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Abstract: The dynamics of a composite consisting of the nonlinear multilayer beam 

structure, interacting through elastic intermediate layers, under mobile point loading is 

investigated. This study finds a direct application in transport engineering technologies, more 

precisely in railways, where the moving point load is the train, and the multilayer beam, the 

rails interacting with the ballast, the foundation and base layers. From the Lagrange 

formulations, the system of damping partial differential equations of the model is found, and 

by considering the non-dissipative case with weak nonlinearity and constant charge they are 

used to find the eigen modes and the natural vibration frequencies of the system. Then the 

dissipative case with nonlinearity is studied, with a particular attention carried on the 

temporal part, which is reduced to a system of coupled nonlinear differential equations, 

where the first line is forced. This system of equation is used to determine the equilibrium 

points, after which they are subsequently solved analytically through the multiple time scale 

method for harmonic resonance case, showing the formation of hysteresis more and more 

complex as the number of cells increases. The coupled nonlinear equations of the system is 

next solved numerically, with the transition of the system towards chaos analyzed through the 

bifurcation diagram and the maximum Lyapunov exponent, which show strong sensitivity to 

the coupling parameter λ2 as well as the system frequency. The results show for N = 2 and for 

some parameters the periodic behavior and the crisis for ω = 0.5. When the frequency is low; 

that is ω = 0.05 the chaotic band is considerably reduced, chaos appearing around the 

nonlinearity parameter γ2 = 0.5 and also for γ2 > 0.85. The time trace shows chaotic pulses 

and bursting type behavior, for some choices of the coupling parameter. The synchronization 

curves are also plotted and it is shown that q2 doesn’t synchronizes with q1 for some 

frequencies, while for others parameters, they synchronize, but fairly. For N = 3, the 

dynamics is more complex and the time traces plots show regular impulse for ω = 0.5 and 

bursting for weak frequency, ω = 0.05. 

Keywords: multilayer beam structure; coupled of partial differential equation; mobile point 

load; hysteresis; chaotic impulse; bursting signal 

1. Introduction 

Structural design is an essential aspect of any construction project, and it 

involves a range of considerations that must be carefully evaluated to ensure the 

CITATION 

Eno R, Wokwenmendam ML, 

Ndombou GB, et al. Dynamics of a 

nonlinear multilayer beam structure 

on elastic foundation: Chaos 

detection and application to transport 

engineering technologies. 

Mathematics and Systems Science. 

2025; 3(1): 3058.  

https://doi.org/10.54517/mss3058 

ARTICLE INFO 

Received: 11 November 2024 

Accepted: 25 December 2024 

Available online: 2 January 2025 

COPYRIGHT 

 
Copyright © 2025 by author(s). 

Mathematics and Systems Science is 

published by Asia Pacific Academy 

of Science Pte. Ltd. This work is 

licensed under the Creative 

Commons Attribution (CC BY) 

license. 

https://creativecommons.org/licenses/

by/4.0/ 



Mathematics and Systems Science 2025, 3(1), 3058.  

2 

safety and stability of the structure [1]. One of the most critical factors in structural 

design is load-bearing capacity, which refers to the maximum weight that a structure 

can support without collapsing or experiencing significant damage. Load-bearing 

capacity determines the ability of a structure to support its own weight and any 

additional loads placed upon it. Structures are generally faced with various types of 

loads, among which are static and variable (moving) loads. Although the modeling 

of static loading for linear cases is well-established, ensuring the bearing capacity of 

structures in the face of moving loads is one of the engineering challenges, 

particularly in the design of buildings, bridges, and roads [2]. Load modeling in 

nonlinear structures, particularly incorporating large deformations, differs 

significantly from the treatment in linear analysis. 

The study of nonlinear systems has been the subject of numerous studies in 

recent years [3]. This is due to the fact that nonlinearity finds its applications in 

several fields of physics and engineering, including mechanics [4], electronics [5,6], 

optics [7,8], civil engineering, and other related fields [9,10]. Note that unlike linear 

systems where the effects and causes are proportional quantities, in the nonlinear 

systems, the effects are nonlinear functions of the causes. For example, in nonlinear 

electronics, electrical voltages are nonlinear functions of currents [11]. In nonlinear 

mechanics, on the other hand, the tensions (or restoring forces) are nonlinear 

functions of the elongations [12,13]. In civil engineering in general and particularly 

in geotechnics, the displacements of elastic soils under foundations subjected to 

loading are nonlinear functions of displacements [14]. The consideration of 

nonlinearity in the study of systems is very important, as long as it allows us to 

understand certain phenomena observed experimentally in physical systems, such as 

the appearance of chaos and patterns formation, and to predict new ones [15–17], 

and especially it allows us to design devices to attenuate chaos. Nonlinearity thus 

allows justifying the chaotic or random behavior of certain systems, chaos being 

harmful for some systems and desirable for others. In telecommunications, chaos 

allows the masking and securing of information. In civil engineering, the sieves that 

vibrate chaotically have a higher yield [18]. It has been proven that although systems 

with one degree of freedom are dynamically rich, system dynamics become 

increasingly rich and complex as the degree of freedom becomes larger, whether 

these systems are linear or not. In civil engineering, and more particularly in the case 

of beams, the superposition of layers of intermediate beams allows for increasingly 

complex vibration modes. This is why in 2021, Jiang et al. [19] studied a multilayer 

structure consisting of a certain number of beams, interconnected and where the 

upper beam is subjected to loading. In this work they studied the dynamics and 

stability of this structure; however, they ignored the nonlinear behavior of this 

structure, which could provide significant results. 

Beams on an elastic foundation, or columns and piles supported along their 

entire length, usually by the ground, are a well-known problem in structural 

mechanics [20,21], in addition to being a very common structural element, with 

applications in many engineering fields such as civil, mechanical, and offshore 

engineering, particularly in foundation analysis and design. The study of this 

structural configuration began with the pioneer works of Winkler [22] and has been 

addressed by many researchers with various theoretical tools, including numerical 
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methods [23,24], finite element methods [25], analytical [26,27], and disturbance 

[28]. The linear behavior of beams on elastic foundations has been widely studied. 

However, little attention has been paid to their behavior in the nonlinear domain. In 

[20], Diego Froio et al. investigated the dynamics of a beam on a bilinear elastic 

foundation under harmonic moving load, in which they considered the effect of 

nonlinearity and neglected the dissipation. In their work, they didn’t emphasize the 

prediction of chaos in their systems. In many important applications, the elastic 

foundation is the floor, which is generally very nonlinear. One can enumerate the 

work of Anas Ouzizi et al. [21], who investigated the nonlinear dynamics of beams 

on nonlinear fractional viscoelastic foundations subjected to moving loads with 

variable speeds. Thus, the nonlinear effect considerably influences the behavior of 

the beam by modifying its bearing capacity and its natural frequencies. In the present 

work, we consider the multilayer beam on an elastic foundation, as is the case in 

[19], and we consider the dissipation effects and carry an emphasis on the chaotic 

behavior by using analytical and numerical methods, which is new in what concerns 

the multilayer beam on an elastic foundation. Moreover, we take into account the 

dissipations, which can considerably affect the results as compared to previous ones, 

and we show that the dynamics of the system are very complex, depending on the 

nonlinearity and the nature of the coupling. 

The main objective of this work is the dynamic analysis of a nonlinear 

multilayer beam structure under moving load.  

The specific objectives are: 

• Modeling of the system equation taking into account dissipation and 

nonlinearity; 

• Study the stability of the nonlinear system; 

• Check whether the system is regular or chaotic. 

2. Model description and governing equations 

2.1. Model description 

We consider in this work the system of multilayer beams consisting of a set of 

beams interacting through elastic intermediate layers as presented in Figure 1. The 

first beam, subjected to a moving load with mass M moving with and speed V, 

constitutes the entrance to the system, while the foundation constitutes the system 

output. Let us outline that in railway engineering, this beam can be seen as the rails, 

and moving load, the motion of the train. The rails are laid on multilayer elastic soil 

through the ballasts. The motion of a train on bridges, in [29,30], could constitute 

another example. The simulation of high axial speed machining processes during 

milling operations and internal fluid flow in piping systems resting on a ground 

foundation is another example. In addition, the shafts of rotating machines resting on 

elastic supports (journal bearings) and floating in an industrial lubricant can be 

modeled as beams on a viscoelastic foundation [31,32]. The particle with mass M in 

Figure 1 can also represent a heavy car on a bridge having several layers or a 

compactor working on a moving road [33], the road having several layers that 

interact with each other. 
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Figure 1. Multilayer beams consisting of a set of beams interacting through elastic 

intermediate layers; the first beam, subjected to a moving load with speed V. 

