9a–c illustrate the effects of the fluid concentration parameter on velocity, 

local shear stress, and average shear stress. The results show that an increase in the 

fluid concentration parameter results in a decrease in both local and average shear 

stresses. Similar trends are noted for the dust particles, indicating that a higher fluid 

concentration is associated with reduced shear stresses in both phases. 
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(a) (b) 

 
(c) 

Figure 9. Effects of fluid concentration parameter R on (a) velocity; (b) local shear stress 𝜏𝐿 (or 𝜏𝑝𝐿); and (c)average 

shear stress 𝜏𝐴 (or 𝜏𝑝𝐴). 

4.3.2. Impacts of relevant parameters on temperature, local Nusselt number and 

average Nusselt number 

Figures 10–17 demonstrate the distribution of temperature, the local and average 

Nusselt number for various values of α, β, Ha, 𝑃𝑟, R, G , 𝐿0 and 𝐸𝑐. 
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the fluid phase and the dust particles also rises. This trend can be attributed to enhanced 
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average Nusselt numbers, respectively, indicating that both the local and average 

Nusselt numbers decrease with increasing temperature for both clear fluids and dust 
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transfer efficiency, possibly due to changes in viscosity and thermal properties that 

affect fluid dynamics and interactions between the fluid and dust particles. 

  
(a) (b) 

 
(c) 

Figure 10. Effects of pressure gradient parameter α on (a) temperature; (b) local Nusselt number 𝑁𝑢𝐿 (or 𝑁𝑢𝑝𝐿 );  (c) 

average Nusselt number𝑁𝑢𝐴 (or 𝑁𝑢𝐴𝐿  ). 

Figure 11a–c illustrate how temperature distributions θ (or θp), as well as local 

and average Nusselt numbers 𝑁𝑢𝐿 (or 𝑁𝑢𝑝𝐿 ), vary with the Casson parameter (β). 

The increase in temperature profiles indicates that the fluid may become more efficient 

at transferring heat to surfaces. As the Casson parameter rises, it suggests that the fluid 

experiences greater resistance to flow, which can improve thermal energy retention. 

Consequently, the fluid can sustain higher temperatures due to reduced convective 

heat loss. However, the local and average Nusselt numbers exhibit the opposite effect, 

decreasing as the Casson parameter increases. 
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Figure 11. Effects of Casson parameter β on (a) temperature; (b) local Nusselt number 𝑁𝑢𝐿 (or 𝑁𝑢𝑝𝐿); (c) average 

Nusselt number 𝑁𝑢𝐴 (or 𝑁𝑢𝐴𝐿  ). 

Figure 12a illustrates the effect of the modified Hartmann number on the 

temperature distribution. As the modified Hartmann number increases, the 

temperatures within the fluid rise, likely due to the magnetic field’s influence, which 

enhances heat retention. Conversely, the local and average Nusselt numbers shown in 

Figure 12b,c exhibit a downward trend with an increase in the modified Hartmann 

number. This indicates that while temperatures are increasing, the efficiency of heat 

transfer is decreasing. The stronger magnetic forces may lead to a more stable fluid 

flow, reducing turbulence and, consequently, the effectiveness of convective heat 

transfer, which negatively impacts the overall heat transfer performance in the system. 
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(c) 

Figure 12. Effects of modified Hartmann number Ha on (a) temperature; (b) local Nusselt number 𝑁𝑢𝐿 (or 𝑁𝑢𝑝𝐿); (c) 

average Nusselt number 𝑁𝑢𝐴 (or 𝑁𝑢𝐴𝐿). 

Figure 13a illustrates the impact of the particle mass parameter on temperature 

distribution. As the fluid concentration parameter increases, the temperature also rises, 

though the change is relatively small. The more significant effects are emphasized in 

the zoomed-in section of Figure 12b, which clearly highlights these subtle variations. 

Additionally, the local and average Nusselt numbers presented in Figure 13b,c show 

an increasing trend with higher fluid concentration. This increase suggests that as the 

fluid concentration rises, the efficiency of heat transfer improves. The enhanced 

Nusselt numbers indicate that variations in concentration may modify the flow 

characteristics, resulting in better convective heat transfer within the system. 
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Figure 13. Effects of Eckert number Ec on (a) temperature; (b) local Nusselt number 𝑁𝑢𝐿 (or 𝑁𝑢𝑝𝐿); (c) average 

Nusselt number 𝑁𝑢𝐴 (or 𝑁𝑢𝐴𝐿). 