2.2. Lagrange equation of the network 

Let us consider here the network as shown in Figure 1, which is composed of n 

layers on an elastic foundation and therefore n−1 interconnections over the length l, 

in which the layers can relatively move to each other depending on the properties of 

the interconnections. Thus, the system will have the following energies: 

2.2.1. Kinetic energy 

The rotational inertia of the beam will be neglected because the beam is slender. 

Then the kinetic energy is given by the following Equation (1) [16,34]: 

𝑇 =
1

2
∑𝜌𝑖𝐴𝑖

𝑁

𝑖=1

 ∫ (
𝜕𝑤𝑖(𝑥, 𝑡)

𝜕𝑡
)

2

𝑑𝑥
𝐿

0

 (1) 

where 𝜌𝑖 is the density of the material at position i, Ai is the cross section of the 𝑖𝑡ℎ 

beam, L is the length of the beam, and 𝑤𝑖 = 𝑤𝑖(x, t) i is the transverse displacement 

of the beam (in one direction) at position x, The Winkler soil model will be used 

here, which assumes that the displacement only appears in the loaded zone and, 

outside this zone, the deflections are zero [16,35,36]. With 𝜌𝑖𝐴𝑖 = 𝑚𝑖, which is the 

elementary mass of 𝑖𝑡ℎ position. 

2.2.2. Potential energy 

 Bending potential energy for the ith particle 

The potential energy due to bending can be evaluated as follows [34]: 

𝑉bend =
1

2
∑𝐸𝑓𝑖𝐼𝑖

𝑁

𝑖=1

 ∫ (
𝜕2𝑤𝑖(𝑥, 𝑡)

𝜕𝑥2
)

2

𝑑𝑥
𝐿

0

 (2) 

where 𝐸𝑓𝑖 is the Young’s modulus of the ith beam. 

 Potential energy due to coupling 

It can be evaluated using the following equation, in which it is assumed that the 

motion of railway located at position i is affected by all neighbors located, at 

position j. 
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𝑉𝑐 =
1

2
∑𝛾𝑖∑∫(𝑤𝑖(𝑥, 𝑡) − 𝑤𝑗(𝑥, 𝑡))

2
𝑑𝑥

𝐿

0

𝑁

𝑗=1

𝑁

𝑖=1

 (3) 

where 𝛾𝑖 is the coupling coefficient, where the value can be experimentally found 

from the measured input–output data, although, it is not done in this work. 

• Stretching potential energy [34] 

𝑉𝑆𝑡𝑟𝑒𝑡𝑐ℎ =
1

2
∑

𝐸𝑖𝐴0
2𝐿𝑖

𝑁

𝑖=1

(
1

2
∫ (

𝜕𝑤𝑖(𝑥, 𝑡)

𝜕𝑥
)

2

𝑑𝑥
𝐿

0

)

2

 (4) 

In which the 𝐿𝑖 are equal for all beams. 

• Elastic potential energy [34] 

𝑉𝑓𝑜𝑢𝑛𝑑 =
1

2
∑∫𝐾𝑓𝑖(𝑤𝑖(𝑥, 𝑡))

2
𝑑𝑥

𝐿

0

𝑁

𝑖=1

 (5) 

• Potential energy due to loadings 

Let us assume that the loading, applied at position 𝑥0, by mobile moving with 

speed V, such as 𝑥0 = 𝑉𝑡. The potential energy is then given by [34]: 

𝑉𝑙𝑜𝑎𝑑 = −∑∫𝑃(𝑥, 𝑡)𝜔𝑖(𝑥, 𝑡)𝑑𝑥

𝐿

0

𝑁

𝑖=1

 (6) 

where 𝑃(𝑥, 𝑡) = 𝑃0𝛿(𝑥 − x0)𝛿(𝑗 − 𝑖), 𝑃0 = 𝑀𝑔 is the weight of the moving load 

located on the first layer, and g is the intensity of gravity, while δ is the Dirac delta 

function. 

With 

𝛿(𝑥 − 𝑥0) = {
1 𝑖𝑓 𝑥 = 𝑥0
0 𝑒𝑙𝑠𝑒

 (7) 

2.2.3. Lagrangian equation 

The Lagrangian of the network is defined as follows [16,34] 

𝐿 = 𝑇 − (𝑉bend + 𝑉𝑐 + 𝑉𝑆𝑡𝑟𝑒𝑠𝑡𝑐ℎ + 𝑉𝑓𝑜𝑢𝑛𝑑 + 𝑉𝑙𝑜𝑎𝑑) (8) 

leading to 

𝐿 =
1

2
∑ ∫ 𝑑𝑥

𝐿

0

𝑁

𝑖=1
[𝜌𝑖𝐴𝑖 (

𝜕𝑤𝑖(𝑥, 𝑡)

𝜕𝑡
)

2

− 𝐸𝑓𝑖𝐼𝑖 (
𝜕2𝑤𝑖(𝑥, 𝑡)

𝜕𝑥2
)

2

− 𝐾𝑓𝑖(𝑤𝑖(𝑥, 𝑡))
2

+ 2𝑃0𝑤𝑖(𝑥, 𝑡)𝛿(𝑥 − x0)𝛿(𝑗 − 𝑖) + 𝛾𝑖∑ (𝑤𝑖(𝑥, 𝑡) − 𝑤𝑗(𝑥, 𝑡))
2𝑀

𝑗=1
]

−∑
𝐸𝑖𝐴0i
2𝐿𝑖

𝑁

𝑖=1
(
1

2
∫ (

𝜕𝑤𝑖(𝑥, 𝑡)

𝜕𝑥
)

2

𝑑𝑥
𝐿

0

)

2

 

(9) 

Taking into account that in physical systems anything cannot vibrate 

indefinitely, the dissipation (loss introduced by the friction) is introduced in the 

system by the Rayleigh dissipation function and is then given as [34]: 
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𝐷 =
1

2
∑𝜇𝑖

𝑁

𝑖=1

∫ (
𝜕𝑤𝑖(𝑥, 𝑡)

𝜕𝑡
)

2𝐿

0

 (10) 

which allows us to define the equations of motion in the form [16,34]: 

𝜕

𝜕𝑡
(
𝜕𝐿

𝜕𝑤𝑖𝑡
) −

𝜕𝐿

𝜕𝜔𝑖
+
𝜕

𝜕𝑥
(
𝜕𝐿

𝜕𝑤𝑖𝑥
) −

𝜕2

𝜕𝑥2
(
𝜕𝐿

𝜕𝑤𝑖𝑥𝑥
) = −

𝜕𝐷

𝜕𝑤𝑖𝑡
 (11) 

2.3. Equations of motion for the non-dissipative case and with weak 

nonlinearity 

2.3.1. Set of partial differential equations of motion 

For this particular case, we consider that the system is loaded with continuum 

charge, meaning that 𝑃(𝑥, 𝑡) = 𝑞0𝐿𝛿(𝑖 − 1), and for this particular case with 𝐷 =

𝐸𝑖𝐴0 = 0, Equation (11) leads to 

𝑚𝑖𝑤𝑖𝑡𝑡 +𝐾𝑓𝑖𝑤𝑖 + 𝛾𝑖∑(𝑤𝑖 −𝑤𝑗) + 𝐸𝑓𝑖𝐼𝑖

𝑁

𝑖−1

𝑤𝑖𝑥𝑥 − 𝑝(𝑥, 𝑡)𝛿(𝑖 − 1) = 0 (12) 

With 𝜌𝑖𝐴𝑖 = 𝑚𝑖which allows to have the equation below in expanded form 

{
 
 
 
 
 
 

 
 
 
 
 
 𝑚1𝑤1𝑡𝑡 + 𝑘𝜌1𝑤1 + 𝛾1∑(𝑤1 −𝑤𝑗) + 𝐸𝑓1𝐼1𝑤1𝑥𝑥

𝑁

𝑖−1

= 𝑞0𝐿

𝑚2𝑤2𝑡𝑡 + 𝑘𝜌2𝑤2 + 𝛾2∑(𝑤2 −𝑤𝑗) + 𝐸𝑓2𝐼2

𝑀

𝑗=1

𝑤2𝑥𝑥 = 0

…

𝑚𝑖𝑤𝑖𝑡𝑡 + 𝑘𝜌𝑖𝑤𝑖 + 𝛾𝑖∑(𝑤𝑖 −𝑤𝑗) + 𝐸𝑓𝑖𝐼𝑖

𝑀

𝑗=1

𝜔𝑖𝑥𝑥 = 0

…

𝑚𝑁𝑤𝑖𝑡𝑡 + 𝑘𝜌𝑁𝑤𝑁 + 𝛾𝑁∑(𝑤𝑁 −𝑤𝑗) + 𝐸𝑓𝑁𝐼𝑁

𝑀

𝑗=1

𝜔𝑁𝑥𝑥 = 0

 

 

 

 

 

(13) 

2.3.2. Set of differential equations governing temporal part and solutions 

Differential equations governing temporal part 

Suppose that the system is a simply supported beam localized at position 𝑥0, we 

have: 

𝑃(𝑥, 𝑡) = 𝑃0𝛿(𝑥 − 𝑥0)𝛿(𝑖 − 1) (14) 

Let us seek the displacement by making the Fourier transform in the form 

𝑊𝑖(𝑥, 𝑡) = ∑ 𝑞𝑛𝑖
∞
𝑛=1 (𝑡) sin (

𝑛𝜋

𝑙
𝑥) , subjected to loading to  𝑃(𝑥, 𝑡) =

∑ 𝑐0
∞
𝑛=1 sin (

𝑛𝜋

𝑙
𝑥), with 

𝐶0 =
2

𝐿
∫ 𝑃(𝑥, 𝑡) 𝑠𝑖𝑛 (

𝑛𝜋

𝑙
𝑥) 𝑑𝑥 =

2𝑃0
𝐿
𝑠𝑖𝑛 (

𝑛𝜋𝑥0
𝐿
)

𝐿

0

 (15) 

leading to the following equation: 
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{
 
 
 
 
 

 
 
 
 
 𝑚1𝑞1𝑡𝑡 + (𝑘𝜌1 −

𝐸𝑓1𝐼1𝑛
2𝜋2

𝐿2
)𝑞1 + 𝛾1∑(𝑞1 − 𝑞𝑗)

𝑁

𝑗=1

=
2𝑞0
𝐿
𝑠𝑖𝑛 (

𝑛𝜋𝑥0
𝐿
)

𝑚2𝑞2𝑡𝑡 + (𝑘𝜌2 −
𝐸𝑓2𝐼2𝑛

2𝜋2

𝐿2
)𝑞2 + 𝛾2∑(𝑞2 − 𝑞𝑗)

𝑁

𝑗=1

= 0

… .
… .
… .

𝑚𝑁𝑞𝑁𝑡𝑡 + (𝑘𝜌𝑁 −
𝐸𝑓𝑁𝐼𝑁𝑛

2𝜋2

𝐿2
)𝑞𝑁 + 𝛾𝑁∑(𝑞𝑁 − 𝑞𝑗)

𝑁

𝑗=1

= 0

 (16) 

Stationary solutions 

The stationary solution is obtained whether 𝑞𝑖𝑡𝑡 = 0,, leading to the algebraic 

equation 𝐴𝑄 = 𝐵, with 𝑄 = (𝑞1, 𝑞2, 𝑞3, … , 𝑞𝑛), 𝐵 = [
2

𝐿
𝑃0𝑠𝑖𝑛 (

𝑛𝜋

𝐿
𝑥0) , 0, 0, 0, … . ,0], 

and  

𝐴 = |
|

Γ1 −𝛾1 −𝛾1 … . −𝛾1
−𝛾2 Γ2 −𝛾2 … . −𝛾2
−𝛾3
… .
−𝛾𝑁

−𝛾3
… .
−𝛾𝑁

Γ3 … . −𝛾3
… . … . … .

−𝛾𝑁 … . Γ𝑁

|
| (17) 

in which Γ𝑖 = 𝑘𝜌𝑖 − 𝐸𝑓𝑖𝐼𝑖
𝑛2𝜋2

𝑙2
+ 𝛾𝑖(𝑁 − 1), leading to the solution 𝑄 = 𝐵 𝐴⁄ . For 

the particular case where N = 2, the stationary solution of the system is in the form:  

{
 

 𝑞1 =
2𝑃0Γ2

𝐿(Γ1Γ2−𝛾1𝛾2)
𝑠𝑖𝑛 (

𝑛𝜋

𝐿
𝑥0)

𝑞2 =
2𝑃0γ2

𝐿(Γ1Γ2−𝛾1𝛾2)
𝑠𝑖𝑛 (

𝑛𝜋

𝐿
𝑥0)

 (18) 

leading to 

{
 
 

 
 𝑤1(𝑥) = 2𝑃0∑

Γ2
L(Γ1Γ2−𝛾1𝛾2)

𝑠𝑖𝑛 (
𝑛𝜋

𝐿
𝑥0) 𝑠𝑖𝑛 (

𝑛𝜋

𝐿
𝑥)

𝑁

𝑛=1

𝑤2(𝑥) = 2𝑃0∑
γ2

L(Γ1Γ2−𝛾1𝛾2)
𝑠𝑖𝑛 (

𝑛𝜋

𝐿
𝑥0) 𝑠𝑖𝑛 (

𝑛𝜋

𝐿
𝑥)

𝑁

𝑛=1

 (19) 

The transient homogeneous solution of the linear equation for the system is 

such as qi(t) = q0icos(ωt + ϕ0), leading to the following set of equations: 

(−miω
2 + (kρi −

𝐸𝑓𝑖Iin
2π2

L2
)+γi(N − 1)) qi − γi∑ qj

N
j≠i = 0, i= 1, 2,… , N (20) 

which can be rewritten in the following expansion form as A0Qi0 = 0, with 



Mathematics and Systems Science 2025, 3(1), 3058.  

8 

A0 =

[
 
 
 
 
 
 
−m1ω

2 + Γ1 −γ1        

−γ2        −m2ω
2 + Γ2

−γ1 . .
−γ2 . .

−γ1                  −γ1
−γ2             −γ2

−γ3          −γ3
..          ..   

       −m3ω
2 + Γ3 . .
. . . .

−γ3                  −γ3
. . . .

−γN−1      −γN−1
−γN       −γN

    
−γN−1 . .
−γN . .

  −mN−1ω
2 + ΓN−1     −γN−1

−γN −mNω
2 + ΓN]

 
 
 
 
 
 

 (21) 

The homogeneous Equation (20) has a non-trivial solution whether the 

determinant of Equation (21) is zero, leading to the dispersion relation 

For N = 2, one has: 

ω2 =
1

2
(
m1Γ2 +m2Γ1 ±√(m1Γ2 −m2Γ1)

2 + 4m1m2γ1γ2
m1m2

) (22) 

which defines the frequency of each mode of vibration. 