Figure 14a shows that the temperature increases with higher values of the Eckert 

number for both the fluid phase and the dust particles. The local and average Nusselt 

numbers are illustrated in Figure 14b,c, respectively. Analysis of these figures reveals 

an inverse relationship between both the local and average Nusselt numbers and 

temperature for both the clear fluid and the dust particles. This indicates that although 

higher temperatures result from increased Eckert numbers, the efficiency of heat 

transfer diminishes. This phenomenon indicates that increased temperature can affect 

flow characteristics, ultimately reducing the efficiency of convective heat transfer 

within the system. 
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Figure 14. Effects of Eckertnumber Ec on (a) temperature; (b) local Nusselt number 𝑁𝑢𝐿 (or 𝑁𝑢𝑝𝐿); (c) average 

Nusselt number 𝑁𝑢𝐴 (or 𝑁𝑢𝐴𝐿). 

Figure 15a shows a slight decrease in temperature as the fluid density parameter 

increases for both the fluid phase and dust particles. The local and average Nusselt 

numbers are plotted in Figure 15b,c respectively. An examination of these figures 

reveals an inverse relationship between both the local and average Nusselt number and 

temperature for clear fluids and dust particles. This suggests that the temperature 

decreases slightly as the fluid density increases, which negatively affects the heat 

transfer efficiency. The observed decrease in the Nusselt number indicates that fluid 

density variations can significantly affect the convective heat transfer characteristics 

within the system. 
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Figure 15. Effects of fluid concentration parameter Ron (a) temperature; (b) local Nusselt number 𝑁𝑢𝐿 (or 𝑁𝑢𝑝𝐿); (c) 

average Nusselt number 𝑁𝑢𝐴 (or 𝑁𝑢𝐴𝐿). 

Figure 16a illustrates the slight increase in temperature with increasing 

relaxation time parameters for both the fluid phase and dust particles. Figure 16b,c 

present the local and average Nusselt numbers, respectively. An analysis of these 

figures reveals an inverse relationship between both the local and average Nusselt 

numbers and temperature for clear fluids and dust particles. This suggests that as the 

temperature increases slightly with a larger relaxation time, the heat transfer efficiency 

decreases. This behavior can be linked to the effect of relaxation time on fluid viscosity 

and flow dynamics, which can inhibit effective convective heat transfer within the 

system. 
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Figure 16. Effects of relaxation time parameter L0 on (a) temperature; (b) local Nusselt number 𝑁𝑢𝐿 (or 𝑁𝑢𝑝𝐿); (c) 

average Nusselt number 𝑁𝑢𝐴 (or 𝑁𝑢𝐴𝐿). 

Figure 17a illustrates the impact of the Prandtl number on the temperature 

profile. As the Prandtl number increases, the temperature shows an upward trend. 

However, Figure 17b,c indicate that both the local and average Nusselt numbers 

decrease as the Prandtl number rises for both the clear fluid and the dust particles. This 

suggests that, while higher Prandtl numbers are associated with elevated temperatures, 

they also correlate with a reduction in heat transfer efficiency. This phenomenon may 

imply that changes in the fluid’s thermal properties, influenced by the Prandtl number, 

hinder effective convective heat transfer within the system. 
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Figure 17. Effects of the Prandtl parameter Pr on (a) temperature; (b) local Nusselt number 𝑁𝑢𝐿 (or 𝑁𝑢𝑝𝐿); (c) 

average Nusselt number 𝑁𝑢𝐴 (or 𝑁𝑢𝐴𝐿). 

5. Conclusions 

The initiation of fluid motion is achieved by applying a uniform magnetic force 

generated by the Riga plate combined with a pressure gradient force acting on the 

fluid. The mathematical model governing this system is based on a specific set of 

partial differential equations that describe the behavior of the dusty Casson fluid. 

Dusty fluids often exhibit intricate interactions between the fluid and the suspended 

particles, with fluid particles moving faster than the dust particles and tending to travel 

parallel to one another. To reach a steady-state solution, the velocity of the fluid must 

exceed that of the dust particles. Although the velocities of the dust particles do not 

align with those of the fluid particles at a steady state, their temperatures equilibrate 

after a certain time step. Furthermore, several other significant findings are 

summarized below: 

 The velocities of both fluid particles and dust particles increase with an increasing 

pressure gradient parameter and modified Hartmann number. In contrast, these 
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velocities decrease as the Casson parameter, concentration parameter, and 

particle mass parameter increase. 

 The temperature distributions for both fluid and dust particles increase with 

higher values of the Eckert number, relaxation time parameter, and Prandtl 

number. In contrast, the particle mass parameter decreases these temperature 

distributions. 

 The same effects observed for the velocities are also seen in the local and average 

shear stress of both fluid and dust particles. 

 However, for temperature, the thermal boundary layer thickness and heat transfer 

rate at the plate exhibit opposite effects compared to the temperature distribution 

of both fluid and dust particles. 

This investigation could broaden the scope of our study and open up avenues for 

applications in fields such as material processing, biomedical engineering, and energy 

systems. In the future, we are interested in investigating the aforementioned topic. 
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