For N = 3, Let us introduce the following parameters: 

𝑝0 =
Γ1
𝑚1

+
Γ2
𝑚2

+
Γ3
𝑚3

𝑝1 =
Γ2Γ3 − 𝛾2𝛾3
𝑚2𝑚3

+
Γ1Γ3 − 𝛾1𝛾3
𝑚1𝑚3

+
Γ2Γ1 − 𝛾2𝛾1
𝑚1𝑚2

𝑝2 =
2𝛾1𝛾2𝛾3 − Γ1Γ2Γ3 + 𝛾1𝛾3Γ2 + 𝛾1𝛾2Γ3 + Γ1𝛾2𝛾3

𝑚1𝑚2𝑚3

𝑃11 = 𝑝1 −
1

3
𝑝0
2

𝑝12 = −
2

27
𝑝0
3 + 𝑝2 +

1

3
𝑝0𝑝1

 (23) 

leading to the following characteristic frequency 

ω2 =
p0

3
+
1

3
(
27𝑝12+3√81𝑝12

2 +12𝑝11
2

2
)

1/3

exp (
2

3
𝑖𝜋𝑛) +

1

3
(
27𝑝12−3√81𝑝12

2 +12𝑝11
2

2
)

1/3

exp (−
2

3
𝑖𝜋𝑛) ,n=0,1,2. (24) 

2.4. Dissipative case with nonlinearity 

2.4.1. Equation governing the temporal part of the system 

Let us look for a solution with the standing wave in the form:  𝑤𝑖(𝑥, 𝑡) =

𝜑𝑖(𝑥)𝑞𝑖(𝑡) , where 𝜑𝑖(𝑥) is the spatial part viewed as the envelope and 𝑞𝑖  the 

temporal part. By substituting this equation into Equation (8), one has the following 

expression of the Lagrangian: 
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𝐿 =
1

2
∑[𝑚𝑖�̇�𝑖

2(𝑡)∫ 𝜑𝑖
2(𝑥)𝑑𝑥

𝐿

0

− [𝐸𝑓𝑖𝐼𝑖∫ (
𝜕2𝜑𝑖(𝑥)

𝜕𝑥2
)

2

𝑑𝑥
𝐿

0

+ 𝐾𝑓𝑖∫ 𝜑𝑖
2(𝑥)𝑑𝑥

𝐿

0

] 𝑞𝑖
2(𝑡)

𝑁

𝑖=1

− 2𝑃0𝑞𝑖(𝑡)∫ 𝜑𝑖(𝑥)𝛿(𝑥 − 𝑣𝑒𝑡)𝑑𝑥
𝐿

0

− 𝛾𝑖∑(𝑞𝑖(𝑡) − 𝑞𝑗(𝑡))
2

𝑀

𝑗=1

∫ 𝜑𝑖(𝑥)
2𝑑𝑥 −

𝐸𝑖𝐴0𝑖
4𝐿𝑖

𝑞𝑖
4(𝑡) (∫ (

𝜕𝜑𝑖(𝑥)

𝜕𝑥
)

2𝐿

0

𝑑𝑥)

2
𝐿

0

] 

(25) 

The dissipation function is then given by: 

𝐹𝐷 =
1

2
∑𝜇𝑖𝑟

𝑁

𝑖=1

�̇�𝑖
2(𝑡)∫ 𝜑𝑖

2(𝑥)𝑑𝑥
𝐿

0

 (26) 

The following Lagrangian equation can thus be used: 

𝜕

𝜕𝑡
(
𝜕𝐿

𝜕𝑞𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
=
𝜕𝐹𝐷
𝜕�̇�𝑖

 (27) 

Leading to the following damped equation of motion: 

�̈�𝑖 + 𝜇𝑖�̇�𝑖 +𝜔𝑖
2𝑞𝑖(𝑡) + 𝛾�̃�∑(𝑞𝑖 − 𝑞𝑗) + 𝜆𝑖𝑞𝑖

3 = 𝐹𝑖(𝑡)

𝑀

𝑗=1

𝛿(𝑖 − 1) (28) 

With 

𝜇𝑖 =
𝜇𝑖𝑟
𝑚𝑖
; 𝜔𝑖

2 =
1

𝑚𝑖

(

 
 
𝐸𝑓𝑖𝐼𝑖

∫ (
𝜕2𝜑𝑖(𝑥)
𝜕𝑥2

)
2

𝑑𝑥
𝐿

0

∫ 𝜑𝑖
2(𝑥)𝑑𝑥

𝐿

0

+ 𝑘𝑓𝑖

)

 
 

𝜆𝑖 =
𝐸𝑖𝐴0𝑖
2𝐿𝑖𝑚𝑖

(∫ (
𝜕𝜑𝑖(𝑥)
𝜕𝑥

)
2

𝐿

0
𝑑𝑥)

2

∫ 𝜑𝑖
2(𝑥)𝑑𝑥

𝐿

0

𝛾�̃� =
𝛾𝑖

𝑚𝑖 ∫ 𝜑𝑖
2(𝑥)𝑑𝑥

𝐿

0

𝐹(𝑡) =
2𝑃0

𝑚𝑖 ∫ 𝜑𝑖
2(𝑥)𝑑𝑥

𝐿

0

𝜑𝑖(𝑣𝑒𝑡)

 
(29) 

Equation (29) is the set of the coupled Duffing equations [37] with the influence 

of all neighbors, in which 𝜇𝑖 is the dissipation coefficient, and δ(1−i) is introduced 

since the load is applied only on the first layer and the other layers undergo. Note 

that the Duffing equations are generally used to describe the dynamic behavior of 

many real-world nonlinear systems for a wide range of frequency bands and 

amplitudes of the excitation signal in nonlinear sciences and engineering [33]. For 

example, the Duffing oscillator has been used successfully to model a variety of 

physical processes such as stiffening springs, buckling of beams, nonlinear electronic 

circuits, Josephson superconducting parametric amplifiers, and ionization waves in 
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plasmas [38,39]. In the forced Duffing equation, the dissipation parameters are 

responsible for the formation of hysteresis in the amplitude-dependent frequency 

curves [38]. 

2.4.2. Equilibrium points 

Let us look for the equilibrium points and then study the stability for the case 

with two and three layers in order to find the analytical solution of this equation. 

Equation (28) can thus be rewritten in the following form: 

{
 
 
 
 
 
 

 
 
 
 
 
 �̈�1 + 𝜇1�̇�1 +𝜔1

2𝑞1 + 𝜆1𝑞1
3 + 𝛾1 [(𝑁 − 1)𝑞1 −∑𝑞𝑛

𝑁

𝑛≠1

] = 𝑓(𝑡) = 𝜓

…

�̈�2 + 𝜇2�̇�2 +𝜔2
2𝑞2 + 𝜆2𝑞2

3 + 𝛾2 [(𝑁 − 1)𝑞2 −∑𝑞𝑛

𝑁

𝑛≠2

] = 0

…

�̈�𝑖 + 𝜇𝑖�̇�𝑖 +𝜔𝑖
2𝑞𝑖 + 𝜆𝑖𝑞𝑖

3 + 𝛾𝑖 [(𝑁 − 1)𝑞𝑖 −∑𝑞𝑛

𝑁

𝑛≠𝑖

] = 0

…

�̈�𝑁 + 𝜇𝑁�̇�𝑁 +𝜔𝑁
2 𝑞𝑁 + 𝜆𝑁𝑞𝑁

3 + 𝛾𝑁 [(𝑁 − 1)𝑞𝑁 − ∑ 𝑞𝑛

𝑁

𝑛≠𝑁

] = 0

 (30) 

In order to find the equilibrium points for the particular case where one has only 

two layers, it is obvious that: 

{
𝜔1
2𝑞1 + 𝛾1(𝑞1 − 𝑞2) + 𝜆1𝑞1 = 𝐹

𝜔2
2𝑞2 + 𝛾2(𝑞2 − 𝑞1) + 𝜆2𝑞2

3 = 0
 (31) 

In order to combine these two equations, one has, from the second line. 

𝑞1 =
(𝜔1

2 + 𝛾2)𝑞2 + 𝜆2𝑞2
3

𝛾2
 (32) 

Substituting 𝑞1  into the first line of Equation (31) one has the polynomial 

Equation (33) of order 9, where one must vary the values of ω and plot to have the 

equilibrium points. 

𝜆1𝜆2
3

𝛾2
3 𝑞2

9 +
3𝜆1𝜆2

2(ω2 + 𝛾2)

𝛾2
3 𝑞2

7 +
3𝜆1𝜆2(ω

2 + 𝛾2)
2

𝛾2
3 𝑞2

5 + (
ω2𝜆2
𝛾2

+
𝛾1𝜆2
𝛾2

+
𝜆1(ω

2 + 𝛾2)
3

𝛾2
3 )𝑞2

3

+
ω2(ω2 + 𝛾2 + 𝛾1)

𝛾2
𝑞2 − 𝐹 = 0 

(33) 

This equation is solved and plotted in Figure 2, which shows only one solution. 
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Figure 2. Equilibrium points for varying values of F and for: 𝜆1 = 1; 𝜆2 = 1.5, 𝛾1 =

1, 𝛾2 = 2; (a): 𝑞1, (b): 𝑞2. As one can see, only one solution is found. 

3. Solutions of the damped case with nonlinearity 

3.1. Analytical solutions 

3.1.1. Solution for N = 2 

Here, we will first make an emphasis on the case where N = 2, and the set of 

Equation (28) leads to: 

{
�̈�1 + 𝜇1�̇�1 +𝜔1

2𝑞1 + 𝛾1(𝑞1 − 𝑞2) + 𝜆1𝑞1
3 = 𝐴𝑐𝑜𝑠(Ω𝑡)

�̈�2 + 𝜇2�̇�2 + 𝜔2
2𝑞2 + 𝛾2(𝑞2 − 𝑞1) + 𝜆2𝑞2

3 = 0
 (34) 

Let us introduce the small parameter 𝜀 ≪ 1 , such as 𝜇1 = 𝜀𝜇10 , 𝜇2 =

𝜀𝜇20, 𝜆1 = 𝜀𝜆10, 𝛾2 = 𝜀𝛾20, 𝐴 = 𝜀𝐴0, 𝛾1 = 𝜀𝛾10, for harmonic resonance, and the 

variables 

𝑞1 = q10 + 𝜀𝑞11 +⋯,𝑞2 = q20 + 𝜀𝑞21 +⋯,𝑇0 = 𝑡,𝑇1 = 𝜀𝑡,𝑇2 = 𝜀
2𝑡,…. (35) 

leading to: 

𝑑

𝑑𝑡
= 𝐷0 + 𝜀𝐷1 + 𝜀

2𝐷2 +⋯,𝐷0 =
𝜕

𝜕𝑇0
,𝐷1 =

𝜕

𝜕𝑇1
,𝐷2 =

𝜕

𝜕𝑇2
,… (36) 

One obtains thus for: 

• The equation at order 𝜀0, 

𝐷0
2𝑞20 +𝜔2

2𝑞20 = 0,𝐷0
2𝑞10 +𝜔1

2𝑞10 = 0 (37) 

admitting as solutions: 

𝑞10 = 𝑅1 (𝑇1)cos(ω1𝑇0 − 𝜙1(𝑇1)),𝑞20 = 𝑅2 (𝑇1)cos(ω2𝑇0 − 𝜙2(𝑇1)) (38) 

• The equation at order 𝜀1, leads to 

𝐷0
2𝑞11 +𝜔1

2𝑞11 = 𝐴0 cos(Ω𝑇0) −𝜇10𝐷0𝑞10 − 2𝐷0𝐷1𝑞10 − 𝜆10𝑞10
3

𝐷0
2𝑞21 +𝜔2

2𝑞21 = −𝜇20𝐷0𝑞20 − 2𝐷0𝐷1𝑞20 − 𝜆20𝑞20
3  (39) 

Introducing solution Equation (38) into Equation (39), one has the following 

coupled of equations 
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𝐷0
2𝑞11 +ω1

2𝑞11 = −
1

4
𝜆10𝑅1

3 cos(3ω1𝑇0 − 3𝜙1) + (−ω1(2𝐷1𝑅1 + 𝜇10𝑅1) sin(𝜙1)

− (2ω1𝑅1𝐷1𝜙1 + 𝛾10𝑅1 +
3

4
𝜆10𝑅1

3) cos(𝜙1)) cos(ω1𝑇0) + 𝛾10𝑅2 cos(𝜙2) cos(ω2𝑇0)

+ 𝐴0 cos(Ω𝑇0)

+ (ω1(2𝐷1𝑅1 + 𝜇10𝑅1) cos(𝜙1) − (2ω1𝑅1𝐷1𝜙1 + 𝛾10𝑅1 +
3

4
𝜆10𝑅1

3) sin(𝜙1)) sin(ω1𝑇0)

+ 𝛾10𝑅2 sin(𝜙2) sin(ω2𝑇0) 

𝐷0
2𝑞21 +ω2

2𝑞21 = −
1

4
𝜆20𝑅2

3 cos(3ω2𝑇0 − 3𝜙2)

+ (−ω2(2𝐷1𝑅2 + 𝜇20𝑅2) sin(𝜙2) − (2ω2𝑅2𝐷1𝜙2 + 𝛾20𝑅2 +
3

4
𝜆20𝑅2

3) cos(𝜙2)) cos(ω2𝑇0)

+ 𝛾20𝑅1 cos(𝜙1) cos(ω1𝑇0)

+ (ω2(2𝐷1𝑅2 + 𝜇20𝑅2) cos(𝜙2) − (2ω2𝑅2𝐷1𝜙2 + 𝛾20𝑅2 +
3

4
𝜆20𝑅2

3) sin(𝜙2)) sin(ω2𝑇0)

+ 𝛾20𝑅1 sin(𝜙1) sin(ω1𝑇0) 

(40) 

The resonance picture appears whether 𝜔1 = Ω − 𝜀𝜒1, 𝜔2 = Ω− 𝜀𝜒2. In order 

to avoid secularity conditions, the coefficients of terms proportional to cos(Ω𝑇0) and 

sin(Ω𝑇0) will be zero, leading to the following couple of equations:  

2𝜔1𝐷1𝑅1 +𝜔1𝜇10𝑅1 + 𝛾10𝑅2 sin(𝜙2 − 𝜙1 − (𝜒1 + 𝜒2)𝑇1) − 𝐴0𝑠𝑖𝑛(𝜙1 + 𝜒1𝑇1) = 0

2𝜔1𝑅1𝐷1𝜙1 + 𝛾10𝑅1 +
3

4
𝜆10𝑅1

3 − 𝛾10𝑅2 cos(𝜙2 − 𝜙1 − (𝜒1 + 𝜒2)𝑇1) − 𝐴0𝑐𝑜𝑠(𝜙1 + 𝜒1𝑇1) = 0

2𝜔2𝐷1𝑅2 +𝜔2𝜇20𝑅2 − 𝛾20𝑅1 sin(𝜙2 − 𝜙1 + (𝜒1 + 𝜒2)𝑇1) = 0

2𝜔2𝑅2𝐷1𝜙2 + 𝛾20𝑅2 +
3

4
𝜆20𝑅2

3 − 𝛾20

 (41) 

The stationary solution is obtained if and only if: 𝐷1𝑅1 = 𝐷1𝑅2 = 0, and the 

phase is constant, that is to say  𝐷1𝜙2 − 𝐷1𝜙1 = (𝜒1 + 𝜒2)  et 𝐷1𝜙2 − 𝐷1𝜙1 =

−(𝜒1 + 𝜒2), 𝐷1𝜙1 = −𝜒1. We thus find 𝐷1𝜙2 = 𝜒2, 𝐷1𝜙1 = −𝜒1, et 𝜒2 = −𝜒1. 

Leading to: 

𝜔1𝜇10𝑅1 + 𝛾10𝑅2 sin(𝜙2 − 𝜙1) − 𝐴0𝑠𝑖𝑛(𝜙1 + 𝜒1𝑇1) = 0

(−2𝜔1𝜒1 + 𝛾10)𝑅1 +
3

4
𝜆10𝑅1

3 − 𝛾10𝑅2 cos(𝜙2 − 𝜙1) − 𝐴0𝑐𝑜𝑠(𝜙1 + 𝜒1𝑇1) = 0

𝜔2𝜇20𝑅2 − 𝛾20𝑅1 sin(𝜙2 − 𝜙1) = 0

(2𝜔2𝜒2 + 𝛾20) 𝑅2 +
3

4
𝜆20𝑅2

3 − 𝛾20𝑅1 cos(𝜙2 −𝜙1)

 (42) 

The last two lines of Equation (42) give after combination: 

𝑅1 = ±
𝑅2

𝛾20
√𝜔2

2𝜇20
2 + ((2𝜔2𝜒2 + 𝛾20) +

3

4
𝜆20𝑅2

2)
2
,tan(𝜙2 − 𝜙1) =

𝜔2𝜇20

(2𝜔2𝜒2+𝛾20)+
3

4
𝜆20𝑅2

2
 (43) 

Combining the first two lines, we have: 
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𝐴0
2𝛾20

2 𝑅1
2 = (𝛾20𝜔1𝜇10𝑅1

2 + 𝛾10𝜔2𝜇20𝑅2
2)2  

+ (𝛾20(−2𝜔1𝜒1 + 𝛾10) 𝑅1
2 +

3

4
𝛾20𝜆10𝑅1

4

− 𝛾10𝑅2
2 ((2𝜔2𝜒2 + 𝛾20) +

3

4
𝜆20𝑅2

2))

2

 

(44) 

Equation (35) can be expanded taking into account Equation (33) to give: 

𝑝0𝑅2
10 + 𝑝2𝑅2

8 + 𝑝4𝑅2
6 + 𝑝5𝑅2

5 + 𝑝6𝑅2
4 + 𝑝7𝑅2

3 + 𝑝8𝑅2
2 + 𝑝9𝑅2 + 𝑝10 = 0, (45) 

With 

𝑝0 =
81

1024𝛾20
3 𝜆20

4 (4𝛾20𝜔1
2𝜇10

2 + 3𝜆10),𝑝2 =
27

64𝛾20
3 𝜆20

3 (4𝛾20𝜔1
2𝜇10

2 + 3𝜆10)(2𝜔2𝜒2 + 𝛾20) 

𝑝4 =
9

32𝛾20
3 𝜆20

2 (4𝛾20𝜔1
2𝜇10

2 + 3𝜆10)(3(2𝜔2𝜒2 + 𝛾20)
2 +𝜔2

2𝜇20
2 ) +

9

8𝛾20
𝜆20
2 𝜔1𝜇10𝛾10𝜇20𝜔2 

𝑝5 = −
9

16
𝛾10𝜆20

2 , 

 𝑝61 =
3

4𝜆20
3 𝜆20𝜔2(4𝛾20𝜔1

2𝜇10
2 + 3𝜆10)(8𝜒2

3𝜔2
2 + 2𝜒2𝜔2

2𝜇20
2 +𝜔2𝜇20

2 𝛾20 + 12𝜔2𝜒2
2𝛾20 + 6𝜒2𝛾20

2 ) 

𝑝63 = (−
9

8𝜆20
𝜔1𝜒1 −

9

16
𝐴0
2 +

9

16𝛾20
𝛾10) 𝜆20

2 + (
9

4
𝛾10 + 3𝛾20𝜔1

2𝜇10
2 )𝜆20 

𝑝83 = 2𝜔1𝜇10𝛾10𝜔2(4𝜒2𝜔2+𝛾20)𝜇20 + 𝜇20
2 𝜔2

2𝛾10
2 + 8𝜔2𝜔1

2𝜇10
2 𝜒2𝛾20 − 3𝜔2(𝐴0

2𝜆20 − 2𝜆10)𝜒2

−
3𝜔2𝜆20(−𝛾10 + 2𝜔1𝜒1)𝜒2

𝛾20
 

𝑝81 =
3

4
𝛾20𝜆10 +

3

2
𝛾10𝜆20 −

3

2
𝐴0
2𝛾20𝜆20 + 𝛾20

2 𝜔1
2𝜇10

2 − 3𝜔1𝜒1𝜆20,𝑝8 = 𝑝81 + 𝑝82 + 𝑝83 

𝑝9 = −𝛾10(𝛾20 + 2𝜒2𝜔2)
2
 

𝑝10 = −
(𝛾20
2 + 4𝜔2

2𝜒2
2 + 4𝜔2𝜒2𝛾20 +𝜔2

2𝜇20
2 )(𝐴0

2𝛾20 + 2𝜔1𝜒1 − 𝛾10)

𝛾20
 

(46) 

Equation (45) is the 10th order polynomial equation, which is numerically 

solved, and the results found are plotted in Figures 3–6 for some choice of 

parameters, proving the complexity of the system. 
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Figure 3. Amplitude of the solution obtained for: 𝜔 = 1, 𝛾10 = 𝛾20 = 1, 𝜆10 =

𝜆20 = −1 , 𝜇10 = 𝜇20 = 0.05, (a1) 𝐴0 = 0.5, (b1): 𝐴0 = 1, showing the hysteresis. 

In (a2) and (b2), one has the quenching for 0.5 < 𝜒1 = −𝜒2 < 1. 

 

 

Figure 4. Amplitude of the solution obtained for: 𝜔 = 1, 𝛾10 = 𝛾20 = 1, 𝜆10 =

𝜆20 = −1, 𝜇10 = 𝜇20 = 0.5, (a1) 𝐴0 = 0.5, (b1) 𝐴0 = 1, showing the hysteresis. In 

(a2) and (b2), one has the quenching for 0.5 < 𝜒1 = −𝜒2 < 1. 
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Figure 5. Amplitude of the solution obtained for 𝜔 = 1, 𝛾10 = 𝛾20 = 1, 𝜆10 =

𝜆20 = 1, 𝜇10 = 𝜇20 = 0.05; (1) 𝐴0 = 2, (2): 𝐴0 = 6, showing the hysteresis. 

 

Figure 6. Amplitude of the solution obtained 𝜔 = 1, 𝛾10 = 𝛾20 = 1, 𝜆10 = 𝜆20 = 1, 

𝜇10 = 𝜇20 = 0.05; (a) 𝐴0 = 2, (b): 𝐴0 = 6. 

3.1.2. Solution for N=3 

Now for N = 3, one has at order 𝜀0  the set of equations 𝐷0
2𝑞𝑛0 +𝜔1

2𝑞𝑛0 =

0, 𝑛 = 1, 2, 3 , which admit as solutions: 

𝑞,𝑛0 = 𝑅𝑛 (𝑇1)cos(ωn𝑇0 − 𝜙𝑛(𝑇1)) , 𝑛 = 1 ,2, 3, (47) 

At order 𝜀1 one has: 

{

𝐷0
2𝑞11 +𝜔1

2𝑞11 = −𝜇10𝐷0𝑞10 − 𝛾10(2𝑞10 − 𝑞20 − 𝑞30) − 2𝐷0𝐷1𝑞10 − 𝜆10𝑞10
3 + 𝐴0𝑐𝑜𝑠(Ω𝑇0)

𝐷0
2𝑞21 +𝜔2

2𝑞21 = −2𝐷0𝐷1𝑞20 − 𝜇20𝐷0𝑞20 − 𝛾20(−𝑞10 + 2𝑞20 − 𝑞30) − 𝜆20𝑞20
3

𝐷0
2𝑞31 +𝜔3

2𝑞31 = −2𝐷0𝐷1𝑞30 − 𝜇30𝐷0𝑞30 − 𝛾30(2𝑞30 − 𝑞20 − 𝑞10) − 𝜆30𝑞30
3

 (48) 

By substituting Equation (47) into Equation (48), one obtains by imposing as 

above the coefficients of the terms proportional to 𝑐𝑜𝑠(𝛺 𝑇0) and 𝑠𝑖𝑛(𝛺 𝑇0) zero the 

equations, with 𝜔3 = Ω+ 𝜀𝜒3, leading to the Equation (53) in the Appendix A. The 

stationary solution is obtained if and only if 𝐷1𝑅1 = 𝐷1𝑅2 = 𝐷1𝑅3 = 0, and the 

phase is constant, that is to say 𝐷1𝜙1 = 𝐷1𝜙2 = 𝐷1𝜙3 = 0, and 𝜒1 = 𝜒2 = 𝜒3 = 0. 

This case corresponds to pure resonance, that is to say 𝜔1 = 𝜔2 = 𝜔3 = Ω. 

In order to simplify our investigations here, let us focus on the case where 𝜙1 =

𝜙2 = 𝜙3. Equation (48) becomes: 
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𝜇10𝑅1𝜔1 = 𝐴0𝑠𝑖𝑛(𝜙1)
𝜇20𝑅2𝜔2 = 0
𝜇30𝜔3𝑅3 = 0

2𝛾10𝑅1 − 𝐴0𝑐𝑜𝑠(𝜙1) − 𝛾10(𝑅2 + 𝑅3) +
3

4
𝜆10𝑅1

3 = 0

2𝛾20𝑅2 +
3

4
𝜆20𝑅2

3 − 𝛾20(𝑅1 + 𝑅3) = 0

2𝛾30𝑅3 − 𝛾30(𝑅2 + 𝑅1) +
3

4
𝜆30𝑅3

3 = 0

 (49) 

Thus the last equation leads to: 

𝑅1 = 2𝑅3 − 𝑅2 +
3

4

𝜆30

𝛾30
𝑅3
3  (50) 

and the last but one equation gives: 𝑅2 +
𝜆20

4𝛾20
𝑅2
3 − 𝑅3 −

𝜆30

4𝛾30
𝑅3
3 = 0, which allows 

to have: 

𝑅2 = (
2𝛾20

𝜆20
(𝑅3 +

𝜆30

4𝛾30
𝑅3
3) + √

4𝛾20
2

𝜆20
2 (𝑅3 +

𝜆30

4𝛾30
𝑅3
3)
2
+
64𝛾20

3

27𝜆20
3 )

1/3

exp (
𝑖𝑛𝜋

3
) + (

2𝛾20

𝜆20
(𝑅3 +

𝜆30

4𝛾30
𝑅3
3) −

√
4𝛾20

2

𝜆20
2 (𝑅3 +

𝜆30

4𝛾30
𝑅3
3)
2
+
64𝛾20

3

27𝜆20
3 )

1/3

exp (−
𝑖𝑛𝜋

3
), avec n=0,1,2. 

(51) 

The first two equations give: 

𝐴0
2 = 𝜇10

2 𝜔1
2𝑅1

2 + (2𝛾10𝑅1 − 𝛾10(𝑅2 + 𝑅3) +
3

4
𝜆10𝑅1

3)
2
. (52) 

Solving the system of Equation (50)–(52) gives the amplitude of the system as 

plotted in Figures 7–9. 

3.2. Numerical investigations 

In this subsection, we numerically solve the set of equations of the system given by 

Equation (29), 𝑓(𝑡) = 𝑞0 sin(Ωnt), with Ωn =
𝑛𝜋

𝐿
𝑣, and 𝐴0=

2𝑃0

𝑚𝑖 ∫ 𝜑𝑖
2(𝑥)𝑑𝑥

𝐿

0

. To this end, 

the fourth-order Runge Kutta scheme is used, with the initial condition 𝑞𝑛0 = 0, 𝑛 =

1, 2,… ,𝑁 , with the following parameters kept constant:  𝜔1 = 𝜔2 = 0.05, 𝛾1 =

0.25, 𝜆1 = 0.25, 𝜆0 = 1, 𝜇1 = 0.01, 𝜇2 = 0.05, A0 = 2. 

 

Figure 7. Amplitude of the solution obtained for N = 3 and for 𝛾10 = 𝛾20 = 𝛾30 = 1, 

𝜆10 = 𝜆20 = −𝜆30 = 1, 𝜇10 = 𝜇20 = 𝜇30 = 0.05; (1) 𝐴0 = 1, (2): 𝐴0 = 6. 
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Figure 8. Amplitude of the solution obtained for N = 3 and for 𝛾10 = 𝛾20 = 𝛾30 = 1, 

𝜆10 = 𝜆20 = −𝜆30 = 1, 𝜇10 = 𝜇20 = 𝜇30 = 0.05; 𝐴0 = 0.5. 

 

Figure 9. Amplitude of the solution obtained for N = 3 and for 𝛾10 = 𝛾20 = 𝛾30 = 1, 

𝜆10 = 𝜆20 = −𝜆30 = 1, 𝜇10 = 𝜇20 = 𝜇30 = 0.05; (a): 𝜔1 = 0.5; (b): 𝜔1 = 10. 

3.2.1. Result for N = 2 

Case for 𝜔 = 0.5 

Firstly, the bifurcation diagram is plotted as shown in Figure 10 (and in its 

zoom given in Figure B1 of Appendix B) in order to investigate the transition of the 

system to chaos, while the maximum Lyapunov exponent is plotted to indicate 

whether the system is chaotic or not, with the parameter 𝛾2 chosen as the tuning 

parameter. Thus, Figure 10a,b shows the bifurcation diagram obtained for 𝜔 = 0.5, 

from where it is obvious that one has the periodic behavior for 0.22 ≤ 𝛾2 ≤ 0.4, and 

𝛾2 > 0.88. For 𝛾2 < 0.22, and 𝛾2 > 0.88, one has the crisis, with some chaotic 

windows inside the regular band. Figure 10c shows the corresponding maximum 

Lyapunov exponent, which is in agreement with the bifurcation diagram. Figure B1 

in the Appendix shows zooms of Figure 10, used to carry emphasis on the transition 

of the system.  

To justify the behavior of the system, the time trace, the phase portraits, and the 

frequency spectrum of the system are plotted for some values of 𝛾2. In Figure 11, 

one has in (a) the temporal evolution of the displacement, (b) the phase portrait, and 

(c), the frequency spectrum obtained for the same parameters as in Figure 10, but 

with 𝛾2 = −0.15. As one can see, one has the chaotic impulses, which are justified 
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by the frequency phase spectrum, which has large a band. In Figures 12 and 13 

obtained for the same parameters as in Figure 10, but with 𝛾2 = 0.2 and 𝛾2 = 0.7, 

respectively, one has the train of regular impulses, which is justified by their 

frequency phase spectrum, with a finite number of picks. 

  

 

Figure 10. (a,b) Bifurcation diagrams at positions 1 and 2 respectively; (c) 

maximum Lyapunov exponent obtained for 𝜔1 = 𝜔2 = 0.05, 𝛾1 = 0.25, 𝛾2 =

−0.17, 𝜆1 = 0.25, 𝜆2 = 1, 𝜇1 = 0.01, 𝜇2 = 0.05, 𝐴 = 2, 𝜔 = 0.5. 

Case for weak frequency 𝜔 = 0.05 

The bifurcation diagram is first plotted as shown in Figure 14, for parameters 

chosen as in Figure 10, but with 𝜔 = 0.05, which shows the bifurcation picture 

different to that obtained above in Figure 10. In this figure, the chaotic band has 

considerably reduced, with chaos appearing around  𝛾2 = 0.5  and also for  𝛾2 >

0.85. Figures 15 and 16 show the evolution of the system for 𝛾2 = 0.2, and 𝛾2 =

0.5, respectively, which are the train of bursting signals. 
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Figure 11. (a) Temporal evolution of the displacements; (b) phase portrait; (c) 

frequency spectrum obtained for the same parameters as in Figure 10, but with 𝛾2 =

−0.15. As one can see, one has the chaotic impulses. 

 

Figure 12. (a) Temporal evolution of the displacements, (b) phase portrait; (c) 

frequency spectrum obtained for the same parameters as in Figure 10, but with 𝛾2 =

0.2. As one can see, one has the train of impulses 
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Figure 13. (a) Temporal evolution of the displacements; (b) phase portrait; (c) 

frequency spectrum obtained for the same parameters as in Figure 10, but with 𝛾2 =

0.7. As one can see, one has the train of impulses. 

  

 

Figure 14. (a,b) Bifurcation diagrams, (c) maximum Lyapunov exponent, obtained 

for 𝜔1 = 𝜔2 = 0.05, 𝛾1 = 0.25, 𝛾2 = −0.17, 𝜆1 = 0.25, 𝜆2 = 1, 𝜇1 = 0.01, 𝜇2 =

0.05, 𝐴 = 2 and, 𝜔 = 0.05. 
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Figure 15. (a) Temporal evolution of the displacements; (b) phase portraits; (c) 

frequency spectrums obtained for the same parameters as in Figure 14, but with γ2 = 

0.2. As one can see, one has the train of bursting. 

 

Figure 16. (a) Temporal evolution of the displacements; (b) phase portraits; (c) 

frequency spectrums obtained for the same parameters as in Figure 14, but with γ2 = 

0.5. One has the train of bursting. 

Synchronization 

In order to study the synchronization of two consecutive layers, q2 is plotted as 

a function of 𝑞1 for the above-studied cases as shown in Figure 17. In Figure 17a,b 

obtained for 𝜔 = 0.5 and 𝛾2 = −0.15 and 𝛾2 = 0.2, q2 doesn’t synchronize q1, and 

the figures obtained look like the chaotic signal, while for (c) and (d), obtained for 

(𝜔 = 0.5 and 𝛾2 = 0.7) and (𝜔 = 0.05 and 𝛾2 = 0.45), q2 synchronizes fairly 𝑞1. 
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Figure 17. Synchronization curves for (a): 𝜔 = 0.5 and 𝛾2 = −0.15, (b): 𝜔 = 0.5 

and 𝛾2 = 0.2; (c):𝜔 = 0.5 and 𝛾2 = 0.7; (d): 𝜔 = 0.05 and 𝛾2 = 0.5. 

3.2.2. Results for N = 3 

In this case, Figures 18 and 19 show the behavior of the system for N=3, and 

for 𝜔1 = 0.05, 𝜔2 = 1, 𝜆1 = 0.25, 𝜆2 = 0.5, 𝜆3 = 0.5, 𝜇1 = 𝜇3 = 0.01, 𝜇2 = 0.05, 

𝛾1 = 0.25, 𝛾1 = 0.25, 𝛾2 = 0.2, 𝛾3 = 0.5 and 𝐴0 = 1,𝜔 = 0.05 is for Figure 18, 

while 𝜔 = 0.5 is for Figure 19. 

3.3. Discussion 

From the above results, it is obvious that by taking into account the effect of 

nonlinearity of multilayer beam structures on elastic foundations under mobile point 

loading, the system has rich dynamics depending on both the nature of the system 

(coupling) and loadings, which means that: 

• The dynamics of the system can be chaotic or regular for large frequency 

values, that is to say, the high speeds of the mobile load. This assertion is in 

agreement with the results of Shaohua Li et al. [40], who showed that road 

vibrations excited by moving vehicle loads move from transient chaos to 

attenuated periodic motion and finally disappear to increase road life. Thus, the 

chaotic appearance observed shows that throughout the foundation the 
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differential settlement is not uniform; therefore, special treatment of the soil is 

necessary (clearing, use of synthetic geomembrane, avoidance of preferred 

isolated and continuous footings, etc.) to reduce the risk of structural collapse. 

• The observed crisis (intermittency of chaos) on the bifurcation curves for 

certain frequency values could be the cause of the destruction of certain 

foundations and must be considered by engineers when sizing structures and 

calculating reinforcement. 

• The chaotic appearance observed in the soil foundation can also be interpreted 

as the transition of the soil from the elastic state to the plastic state, which 

directly affects the physical properties of the soil, such as bulk density, strength, 

stress, and porosity. However, this chaos could be important for the compaction 

of the subgrade in road constructions since it could increase the compaction 

rate. 

  

Figure 18. (a,b,c) Temporal evolution of the displacements for N = 3; (d,e,f) phase 

portraits obtained for 𝜔1 = 0.05, 𝜔2 = 1, 𝜆1 = 0.25, 𝜆2 = 0.5, 𝜆3 = 0.5, 𝜇1 =

𝜇3 = 0.01, 𝜇2 = 0.05, 𝛾1 = 0.25, 𝛾1 = 0.25, 𝛾2 = 0.2, 𝛾3 = 0.5 and 𝐴0 = 1 

and 𝜔 = 0.05. 
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Figure 19. Temporal evolution of the displacements for N = 3 obtained for same 

parameters as in Figure 18, but with 𝜔 = 0.5. 

4. Conclusion 

The dynamics of a multilayer beam structure system under moving point load 

was studied with particular emphasis on nonlinearity and the coupling parameter. 

This study could find direct applications to railways and road transport. To achieve 

this, we first proposed the model studied, taking into account the literature and real 

physical phenomena. Subsequently, Lagrange’s formulations allowed establishing 

the nonlinear equations of the system, which are a function of the dissipative and 

elastic coupling between the different layers of the system. The different forms of 

energy of the system are thus established, including the kinetic energy and the 

potential energies of deformation and curvature depending on the elasticity of the 

system and the nature of its deformation. 

These equations were thus used to find the Eigen modes and the natural 

vibration frequencies of the system. Then, by considering a sinusoidal standing 

waveform at the spatial part of the system equation, the temporal part was reduced to 

the coupled third-order nonlinear differential equations, where the first line was 

forced, while the rail at the position data directly feels the effects of all its direct and 

indirect neighbors (first, second, third, etc.). These coupled nonlinear equations were 

used to determine the equilibrium points, and these equations were subsequently 

solved analytically through the multiple time scale method, which showed more 

complex dynamics, with the formation of hysteresis when the number of beams 

increased. The system of coupled nonlinear equations of the system was then solved 

numerically by means of the fourth-order Runge Kutta scheme, and the transition of 

the system towards chaos due to nonlinearity was analyzed through the bifurcation 

diagram and the Lyapunov exponent, which showed strong sensitivity to the 

coupling parameter as well as the system frequency. The results showed for a 2-layer 

structure that when the frequency value was high ω = 0.5, there was a periodic 

behavior for 0.22 ≤ 𝛾2 ≤ 0.22 and 𝛾2 > 0.88. For 𝛾2 < 0.22 and 𝛾2 > 0.88, we had the 

crisis, with a few chaotic windows inside the regular band. When the frequency was 

low, that is ω = 0.05 the chaotic band was considerably reduced, with chaos 

appearing around 𝛾2 =  0.5 and also for 𝛾2 > 0.85. The time trace showed chaotic 
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pulses and bursting-type behavior for some choices of the coupling parameter. We 

also note that two successive layers do not synchronize. In the field of railway 

engineering, the bursting behavior obtained here proves that the rails on a ballast 

layer, subjected to the action of a moving point load induced by the train, could 

oscillate around several equilibrium points, and this behavior should be taken into 

consideration by structural engineers in the design and dimensioning of rails and 

ballasts, as well as in the choice of materials constituting them. 

To improve this work, it would be important to study the chaos controller in 

order to reduce the chaos in the system (which is not desirable in civil engineering), 

which could then help civil engineers and geotechnicians to fully understand the 

behavior of soils under load and to take additional measures during the construction 

of structures. It would be important to take into account the friction between the 

adjacent layers as well as between the beam and foundation, which can introduce an 

additional coupling term proportional to (
∂

∂t
(wi(x, t)) −

∂

∂t
(wj(x, t))) and which is 

neglected here, but will constitute perspective for future investigations. It would also 

be important to make real experiments confirming our findings. Works in these 

lights are now under consideration. 
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Appendix A 

Equations obtained after Equation (48) 

2𝑅1𝜔1𝐷1𝜙1 + 2𝛾10𝑅1 − 𝐴0𝑐𝑜𝑠(𝜙1 + 𝑇1𝜒1)

− 𝛾10(𝑅2𝑐𝑜𝑠(𝜙1 − 𝜙2 + 𝑇1(𝜒1 + 𝜒2)) + 𝑅3𝑐𝑜𝑠(𝜙1 − 𝜙3 + (𝜒1 + 𝜒3)𝑇1)) +
3

4
𝜆10𝑅1

3 = 0 

2𝜔2𝐷1𝑅2 + 𝜇20𝑅2𝜔2 − 𝛾20(𝑅1𝑠𝑖𝑛(𝜙2 −𝜙1 + (𝜒1 + 𝜒2)𝑇1) + 𝑅3𝑠𝑖𝑛(𝜙2 − 𝜙3 + 𝑇1(𝜒2 + 𝜒3))) = 0 

2𝑅2𝜔2𝐷1𝜙2 + 2𝛾20𝑅2 +
3

4
𝜆20𝑅2

3 − 𝛾20(𝑅1𝑐𝑜𝑠(𝜙2 − 𝜙1 + 𝑇1(𝜒1 + 𝜒2)) + 𝑅3cos (𝜙2 − 𝜙3 + 𝑇1(𝜒2 + 𝜒3))

= 0 

2𝜔30𝐷1𝑅3 + 𝜇30𝜔3𝑅3 − 𝛾30(𝑅1𝑠𝑖𝑛(𝜙3 − 𝜙1 + 𝑇1(𝜒1 + 𝜒3)) + 𝑅2𝑠𝑖𝑛(𝜙3 − 𝜙2 + 𝑇1(𝜒2 + 𝜒3))) = 0 

2𝑅3𝜔30𝐷1𝜙3 + 2𝛾30𝑅3 − 𝛾30(𝑅2𝑐𝑜𝑠(𝜙3 − 𝜙2 + 𝑇1(𝜒2 + 𝜒3)) + 𝑅1𝑐𝑜𝑠(𝜙3 − 𝜙1+𝑇1(𝜒1 + 𝜒3))) +
3

4
𝜆30𝑅3

3

= 0 

(A1) 
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Appendix B 

Zooms of the bifurcation diagram showing in Figure 10. 

  

  
Figure B1. Zooms of the Bifurcation diagram obtained in Figure 10. 


